Standard of The Open Group

[This page intentionally blank]

Table of Contents

Digital Practitioner Body of Knowledge™ Standard
Preface
The Open Group
This Document
Background and Intended Value of this Work
Sources of Material
Relationship to Prior Publications
Curation Approach
Relationship of this Document to Other Bodies of Knowledge
Interpretive Aspects
Evidence of Notability
Trademarks
Acknowledgments
Referenced Documents
Normative References
Informative References
1. Introduction
1.1. Objective
1.2. Overview
1.3. Conformance
1.4. Terminology
1.5. Future Directions
2. Definitions
3. Digital Transformation
3.1. Example Scenario
3.2. Digital Transformation as Strategy
3.3. What is Digital?
3.4. Seven Levers of Change
4. Principles of the DPBoK Standard
4.1. Guiding Concepts
4.2. Comprehensiveness
4.3. Currency
4.4. Capability-Based
4.5. Verifiability
4.6. Fine-Grained and Clinical Terminology

4.7. Compatibility with Other Frameworks

0 OO Y OO Ul W W W

W W W W W W W W W W W W W DN NN DN DN DNDNDN R ==
U1 U1 U1 R W W W N RO O 0O W 0NN NN NN NN o

4.8. Compatibility with Agile Principles
4.9. Compatibility with Enterprise Architecture
4.10. A Learning Artifact
4.11. Developed as a Digital Product
4.12. Competency-Based Content
4.13. Scaling Model as Learning Progression
5. Structure of the Body of Knowledge
5.1. Models for Learning Progression
5.2. Four Contexts
5.3. Context Summaries
6. The Body of Knowledge
6.1. Context I: Individual/Founder
6.1.1. Digital Fundamentals
6.1.1.1. Digital Context
6.1.1.2. Digital Value Methods
6.1.1.3. The Digital Stack
6.1.1.4. The Digital Lifecycle
6.1.2. Digital Infrastructure
6.1.2.1. Computing and Information Principles
6.1.2.2. Virtualization
6.1.2.3. Cloud Services
6.1.2.4. Configuration Management and Infrastructure as Code
6.1.2.5. Securing Infrastructure
6.1.3. Application Delivery
6.1.3.1. Application Basics
6.1.3.2. Agile Software Development
6.1.3.3. DevOps Technical Practices
6.1.3.4. APIs, Microservices, and Cloud-Native
6.1.3.5. Securing Applications and Digital Products
6.1.4. Context I Conclusion
6.1.4.1. Architectural View
6.2. Context II: Team
6.2.1. Product Management
6.2.1.1. Product Management Basics
6.2.1.2. Product Discovery
6.2.1.3. Product Design
6.2.1.4. Scrum and Other Product Team Practices

6.2.1.5. Product Planning

36
36
37
37
38
40
41
41
435
46
49
49
49
50
54
59
62
65
65
68
73
76
85
88
90
93
100
111
119
120
121
122
123
123
129
135
138
144

6.2.2. Work Management
6.2.2.1. Work Management and Lean
6.2.2.2. Lean Product Development
6.2.2.3. Work Management Capabilities and Approaches
6.2.2.4. Towards Process Management
6.2.2.5. Systems Thinking and Feedback
6.2.3. Operations Management
6.2.3.1. Defining Operations Management
6.2.3.2. Monitoring and Telemetry
6.2.3.3. Operational Response
6.2.3.4. Operations-Driven Product Demand
6.2.4. Context II Conclusion
6.2.4.1. Context II Architectural View

6.3. Context III: Team of Teams

6.3.1. Coordination and Process
6.3.1.1. Coordination Principles and Techniques
6.3.1.2. Coordination, Execution, and the Delivery Models
6.3.1.3. Process Management
6.3.1.4. Process Control and Continuous Improvement
6.3.2. Investment and Portfolio
6.3.2.1. Financial Management of Digital and IT
6.3.2.2. Digital Sourcing and Contracts
6.3.2.3. Portfolio Management
6.3.2.4. The Digital Product or Service Catalog
6.3.2.5. Project Management
6.3.3. Organization and Culture
6.3.3.1. Structuring the Organization: Product and Function
6.3.3.2. IT Human Resources Management
6.3.3.3. Why Culture Matters
6.3.3.4. Industry Frameworks
6.3.4. Context III Conclusion
6.3.4.1. Context IIT Architectural View

6.4. Context IV: Enduring Enterprise

6.4.1. Governance, Risk, Security, and Compliance
6.4.1.1. Governance
6.4.1.2. Implementing Governance
6.4.1.3. Risk and Compliance Management
6.4.1.4. Assurance and Audit

147
148
159
169
170
175
184
185
191
200
207
212
212
213
216
216
225
232
240
246
248
260
268
275
285
297
297
310
316
321
327
327
328
330
331
342
350
358

6.4.1.5. Security
6.4.1.6. Digital Governance
6.4.2. Information Management
6.4.2.1. Information and Value
6.4.2.2. Enterprise Information Management
6.4.2.3. Analytics
6.4.2.4. Agile Information Management
6.4.2.5. Information Management Topics
6.4.3. Architecture
6.4.3.1. Why Architecture?
6.4.3.2. Architecture Practices
6.4.3.3. Architecture Domains
6.4.3.4. Agile and Architecture
6.4.3.5. Architecture, Digital Strategy, and Portfolio
6.4.4. Context IV and DPBoK Conclusion
6.4.4.1. Context IV Architectural View
Appendices
Appendix A: Abbreviations

Index

373
384
396
398
403
419
424
431
435
436
449
468
477
486
489
490
492
492
501

Digital Practitioner
Body of Knowledge™ Standard

A Standard of The Open Group

Digital Practitioner Body of Knowledge™ Standard

Copyright © 2019-2020, The Open Group
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
permission of the copyright owners.

Any use of this publication for commercial purposes is subject to the terms of the Annual Commercial
License relating to it. For further information, see www.opengroup.org/legal/licensing.

The Open Group Standard

Digital Practitioner Body of Knowledge™ Standard
Document Number: C196

ISBN: 1-947754-33-1

Published by The Open Group, January 2020.
Comments relating to the material contained in this document may be submitted to:

The Open Group, Apex Plaza, Forbury Road, Reading, Berkshire, RG1 1AX, United Kingdom
or by electronic mail to:

ogspecs@opengroup.org

Built with asciidoctor, version 2.0.10. Backend: pdf Build date: 2020-01-06 15:59:18 UTC

2 The Open Group Standard (2020-01-06)

Preface The Open Group

Preface

The Open Group

The Open Group is a global consortium that enables the achievement of business objectives through
technology standards. Our diverse membership of more than 700 organizations includes customers,
systems and solutions suppliers, tools vendors, integrators, academics, and consultants across multiple
industries.

The mission of The Open Group is to drive the creation of Boundaryless Information Flow™ achieved
by:
* Working with customers to capture, understand, and address current and emerging requirements,
establish policies, and share best practices

» Working with suppliers, consortia, and standards bodies to develop consensus and facilitate
interoperability, to evolve and integrate specifications and open source technologies

Offering a comprehensive set of services to enhance the operational efficiency of consortia
* Developing and operating the industry’s premier certification service and encouraging
procurement of certified products

Further information on The Open Group is available at www.opengroup.org.

The Open Group publishes a wide range of technical documentation, most of which is focused on
development of Standards and Guides, but which also includes white papers, technical studies,
certification and testing documentation, and business titles. Full details and a catalog are available at
www.opengroup.org/library.

This Document

This document is the Digital Practitioner Body of Knowledge™ Standard, a standard of The Open
Group, also known as the DPBoK™ Standard. It has been developed and approved by The Open Group.

The high-level structure of the document is summarized as follows:
» Chapter 1, Introduction includes the objectives and overview, conformance requirements, and
terminology definitions
» Chapter 2, Definitions includes the terms and definitions for this document
» Chapter 3, Digital Transformation describes the key concept of Digital Transformation

* Chapter 4, Principles of the DPBoK Standard describes the principles by which the document will
evolve and be maintained, and how Digital Practitioner competencies will be defined

» Chapter 5, Structure of the Body of Knowledge describes how the Body of Knowledge is structured

* Chapter 6, The Body of Knowledge contains the Body of Knowledge, divided into four stages, called

Digital Practitioner Body of Knowledge™ Standard 3

Background and Intended Value of this Work Preface

Contexts, which correspond to the stages of evolution of a digital practice. These stages are
explained in the section on Context Summaries, and summarized as follows:

Context I: Individual/Founder
Foundational drivers of, and technical capabilities for, delivering digital value
Context II: Team

The critical product management, collaboration, and operational skills necessary for producing
digital value

Context III: Team of Teams

Key capabilities for partitioning investments and ensuring coherence, alignment, and joint
execution across multiple teams

Context IV: Enduring Enterprise

Steering, managing risk, and assuring performance at scale and over increasing time horizons and
increasingly complex ecosystems

» Appendices contains the list of abbreviations used in this document

Background and Intended Value of this Work

Applied computing, now popularly termed "digital technology", is transforming economies and
societies worldwide. Digital investments are critical for modern organizations. Participating in their
delivery (i.e., working to create and manage them for value) can provide prosperity for both
individuals and communities. Computing programs worldwide are under pressure to produce an
increasing number of qualified professionals to meet voracious workforce demand. And skill
requirements have undergone a seismic shift over the past 20 years. Digital Practitioners require a
wide variety of skills and competencies, including cloud architecture and operations, continuous
delivery and deployment, collaboration, Agile and Lean methods, product management, and more.

Industry guidance has over the years become fragmented into many overlapping and sometimes
conflicting bodies of knowledge, frameworks, and industry standards. The emergence of Agile [8] and
DevOps [165] as dominant delivery forms has thrown this already fractured ecosystem of industry
guidance into chaos. Organizations with longstanding commitments to existing bodies of knowledge
are re-assessing those commitments. Changes in digital delivery are happening too fast for
generational turnover to suffice.

Mid-career IT professionals, who still anticipate many more years in the workforce, are especially at
risk. Learning the new "digital" approaches is not optional for them. But how to reconcile these new
practices with the legacy "best practices" that characterized these workers' initial professional
education? Now is the time to re-assess and synthesize new guidance reflecting the developing
industry consensus on how digital and IT professionals should approach their responsibilities. Modern

4 The Open Group Standard (2020-01-06)

Preface Sources of Material

higher education is not keeping pace in these topics either. There has been too much of a gap between
academic theory and classroom instruction versus the day-to-day practices of managing digital
products.

The Digital Practitioner in today’s work environment thus encounters a confusing and diverse array of
opinions and diverging viewpoints. This document aims to provide a foundational set of concepts for
the practitioner to make sense of the landscape they find in any organization attempting to deliver
digital products. It strives to put both old and new in a common context, with well-supported analysis
of professional practice. Practically, it should be of value for both academic and industry training
purposes.

In conclusion: this document is intended broadly for the development of the Digital Practitioner or
professional. It seeks to provide guidance for both new entrants into the digital workforce as well as
experienced practitioners seeking to update their understanding on how all the various themes and
components of digital and IT management fit together in the new world.

Sources of Material

While this document draws from a wide variety of industry sources, there are two primary sources of
material of this work.

The Forums of The Open Group

The Open Group has a number of different related programs of work that contributed substantially to
the content of, and interest in, the DPBoK Standard (this document). The initial groundwork was laid
by the Digital Business Customer Experience (DBCX) Work Group, which was the predecessor to the
Digital Practitioners Work Group, the current maintainers of this document. In addition, this document
is informed by and makes reference to other Forums of The Open Group, including:

e The Architecture Forum
* The Open Platform 3.0™ Forum
¢ The IT4IT™ Forum

The University of St. Thomas

This work is in part derived from material developed by Charles Betz between 2014 and 2017 for use in
teaching in the Graduate Programs in Software Engineering at the University of St. Thomas in St. Paul,
Minnesota, USA, for SEIS 660 (IT Infrastructure Management), later replaced by SEIS 664 (Information
Technology Delivery). Graduate Programs in Software at University of St. Thomas offers Masters'
degrees in Software Engineering, Data Science, Information Technology, and Software Management. It
is the largest program of its kind in the US and emphasizes rigorous, realistic preparation of
practitioners. No suitable collegiate texts were available providing comprehensive survey coverage of
the Digital/Lean/Agile transition and its impacts on IT management generally, so this material was
developed collaboratively, incrementally, and iteratively via an open Github project over the course of
three years.

Digital Practitioner Body of Knowledge™ Standard 5

Relationship to Prior Publications Preface

Relationship to Prior Publications

The resulting textbook, Managing Digital: Concepts and Practices, was contributed by the author and
published by The Open Group Press to serve as an experiment in collaborative, open source document
development, and also to support worldwide distribution on a low/no-cost basis. That material is
separate and distinct from this document, but the agreement allows for the "harvesting" of material
from that text. Such harvesting will not be cited, as it is expected to be substantial. The reader of both
documents will, therefore, notice deliberate similarities and identical passages. However, the textbook
also includes extensive quotations, sidebars, anecdotes, cases, tangential elements, personal
observations, exercises, and so forth that will not be found in this document. In general, this document
is briefer, drier, and written with a normative should/shall/may/must framing (see IETF RFC 2119, [
40]). Eventually, the textbook may be the basis for a "Guide", supporting this document in the same
way that (for example) the IT4IT Management Guide [12] supports the IT4IT Standard. See definitions
of Standard versus Guide in The Open Group Standards Process [280].

Curation Approach

Relationship of this Document to Other Bodies of Knowledge

This document may source knowledge from other bodies of knowledge. One of the reasons for the
existence of this document is that a constellation of new best practices and approaches based on cloud,
Agile, Lean, and DevOps is overtaking older approaches based on physical infrastructure, project
management, process management, and functional specialization. The Phoenix Project [165] is a useful
introduction to the new approaches; evidence of their effectiveness can be seen in the publicly
available videos of practitioner case studies presented at the DevOps Enterprise Summit.

Interpretive Aspects

This document should not merely be an assemblage of other sources, however. It may include well-
grounded synthesis and interpretation of the curated source material. See the DPBoK principles for
further information.

Evidence of Notability

In the current fast-paced digital economy, curating notable and rigorous work by individuals on a fair-
use basis into the standard seems advisable.

This will require an ongoing discussion and debate as to relevance and notability of the material.
DevOps, design thinking, Agile methods, Site Reliability Engineering (SRE), and many other concepts
have emerged of late. How do we know that they are notable and relevant? That they have staying
power and merit inclusion? A proposed set of heuristics follows:

» Existence of an organized community — is there evidence for a concept’s interest in terms of
practitioners self-identifying under its banner and choosing to spend their resources attending
local, national, or international events?

6 The Open Group Standard (2020-01-06)

Preface Curation Approach

* Notable publications — are books in print on the topic from reputable publishers; e.g., O’Reilly or
Addison-Wesley? Are these books garnering reviews on Amazon or Goodreads?

* Media and analyst coverage - there is an active community of professional commentary and
analysis; its attention to a given topic is also evidence of notability — social media attention is an
important, but not conclusive, subset of this class of evidence (it can be too easily manipulated)

The use of a given body of knowledge or other guidance as broadly used audit criteria (e.g., cloud
provider compliance) shall be construed as evidence of notability.

Digital Practitioner Body of Knowledge™ Standard 7

Trademarks

Trademarks

ArchiMate®, DirecNet®, Making Standards Work®, Open O® logo, Open O and Check® Certification
logo, OpenPegasus®, Platform 3.0®, The Open Group®, TOGAF®, UNIX®, UNIXWARE®, and the Open
Brand X® logo are registered trademarks and Boundaryless Information Flow™, Build with Integrity
Buy with Confidence™, Dependability Through Assuredness™, Digital Practitioner Body of
Knowledge™, DPBoK™, EMMM™, FACE™, the FACE™ logo, IT4AIT™, the IT4IT™ logo, O-DEF™, O-HERA™,
O-PAS™, Open FAIR™, Open Platform 3.0™, Open Process Automation™, Open Subsurface Data
Universe™, Open Trusted Technology Provider™, O-SDU™, Sensor Integration Simplified™, SOSA™, and
the SOSA™ logo are trademarks of The Open Group.

Airbnb™ is a trademark of Airbnb, Inc.

Amazon Web Services® is a registered trademark and Amazon™, AWS™, and Kindle™ are trademarks
of Amazon.com, Inc. or its affiliates.

Android™ is a trademark of Google LLC.

Apache®, Apache Mesos®, and CouchDB® are registered trademarks of the Apache Software
Foundation (ASF).

Apple®, iPhone®, and MacBook Air® are registered trademarks of Apple Inc.

BABOK® and Business Analysis Body of Knowledge® are registered trademarks owned by
International Institute of Business Analysis.

CISSP® is a registered certification mark of the International Information Systems Security
Certification Consortium, Inc.

COBIT® is a registered trademark of ISACA.

Debian® is a registered trademark owned by Software in the Public Interest, Inc.

DMBOK® is a registered trademark of DAMA International.

Etsy® is a registered trademark of Etsy, Inc., in the US and/or other countries.

Facebook® is a registered trademark of Facebook, Inc.

Flickr® and Yahoo® are registered trademarks of Yahoo, Inc.

Google® is a registered trademark and Google Compute Engine™ is a trademark of Google LLC.

IBM® is a registered trademark of International Business Machines Corporation in the United States,
other countries, or both.

ITIL® and PRINCE2® are registered trademarks of AXELOS Limited.

8 The Open Group Standard (2020-01-06)

Trademarks

LinkedIn® is a registered trademarks of LinkedIn Corporation and its affiliates in the United States
and/or other countries.

Linux® is a registered trademark of Linus Torvalds in the US and other countries.
Lyft™ is a trademark of Lyft, Inc.

Microsoft® is a registered trademark and Azure™, PowerPoint™, and Visio™ are trademarks of
Microsoft Corporation in the United States and/or other countries.

Netflix® is a registered trademark of Netflix, Inc.
NGINX™ is trademark of NGINX, Inc.
OmniGraffle™ is a trademark of The Omni Group.

Oracle® and Java® are registered trademarks and JavaScript™ is a trademark of Oracle and/or its
affiliates.

PMBOK®, Project Management Body of Knowledge®, and Project Management Institute® are
registered trademarks of the Project Management Institute, Inc.

RabbitMQ® is a registered trademark of Pivotal Software, Inc. in the US and other countries.
SABSA® is a registered trademark of The SABSA Institute.

Scaled Agile Framework® and SAFe® are registered trademarks of Scaled Agile, Inc.
Spotify™ is a trademark of Spotify AB.

UML® is a registered trademark and BPMN™, Business Process Modeling Notation ™, and Unified
Modeling Language™ are trademarks of Object Management Group, Inc. in the United States and/or
other countries.

Zachman® is a registered trademark of Zachman International, Inc.

All other brands, company, and product names are used for identification purposes only and may be
trademarks that are the sole property of their respective owners.

Digital Practitioner Body of Knowledge™ Standard 9

Acknowledgments

Acknowledgments

The Open Group gratefully acknowledges the contribution of the following people in the development
of this document:

* Charles Betz

* Georg Bock

* James Doss

* Michael Fulton

* Jim Hietala

* Mohan Hiremath

» Dave Hornford

» Frédéric Le

* Antoine Lonjon

* Dave Lounsbury

* Robert Martin

* Sriram Sabesan

* Mark Smalley
Many assisted with and/or contributed to this work before its transition to The Open Group:

* Glen Alleman

* Brad Appleton

* David Bahn

* Jason Baker

* Richard Barton

* Jabe Bloom

* Terry Brown

» Kate Campise

* Murray Cantor

* Rob England

* Nicole Forsgren
 Stephen Fralippolippi
* Svetlana Gluhova

o Will Goddard

10 The Open Group Standard (2020-01-06)

Acknowledgments

* Lorin Hochstein
* Jez Humble

* Majid Igbal

* Mark Kennaley

» Firasat Khan

* Gene Kim

* Dmitry and Alina Kirsanov
* Mary Lebens

* Evan Leybourn

* Tom Limoncelli

* Chris Little

* Mary Mosman

* Mark Mzyk

* Sriram Narayam
* Amos Olagunju

* Justin Opatrny

» Pat Paulson and his students
* Francisco Piniero
* Ben Rockwood

* Mark Smalley

* John Spangler

* Grant Spencer

* Jeff Sussna

* Halbana Tarmizi

* Roger K. Williams

Digital Practitioner Body of Knowledge™ Standard

Normative References Referenced Documents

Referenced Documents

Normative References

This document does not contain any normative references at the time of publication. These may be
added in a future release.

Informative References

1.

10.
11.

12.
13.

14.

15.

16.
17.
18.

12

Thinking in Systems: A Primer by Donella Meadows. White River Junction, VT: Chelsea Green
Publishing Company, 2008.

Agile Hiring by Sean Landis. Walnut Creek, California: Artima, Inc, 2011.
“The Secret to Amazon’s Success — Internal APIs, by Kin Lane,” The API Evangelist. 2012.

M. L. Abbott and M. T. Fisher, The Art of Scalability: Scalable Web Architecture, Processes, and
Organizations for the Modern Enterprise (2nd Edition). Old Tappan, NJ: Pearson Education, Inc.,
2015.

D. M. Abrashoff, It’s Your Ship: Management Techniques from the Best Damn Ship in the Navy, 10Th
Anniv. Grand Central Publishing, 2012.

Accounting Coach, “What is cost accounting?” 2016.

. G. Adzic, Impact Mapping: Making a big impact with software products and projects. Gojko Adzic,

2012.

. Agile Alliance, “Agile Manifesto and Principles,” no. 4/13/2011. 2001.

. Agile Alliance, “Team Definition,” Glossary. 2015.

Agile Alliance, “Subway Map to Agile Practices.” 2016.

A. Akera, “Edmund Berkeley and the Origins of the ACM,” Communications of the ACM, vol. 50, no.
5, pp. 31-35, 2007.

R. Akershoek, “ITAIT™ for Managing the Business of IT.” 2016.

J. Allspaw and P. Hammond, “10 deploys per day: Dev & ops cooperation at Flickr,” Velocity 2009.
O’Relly Publications, San Jose, CA, 2009.

J. Allspaw and J. Robbins, Web operations, 1st ed. Beijing China ; Sebastopol, CA: O’Reilly, 2010, pp.
xvii, 315 p.

A. C. Alonzo and A. W. Gotwals, Learning Progressions in Science. Rotterdam: Sense Publishers,
2012.

S. Ambler, “Agile Outsourcing,” Dr. Dobb’s Journal, Mar. 2005.
S. Ambler, “Agility@Scale: Strategies for Scaling Agile Software Development.” 2015.

S. W. Ambler and M. Lines, Disciplined Agile Delivery: A Practitioner’s Guide to Agile Software
Delivery in the Enterprise. 2012, pp. 1-2.

The Open Group Standard (2020-01-06)

Referenced Documents Informative References

19.

20.

21.
22.

23.
24.

25.
26.

27.

28.

29.
30.

31.

32.

33.

34.

35.
36.

37.
38.

39.

S. W. Ambler and P. J. Sadalage, Refactoring databases : evolutionary database design. Harlow, U.K.:
Addison-Wesley, 2006, pp. xxvii, 350 p.

D. J. Anderson, Kanban: Successful Evolutionary Change for your Technology Business. Sequim, WA:
Blue Hole Press, 2010.

T. Arbogast, B. Vodde, and C. Larman, “Agile Contracts Primer.” 2012.

J. Arnold, “Tilt the playing field: discover, nurture, and speed up the delivery of value.” Liberio,
2013.

C. Bank and J. Cao, The Guide to Usability Testing. uxpin.com, 2016.

K. Beck, extreme programming eXplained : embrace change. Reading, MA: Addison-Wesley, 2000, pp.
xxi, 190 p.

S. Beer, “What is cybernetics?,” Kybernetes, vol. 31, no. 2, pp. 209-219, 2002.

S. Bell et al., Run grow transform : integrating business and lean IT. Boca Raton, FL: CRC Press, 2013,
pp. xlii, 336 p.

S. C. Bell and M. A. Orzen, Lean IT: Enabling and Sustaining Your Lean Transformation. Boca Raton,
Florida: CRC Press, 2010.

S. Bente, U. Bombosch, and S. Langade, Collaborative Enterprise Architecture: Enriching EA with
Lean, Agile, and Enterprise 2.0 Practices. Waltham, MA: Morgan Kaufman - Elsevier, 2012.

S. Bernard, An Introduction to Enterprise Architecture. AuthorHouse, 2012.

C. Betz, “Release management integration pattern - seeking devops comments,” Lean4IT: The
architecture of IT value, vol. 2014. 2011.

C. Betz, “The CMDB is not a data warehouse,” Integrated IT Management. Enterprise Management
Associates, 2011.

C. T. Betz, Architecture and Patterns for IT: Service and Portfolio Management and Governance
(Making Shoes for the Cobbler’s Children), 2nd Edition. Amsterdam: Elsevier/Morgan Kaufman, 2011.

C. T. Betz, “A DevOps Causal Loop Diagram parts 1 and 2,” Lean4IT: The architecture of IT value.
2013.

B. Beyer, C. Jones,]J. Petoff, and N. R. Murphy, Site Reliability Engineering: How Google Runs
Production Systems. Sebastopol, CA: O’Reilly Media, Inc., 2016.

]. Bezos, “Jeff Bezos’ 2016 Letter to Amazon Shareholders.” 2016.

S. Blank, The Four Steps to the Epiphany: Successful Strategies for Products That Win, 2nd ed. Steve
Blank, 2013.

J. Bloomberg, “Agile Enterprise Architecture Finally Crosses the Chasm,” Forbes. Jul-2014.

B. Boehm, “A Spiral Model of Software Development and Enhancement,” IEEE Computer, vol. 21,
no. 5, pp. 61-72, 1988.

L. Bossavit, “The Leprechauns of Software Engineering: How folklore turns into fact and what to do
about it.” 2015.

Digital Practitioner Body of Knowledge™ Standard 13

Informative References Referenced Documents

40.
41.
42.

43.

45.

46.

47.

49.

50.

51
52.

53.
54.

33.
56.
57.
58.

59.
60.

61.
62.

14

S. Bradner, “IETF RFC 2119.” 1997.
D. Breston, “DevOps and SIAM: The Happy Nexus,” ITSMTools.com blog. 2017.

F. P. Brooks, The mythical man-month : essays on software engineering. Reading, Mass.: Addison-
Wesley Pub. Co., 1975, pp. xi, 195 p.

F. P. Brooks, The mythical man-month : essays on software engineering, Anniversar. Reading, Mass.:
Addison-Wesley Pub. Co., 1995, pp. xiii, 322 p.

A. Brown, N. Forsgren,]J. Humble, N. Kersten, and G. Kim, “2016 State of DevOps report,” Puppet
Labs, 2016.

J. Brustein, “Microsoft Kills Its Hated Stack Rankings. Does Anyone Do Employee Reviews Right?,”
Bloomberg Business Week. 2013.

M. Buckingham and A. Goodall, “Reinventing performance management,” Harvard Business
Review, vol. 93, no. 4, pp. 40-50, 2015.

M. Burgess, “When and where order matters,” homepage mark burgess. .

M. Burrows, Kanban from the Inside: Understand the Kanban Method, connect it to what you already
know, introduce it with impact (Kindle ed.), Kindle. Sequim, Washington: Blue Hole Press, 2015.

M. G. L. Burrows, “The Chubby lock service for loosely-coupled distributed systems,” in _ 7th
symposium on Operating systems design and implementation (OSDI ’06)_, 2006, pp. Pages 335-350 .

Business Architecture Guild, A Guide to the Business Architecture Body of Knowledge (BIZBOK
Guide). Business Architecture Guild, 2016.

B. Butler, “Free cloud storage service MegaCloud goes dark,” Network World. 2013.

B. Butler, “Cloud’s worst-case scenario: What to do if your provider goes belly up,” Network World.
2014.

M. Cagan, Inspired: How to Create Products Customers Love. SVPG Press, 2008.

S. K. Card, J. D. Mackinlay, and B. Shneiderman, Readings in Information Visualization: Using Vision
to Think. San Diego: Academic Press, 1999.

]J. Carlzon, Moments of Truth. Ballinger Pub Co, 1987.
N. Carr, “IT Doesn’t Matter,” Harvard Business Review, pp. 5-12, 2003.
K. Cherry, “Multitasking: Bad for Your Productivity and Brain Health,” verywell.com. 2016.

M. Cherubini, G. Venolia, R. Deline, and A. J. Ko, “Let > s Go to the Whiteboard: How and Why
Software Developers Use Drawings,” CHI 2007 Proceedings, pp. 557-566, 2007.

J. Choi, “The Science Behind Why Jeff Bezos’s Two-Pizza Team Rule Works.” Jan-2014.

C. Christensen, S. Cook, and T. Hall, “What Customers Want from Your Products,” Working
Knowledge (Harvard Business School). 2006.

Clayton Christensen Institute, “Jobs to be Done,” http://www.christenseninstitute.org/. 2015.

Cloud Native Computing Foundation, “CNCF Cloud Native Definition v1.0,” CNCF TOC repository.
2018.

The Open Group Standard (2020-01-06)

Referenced Documents Informative References

63.
64.
65.

66.
67.

68.

69.

70.

71.
72.

73.
74.
75.
76.
77.

78.

79.
80.

81.

82.

83.

84.

85

R. Coase, “The nature of the firm,” Economica, vol. 4, pp. 386-405, 1937.
A. Cockburn, “Walking skeleton,” http://alistair.cockburn.us/. 1996.

A. Cockburn, Agile Software Development: The Cooperative Game, 2nd ed. Boston, MA: Pearson
Education, Inc., 2007.

A. Cockburn, “Why Agile Works,” Slideshare.net. 2012.

M. Cohn, “Agile estimating and planning,” in VIT Symposium (Valtion Teknillinen Tutkimuskeskus),
2006, no. 241, pp. 37-39.

M. Cohn, Succeeding with Agile: Software Development Using Scrum. Upper Saddle River, New
Jersey: Addison-Wesley, 2010.

S. Comella-Dorda, L. Santiago, and G. Speksnijder, “An operating model for company-wide agile
development,” McKinsey & Company. 2016.

Committee on the Financial Aspects of Corporate Governance, “Report of the Committee on the
Financial Aspects of Corporate Governance (aka Cadbury Report),” Gee and Co, Ltd., London, 1992.

Computer History Museum, “Memory & Storage,” Timeline of Computer History. 2019.

W. Contributors, “Technology Business Management Council,” Wikipedia, The Free Encyclopedia.
2019.

D. M. E. Conway, “How Do Committees Invent?” 1968.

A. Cooper, R. Reimann, and D. Cronin, “About Face 3: The Essentials of Interaction Design.” 2009.
Cornell University, “Explaining Why the Millenium Bridge Wobbled,” Science Daily. 2005.

COSO Commission, “Internal Control — Integrated Framework (2013).” 2013.

M. Csikszentmihalyi, Flow : the psychology of optimal experience, 1st ed. New York: Harper & Row,
1990, pp. xii, 303 p.

W. Cunningham, “Experience Report: The WyCash Portfolio Management System,” OOPSLA 92, vol.
4, no. 2. pp. 29-30, Mar-1992.

W. Cunningham, “Do The Simplest Thing That Could Possibly Work,” wiki.c2.com. 2014.

T. Data Management Association, The DAMA Guide to The Data Management Body of Knowledge
(DAMA-DMBOK Guide). Bradley Beach, NJ: Technics Publications, LLC, 2009.

Dave Hornford, Sriram Sabesan, Vidhya Sriram, and Ken Street, “The Seven Levers of Digital
Transformation,” The Open Group, 2017.

A. De Nicola and M. Missikoff, “A Lightweight Methodology for Rapid Ontology Engineering,”
Communications of the ACM2, vol. 59, no. 3, pp. 79-86, 2016.

S. Dekker, The Field Guide to Understanding 'Human Error.’ Burlington, VT: Ashgate Publishing
Company, 2006.

J. DeLuccia, IT COMPLIANCE AND CONTROLS: Best Practices for Implementation. Hoboken, N.J.:
John Wiley & Sons, Inc., 2008.

J. DeLuccia, J. Gallimore, G. Kim, B. Miller, and J. D. L. & J. G. & G. K. & B. Miller, “DevOps Audit

Digital Practitioner Body of Knowledge™ Standard 15

Informative References Referenced Documents

86.

87.
88.

89.
90.

91.

92.

93.

94.

95.
96.

97.
98.
99.

100.
101.

102.
103.
104.
105.
106.

107.

108.

16

Defense Toolkit,” IT Revolution, 2015.

DHS, “Report No. 2006-03, The Use of Commercial Data,” DHS Data Privacy and Integrity Advisory
Committee, 2006.

A. E. Ditri, J. C. Shaw, and W. Atkins, Managing the EDP function. N.Y.: McGraw-Hill, 1971.

D. Drogseth, “The Enterprise Service Catalog - Unifying IT Services for the Digital Age,” APM Digest.
2016.

P. F. Drucker, Post-capitalist society, 1st ed. New York, NY: HarperBusiness, 1993, pp. 232 p.

D. du Preez, “A CIO’s worst nightmare: When your cloud provider goes bankrupt,” diginomica.
2015.

R. Dunbar, How Many Friends Does One Person Need? Dunbar’s Number and Other Evolutionary
Quirks. Harvard University Press, 2010.

P. M. Duvall, S. Matyas, and A. Glover, Continuous integration : improving software quality and
reducing risk. Upper Saddle River, NJ: Addison-Wesley, 2007, pp. xxxiii, 283 p.

K. M. Eisenhardt, “Agency Theory: An Assessment and Review,” Source: The Academy of
Management Review Academy of Management Review, vol. 14, no. 1, pp. 57-74, 1989.

R. England, Plus! The Standard+Case Approach: See Service Response in a New Light. Mana, New
Zealand: Two Hills Ltd., 2013.

R. England, “Service catalogue and request catalogue,” IT Skeptic Blog. 2016.

E. Evans, Domain-driven design : tackling complexity in the heart of software. Boston ; London:
Addison-Wesley, 2004, pp. XXX, 528 p.

R. P. Feynman, “Cargo Cult Science,” Engineering and Science, vol. 33, pp. 10-13, 1974.
N. Forsgren, “Continuous Delivery + DevOps = Awesome.” 2016.

N. Forsgren,]J. Humble, and G. Kim, Accelerate: Building and Scaling High Performing Technology
Organizations. Portland, OR: IT Revolution Press, 2018.

N. Forsgren, G. Kim, N. Kersten, and J. Humble, “2014 State of DevOps Report,” Puppet Labs, 2014.

M. Fowler, Patterns of enterprise application architecture. Boston: Addison-Wesley, 2003, pp. XXiv,
533.

M. Fowler, “Is Design Dead?,” martinfowler.com. 2004.

M. Fowler, “bliki: StranglerApplication.” 2004.

M. Fowler, “Shu-Ha-Ri,” Martin Fowler’s Bliki. 2006.

M. Fowler, “BoundedContext,” Martin Fowler’s Bliki2. 2014.

A. Fox, E. A. Brewer, and A. Fox, “Harvest, Yield and Scalable Tolerant Systems,” 7th Workshop Hot
Topics in Operating Systems (HotOS 99). IEEE CS, 1999.

J. Gall, The Systems Bible: The beginner’s guide to systems large and small. General Systemantics
Pr/Liberty, 2012.

E. Gamma, R. Helm, R. Johnson, and]. Vlissides, Design patterns : elements of reusable object-

The Open Group Standard (2020-01-06)

Referenced Documents Informative References

109.
110.

111.
112.
113.

114.

115.
116.
117.

118.

119.

120.
121.

122.
123.

124.
125.

126.
127.

128.

129.

130.

oriented software. Reading, Mass.: Addison-Wesley, 1995, pp. xv, 395.
A. Gawande, The Checklist Manifesto. New York, N.Y: Picador, 2010.

R. Gillett, “Productivity Hack Of The Week: The Two Pizza Approach To Productive Teamwork |
Fast Company | Business + Innovation,” fastcompany.com. 2014.

R. L. Glass, Software runaways. Upper Saddle River, NJ: Prentice Hall PTR, 1998, pp. xvi, 259.
E. M. Goldratt, Critical chain. Great Barrington, Ma.: North River, 1997, pp. 246 p.

B. Goodwin, “How CIOs can raise their ’IT clock speed’ as pressure to innovate grows,”
ComputerWeekly.com. 2015.

J. Gothelf and]. S. Seiden, Lean UX: Applying Lean Principles to Improve User Experience.
Sebastopol, CA: O’'Reilly Media, Inc., 2013.

Great Schools Partnership, “Learning Progression,” Glossary of Education Reform. 2013.
M. Griffin, How To Write a Policy Manual. www.templatezone.com, 2016.

T. Griffin, “Two Powerful Mental Models: Network Effects and Critical Mass — Andreessen
Horowitz,” Andreessen Horowitz. .

G. Gruver, M. Young, and P. Fulghum, A Practical Approach to Large-Scale Agile Development: How
HP Transformed Laserjet Futuresmart Firmware. Upper Saddle River, N.J.: Pearson Education, Inc.,
2013, pp. xxiv, 183 pages.

E. Hallikainen, “Service Catalog and Configuration Management Database as the Foundation of
SIAM,” PhD thesis, 2015.

P. Hammant, “Legacy Application Strangulation : Case Studies,” Paul Hammant’s Blog. 2013.

M. Hammer and]J. Champy, Reengineering the corporation. London: Nicholas Brealey, 1993, pp.
vi,223p.

V. Harnish, Scaling Up: How a Few Companies Make It...and Why the Rest Don’t. Gazelles, Inc., 2014.

P. Harpring, Introduction to Controlled Vocabularies: Terminology for Art, Architecture and other
Cultural Works. Los Angeles, CA: Getty Publications, 2010.

S. Harris, CISSP Exam Guide, 6th ed. New York: McGraw-Hill Education, 2013.

L. Hassi and M. Laakso, “Design thinking in the management discourse: Defining the elements of
the concept,” in 18th international product development conference, Delft, 2011.

R. Hastings, “Netflix Culture: Freedom & Responsibility,” Slideshare.net. 2009.

D. C. Hay, Data model patterns : conventions of thought. New York: Dorset House ; Chichester : Wiley
[distributor], 1996, pp. Xix,268p.

M. Heller, “GE’s Jim Fowler on the CIO role in the digital industrial economy,” CIO Magazine Online.
2016.

G. Hohpe and B. Woolf, Enterprise integration patterns : designing, building, and deploying
messaging solutions. Boston ; London: Addison-Wesley, 2003, pp. . cm.

J. H. Holland, “Studying Complex Adaptive Systems,” Journal of Systems Science and Complexity, vol.

Digital Practitioner Body of Knowledge™ Standard 17

Informative References Referenced Documents

131.

132.
133.

134.

135.
136.

137.
138.

139.

140.
141.
142.

143.

144.

145.
146.
147.
148.
149.
150.
151.

152.
153.

18

19, no. 1, pp. 1-8, Mar. 2006.

J. Hope and R. Fraser, “Beyond Budgeting Questions and Answers,” Beyond Budgeting Round Table,
2001.

M. Housman and D. Minor, “Toxic Workers,” Harvard Business School, 2015.

D. W. Hubbard, The Failure of Risk Management. Hoboken, New Jersey: John Wiley & Sons, Inc.,
2009.

D. W. Hubbard, How to measure anything : finding the value of "intangibles" in business, 2nd ed.
Hoboken, N.J.: Wiley, 2010, pp. Xv, 304 p.

J. Humble, “The Flaw at the Heart of Bimodal IT,” Continuousdelivery.com. 2016.

J. Humble and]J. Molesky, “Why Enterprises Must Adopt Devops to Enable Continuous Delivery,”
Cutter IT Journal, vol. 24, no. 8, 2011.

J. Humble, J. Molesky, and B. O’Reilly, Lean enterprise, First edit. 2013, pp. xxi, 317 pages.

J. Humble,]J. Molesky, and B. O’Reilly, Lean Enterprise: Adopting Continuous Delivery, DevOps, and
Lean Startup at Scale. 2014.

J. R. Huntzinger, Lean Cost Management: Accounting for Lean by Establishing Flow. Fort Lauderdale,
Fl.: J. Ross Publishing, 2007.

IEEE, “Software Engineering Body of Knowledge, version 3,” IEEE, 2014.
W. H. Inmon, Building the Data Warehouse. Wiley, 1992.

International Auditing and Assurance Standards Board (IAASB), “ISAE 3000 (Revised), Assurance
Engagements Other than Audits or Reviews of Historical Financial Information,” International
Federation of Accountants, 2013.

International Institute of Business Analysis (IIBA), BABOK v3: A Guide to the Business Analysis Body
of Knowledge. Toronto, Canada: International Intitute of Business Analysis, 2015.

E. Isaacs and A. Walendowski, Designing from both sides of the screen: How Designers and Engineers
Can Collaborate to Build Cooperative Technology. Indianapolis, Indiana: New Riders Publishing,
2002.

ISACA, COBIT 5: Enabling Processes. 2012, pp. 1-230.

ISACA, COBIT 5 for Information Security. Rolling Meadows, IL: ISACA, 2012.
ISACA, “COBIT 5,” 2012.

ISACA, COBIT 5 for Assurance. Rolling Meadows, IL: ISACA, 2013.

ISACA, “COBIT 5 Enabling Information,” ISACA, 2013.

ISACA, COBIT 5 for Risk. Rolling Meadows, IL, 2013.

ISACA, ITAF: A Professional Practices Framework for IS Audit/ Assurance, 3rd Edition. Rolling
Meadows, IL: ISACA, 2014.

ISACA, “COBIT 2019 Framework: Introduction and Methodology,” ISACA, Schaumberg, IL, 2018.
ISACA, “IT Control Objectives for Sarbanes-Oxley Using COBIT 5, 3rd Edition.,” ISACA, 2019.

The Open Group Standard (2020-01-06)

Referenced Documents Informative References

154.

155.
156.
157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

168.

169.

170.
171.
172.
173.

174.

ISO/IEC, “ISO/IEC 7498-1: Open Systems Interconnection — Basic Reference Model: The Basic Model,”
International Organization for Standardization, 1994.

ISO/IEC, “ISO/IEC 38500 - Corporate governance of information technology.” 2008.
ISO/IEC, “ISO 31000:2009 - Risk Management,” 2009.

ISO/IEC/IEEE, “ISO/IEC/IEEE 42010:2011 - Systems and software engineering — Architecture
description,” March, 2011.

IT Governance Institute, “IT Controls Objectives for Sarbanes-Oxley,” IT Governance Institute,
Rolling Meadows, IL, 2006.

F. Ivancsich, R. Kruse, and D. Sharrock, “Why ‘Real Options’ is the biggest fail of the Agile
Community so far,” www.agile42.com. 2013.

S. H. Kan, Metrics and models in software quality engineering. Reading, Mass.: Addison-Wesley, 1995,
pp. Xvii, 344.

C. Kaner, J. L. Falk, and H. Q. Nguyen, Testing computer software, 2nd ed. New York: Wiley, 1999, pp.
XV, 480.

R. M. Kanter, The change masters : innovations for productivity in the American corporation. New
York: Simon and Schuster, 1983, pp. 432 p.

R. S. Kaplan and D. P. Norton, “The balanced scorecard - measure that drive performance.,”
Harvard Business Review, no. January-February, pp. 71-79, 1992.

M. Kennaley, Sdlc 3.0: Beyond a Tacit Understanding of Agile: Towards the Next Generation of
Software Engineering. Fourth Medium Consulting, 2010.

G. Kim, K. Behr, and G. Spafford, The Phoenix Project: A Novel About IT, DevOps, and Helping Your
Business Win. IT Revolution Press, 2013.

G. Kim, J. Humble, P. Debois, and]. Willis, The DevOps Handbook. Portland, OR: IT Revolution Press,
2016.

G. Klein, P. J. Feltovich, and D. D. Woods, “Common Ground and Coordination in Joint Activity,” in
Organizational simulation, Hoboken, New Jersey: John Wiley & Sons, Inc., 2005.

M. Knez and D. Simester, “Making Across-the-Board Incentives Work,” Harvard Business Review, no.
Feb 2002, 2002.

H. Kniberg and A. Ivarsson, “Scaling Agile @ Spotify with Tribes, Squads, Chapters & Guilds,” Jan.
2012.

R. Kohavi, T. Crook, and R. Longbotham, “Online Experimentation At Microsoft.” 2009.
B. Kos, “Kanban - Visualize your workflow - AgileLeanLife,” agileleanlife.com. 2016.
C. Ladas, Scrumban. Modus Cooperandi Press (January 12, 2009), 2009.

D. Laney, “3D Data Management: Controlling Data Volume, Velocity, and Variety,” Meta Group (now
Gartner), 2001.

C. Larman and V. R. Basili, “Iterative and incremental development: A brief history,” Computer, vol.
36, no. 6. pp. 47-56, 2003.

Digital Practitioner Body of Knowledge™ Standard 19

Informative References Referenced Documents

175.

176.
177.

178.

179.

180.

181.
182.
183.

184.
185.

186.

187.

188.
189.

190.
191.

192.

193.

194.

195.

20

C. Larman and B. Vodde, Scaling lean & agile development : thinking and organizational tools for
large-scale Scrum. Upper Saddle River, NJ: Addison-Wesley, 2009, pp. xiv, 348 p.

G. Lawton, “Forging an IT service catalog management plan to drive business goals.” 2018.

D. Leffingwell, A. Yakyma, D. Jemilo, R. Knaster, A. Shalloway, and I. Oren, “Scaled Agile
Framework,” no. 10 October 2015. 2014.

T. A. Limoncelli, S. R. Chalup, and C. J. Hogan, The Practice of Cloud System Administration:
Designing and Operating Large Distributed Systems, Volume 2, vol. 2. Addison-Wesley Professional,
2014.

G. Linden, “Early Amazon: Shopping cart recommendations,” Geeking with Greg. 2006.

S. Lins, P. Grochol, S. Schneider, and A. Sunyaev, “Dynamic Certification of Cloud Services: Trust,
but Verify!,” IEEE Security & Privacy, vol. 14, no. 2, pp. 66-71, Mar. 2016.

J. Loeliger, Version control with Git, 1st ed. Beijing ; Sebastopol, CA: O’Reilly, 2009, pp. xv, 310 p.
J. Loftus, “Open source IP case puts spotlight on patents,” techtarget.com. 2006.

R. J. Madachy, Software process dynamics. Hoboken, Piscataway, NJ: Wiley IEEE Press, 2008, pp.
xxiii, 601 p.
A. A. Maestro, “Turn IT into a Service Catalog,” DevOps.com blog. 2015.

B. Maizlish and R. Handler, IT Portfolio Management Step-By-Step: Unlocking the Business Value of
Technology. Hoboken, New Jersey: John Wiley & Sons, 2005.

R. Malan and D. Bredemeyer, “The Art of Change: Fractal and Emergent,” Cutter Consortium
Enterprise Architecture Advisory Service Executive Report, vol. 13, no. 5, 2010.

T. W. Malone and K. Crowston, “The Interdisciplinary Study of Coordination, by Malone, Thomas W
and Crowston, Kevin,” ACM Computing Surveys, vol. 26, no. 1, 1994.

H. Marks, “Code Spaces: A Lesson In Cloud Backup,” Network Computing. 2014.

D. L. Marquet, Turn the Ship Around!: A True Story of Turning Followers into Leaders: L. David
Marquet, Stephen R. Covey: 8601411904479: Amazon.com: Books. Portfolio, 2013.

C. Matts and O. Maassen, “Real Options’ Underlie Agile Practices,” InfoQ. 2007.

J. McAdam, “Information Technology Measurements,” in Chargeback and IT Cost Accounting, T. A.
Quinlan, Ed. Santa Barbara, CA: IT Financial Management Association, 2003, pp. 90-91.

S. McChrystal, T. Collins, D. Silverman, and C. Fussell, Team of Teams: New Rules of Engagement for a
Complex World. New York, New York: Portfolio/Penguin (Random House), 2015.

D. McCrory, “Data Gravity — in the Clouds,” McCrory’s Blog. 2010.

P. Mell and T. Grance, “The NIST Definition of Cloud Computing (Technical report), Special
publication 800-145,” National Institute of Standards and Technology: U.S. Department of
Commerce., 2011.

N. D. Meyer, Internal Market Economics: practical resource-governance processes based on principles
we all believe in. Dansbury, CT: NDMA Publishing, 2013.

The Open Group Standard (2020-01-06)

Referenced Documents Informative References

196.
197.

198.

199.

200.

201.

202.

203.

204.
205.
206.
207.

208.

209.
210.
211.

212.

213.

214.

215.
216.

C. Millard, Ed., Cloud Computing Law. Oxford, UK: Oxford University Press, 2013.

C. Millotat, “Understanding the Prussian-German General Staff System,” Strategic Studies Institute
(US Mllitary), Carlisle Barracks, PA, 1992.

R. R. Moeller, Executive’s Guide to IT Governance: Improving Systems Processes with Service
Management, COBIT, and ITIL. Hoboken, New Jersey: John Wiley & Sons, Inc., 2013.

D. Moody, “The ‘Physics’ of Notations: Towards a Scientific Basis for Constructing Visual Notations
in Software Engineering,” IEEE Transactions on Software Engineering, vol. 35, no. 5, pp. 756-778,
2009.

J. M. Morgan and]. K. Liker, Designing the future: how Ford, Toyota, and other world-class
organizations use lean product development to drive innovation and transform their business.
McGraw-Hill Education.

J. M. Morgan and J. K. Liker, The Toyota product development system: Integrating People, Process,
and Technology. Productivity Press, 2006.

J. P. Morgenthal, “A Reality Check on ‘Everyone’s Moving Everything To The Cloud’ | The Tech
Evangelist.” 2016.

K. Morris, Infrastructure as Code: Managing Servers in the Cloud. Sebastopol, CA: O’'Reilly Media,
Inc., 2016.

C. Moskowitz, “Mind’s Limit Found: 4 Things at Once,” http:/www.livescience.com. 2008.
R. Munroe, “FedEx Bandwidth,” What If? 2013.
S. Narayam, “Scaling Agile: Problems and Solutions | ThoughtWorks,” Thoughtworks Blogs. 2015.

S. Narayam, Agile IT organization design: for digital transformation and continuous delivery. Pearson
Education Inc., 2015.

S. Newman, Building microservices : designing fine-grained systems. Sebastopol, CA: O’Reilly Media,
Inc., 2015.

NIST, “NIST SP 800-145, The NIST Definition of Cloud Computing,” 2011.
R. L. Nolan, Managing the data resource function, 1St ed. West, 1974, p. 394p.

Office of Government Commerce, Service strategy. Norwich: The Stationery Office, 2007, pp. xi, 261
p-

T. Ohno, Toyota production system : beyond large-scale production. Cambridge, Mass.: Productivity
Press, 1988.

E. Olson, “Microsoft, GE, and the futility of ranking employees,” Fortune, no. November 18, 2013,
2013.

A. Opelt, B. Gloger, W. Pfarl, and R. Mittermayr, Agile contracts : creating and managing successful
projects with Scrum. Hoboken, N.J.: John Wiley & Sons Inc., 2013, pp. xiv, 282 pages.

A. Osterwalder and Y. Pigneur, “Business Model Generation,” Wiley, p. 280, 2010.

A. Osterwalder, Y. Pigneur, G. Bernarda, and A. Smith, Value Proposition Design. Hoboken, N.]J.: John
Wiley & Sons, Inc., 2014.

Digital Practitioner Body of Knowledge™ Standard 21

Informative References Referenced Documents

217.

218.
219.

220.

221.

222.

223.

224.

225.

226.

227.

228.

229.

230.

231.

232.

233.

234.

235.
236.
237.

22

]J. Patton, User Story Mapping. Discover the Whole Story, Build the Right Product, First edit. 2014, p.
324.

PCAOBUS, “Auditing Standard No.5,” PCAOBUS, 2019.

R. Pichler, Agile Product Management with Scrum: Creating Products that Customers Love. Boston,
MA: Addison-Wesley - Pearson Education, 2010, p. 160.

M. Poppendieck and T. D. Poppendieck, Lean Software Development: An Agile Toolkit. Boston:
Addison Wesley, 2003.

M. Poppendieck and T. D. Poppendieck, Implementing lean software development : from concept to
cash. London: Addison-Wesley, 2007, pp. xxv, 276 p.

S. Portny, Project Management for Dummies. Hoboken, New Jersey: John Wiley & Sons, 2013.

Project Management Institute and Project Management Institute., A guide to the project
management body of knowledge (PMBOK guide), 3rd ed. Newtown Square, Pa.: Project Management
Institute Inc., 2013, pp. xxi, 589 pages.

Puppet Labs, “2015 State of DevOps Report,” Puppet Labs, 2015.

T. A. Quinlan, Chargeback and IT Cost Accounting. Santa Barbara, CA: IT Financial Management
Association, 2003.

B. Raczynski and B. Curtis, “Software Data Violate SPC’s Underlying Assumptions,” IEEE Software,
vol. 25, no. 3, pp. 49-51, 2008.

Rational Software, Rational Software Corporation, and R. Software, “Rational Unified Process: Best
Practices for Software Development Teams,” IBM, 2011.

D. J. Reifer, Making the software business case : improvement by the numbers. Boston: Addison
Wesley, 2002, pp. xviii, 300.

D. G. Reinertsen, Managing the design factory: a product developer’s toolkit. New York ; London:
Free Press, 1997, pp. Xi,269p.

D. G. Reinertsen, The principles of product development flow: second generation lean product
development. Redondo Beach, Calif.: Celeritas, 2009, pp. ix, 294 p.

G. L. Richardson, Project Management Theory and Practice. Boca Raton: Auerbach Publications,
Taylor & Francis Group, 2010.

E. Ries, The lean startup : how today’s entrepreneurs use continuous innovation to create radically
successful businesses, 1st ed. New York: Crown Business, 2011, pp. 320 p.

D. K. Righy,]. Sutherland, and A. Noble, “Agile At Scale: How To Go From A Few Teams To
Hundreds,” Harvard Business Review, 2018.

D. K. Righy, J. Sutherland, and H. Takeuchi, “Embracing Agile,” Harvard Business Review, no. May,
2016.

H. Rock, David; Grant, “Why Diverse Teams Are Smarter,” Harvard Business Review. 2016.
E. Rogers, Diffusion of Innovations, 5th ed. New York, N.Y.: Free Press - Simon & Schuster, Inc., 2003.

J. W. Ross, P. Weill, and D. Robertson, Enterprise architecture as strategy : creating a foundation for

The Open Group Standard (2020-01-06)

Referenced Documents Informative References

238.

239.

240.
241.

242.
243.

244.

245.
246.
247.

248.

2409.
250.

251.

252.

253.

254.

255.

256.
257.

business execution. Boston, Mass.: Harvard Business School Press, 2006, pp. xviii, 234 p.

M. Rother, Toyota kata : managing people for improvement, adaptiveness, and superior results. New
York: McGraw Hill, 2010, pp. xx, 306 p.

M. Rother and J. Shook, “Learning to See: Value Stream Mapping to Add Value and Eliminate MUDA
[Spiral-bound],” Lean Enterprise Institute. p. 102, 2003.

J. Rothman, “Not Ready for Agile? Start Your Journey with Release Trains,” Stickyminds.com. 2011.

W. Royce, “Managing the Development of Large Software Systems,” in Proc. IEEE WESCON, Los
Angeles, 1970, pp. 1-9.

J. Rozovsky, “The five keys to a successful Google team,” re:Work, Mar. 2015.

K. S. Rubin, Essential Scrum : a practical guide to the most popular agile process. Upper Saddle River,
NJ: Addison-Wesley, 2012, pp. xliii, 452 p.

G. A. Rummler and A. P. Brache, Improving performance: how to manage the white space on the
organization chart, 2nd ed. San Francisco, CA: Jossey-Bass, 1995, pp. xxv, 226.

SAFe, “Agile Release Train — Scaled Agile Framework,” http.//www.scaledagileframework.com/. 2016.
Scaled Agile Framework, “Guidance — Features and Components — Scaled Agile Framework.” 2016.

S. Schlarman, “Developing Effective Policy, Procedure, and Standards,” www.disaster-resource.com.
2008.

W. E. Schneider, The reengineering alternative : a plan for making your current culture work.
McGraw-Hill, 1999, p. 173.

K. Schwaber, The Enterprise and Scrum. Redmond, Wash: Microsoft Press, 2007.

K. Schwaber and M. 1. Beedle, Agile Software Development with Scrum. Upper Saddle River, N.J.:
Prentice Hall, 2002.

C. Schwartz and J. Schauer, “The Dojo — Implementing an Immersive Learning Environment for
Teams | Agile Alliance,” in Agile 2016, Atlanta, GA, 2016.

S. B.; F. Sells Richard S. and S. B. ; F. Sells, “Evaluation of Research on Effects of Visual Training on
Visual Functions,” Am J Ophthal, vol. 44, no. 2, pp. 230-236, Aug. 1957.

C. E. Shannon, “A symbolic analysis of relay and switching circuits,” Transactions of the American
Institute of Electrical Engineers, vol. 57, no. 12, pp. 713-723, 1938.

C. E. Shannon and W. Weaver, The mathematical theory of communication. Urbana,: University of
[linois Press, 1949, pp. v (i.e. vii), 117 p.

A. Sharp and P. McDermott, Workflow modeling : tools for process improvement and applications
development, 2nd ed. Boston: Artech House, 2009, pp. XX, 449 p.

E. Sigler, “So, What is ChatOps? And How do I Get Started?,” Pagerduty.Com. 2014.

L. Silverston and John Wiley & Sons., “The data model resource CD-ROM. Volume 1 a library of
universal data models for all enterprises.” Wiley, New York, pp. 1 computer optical disc 4 3/4 in.,
2001.

Digital Practitioner Body of Knowledge™ Standard 23

Informative References Referenced Documents

258.

259.

260.
261.

262.

263.

264.

265.
266.

267.

268.

269.

270.

271.

272.

273.

274.

275.

276.

277.

24

L. Silverston, The data model resource book Vol 1: A library of universal data models for all
enterprises, Rev. ed. New York ; Chichester: Wiley, 2001, pp. 2 V.

L. Silverston, The data model resource book Vol 3: Universal patterns for data modeling.
Indianapolis, Ind.: Wiley, 2008, pp. xxxii, 606 p.

C.J. Sims, Scrum: a Breathtakingly Brief and Agile Introduction. Dymaxicon, 2012.

R. Sirkia and M. Laanti, “Lean and Agile Financial Planning,” via Scaled Agile Framework website,
2013.

M. Skelton and M. Pais, Team Topologies: Organizing Business and Technology Teams for Fast Flow.
Portland, OR: IT Revolution Press, 2019.

P. G. Smith and D. G. Reinertsen, Developing products in half the time. New York, N.Y.: Van Nostrand
Reinhold, 1991.

P. G. Smith and D. G. Reinertsen, Developing products in half the time : new rules, new tools, [New
ed.]. New York ; London: Van Nostrand Reinhold, 1998, pp. xix, 298p.

0. Solon, “You are Facebook’s product, not customer,” Wired UK. 2011.

I. Sommerville, Software engineering, 6th ed. Harlow, England ; New York: Addison-Wesley, 2001,
pp. XX, 693.

Stephen Watts, “Enterprise Service Management vs IT Service Management: What's The
Difference? — BMC Blogs,” BMC Blogs. .

]J. Sterman, Business dynamics : systems thinking and modeling for a complex world. Boston:
Irwin/McGraw-Hill, 2000, pp. xxvi, 982 p.

D. E. Strode and S. L. Huff, “A Taxonomy of Dependencies in Agile Software Development,” in 23rd
Australasian Conference on Information Systems, 2012.

D. E. Strode, S. L. Huff, B. Hope, and S. Link, “Coordination in co-located agile software development
projects,” The Journal of Systems and Software, vol. 85, pp. 1222-1238, 2012.

B. Stroustrup, “Viewpoint: What should we teach new software developers? Why?,”
Communications of the ACM, vol. 53, no. 1, p. 40, Jan. 2010.

J. Sussna, Designing Delivery: Rethinking IT in the Digital Service Economy. O’Relly Publications,
2015.

J. V. Sutherland, Scrum : the art of doing twice the work in half the time, First Edit. Crown Business ,
2014, pp. viii, 248 pages.

R. I. Sutton and H. Rao, Scaling up excellence : getting to more without settling for less. Crown
Business/Random House, 2014.

A. Sweetser, “A Comparison of System Dynamics (SD) and Discrete Event Simulation (DES).”

The Joint Task Force on Computing Curricula IEEE Computer Society Association for Computing
Machinery, “Software Engineering 2014: Curriculum Guidelines for Undergraduate Degree
Programs in Software Engineering,” Association for Computing Machinery, February, 2015.

The National Court Rules Committee, “Federal Rules of Civil Procedure.” 2016.

The Open Group Standard (2020-01-06)

Referenced Documents Informative References

278.
279.
280.
281.
282.
283.

284.
285.

286.
287.

288.
289.

290.

291.
292.

293.
294.

295.

296.
297.

298.

299.
300.

301.

The Open Group, “The Open Group IT4IT™ Reference Architecture, Version 2.1,” 2017.

The Open Group, “The TOGAF® Standard, Version 9.2,” 2018.

The Open Group, “Standards Process - Definitions and Glossary.” 2018.

The Stationery Office, ITIL Service Design: 2011 Edition. Norwich, U.K.: The Stationery Office, 2011.
The Stationery Office, ITIL Service Strategy: 2011 Edition. Norwich, U.K: The Stationery Office, 2011.

The Stationery Office, ITIL Continual Service Improvement: 2011 Edition. Norwich, U.K.: The
Stationery Office, 2011.

J. Tidwell, Designing Interfaces. Sebastopol, CA: O’Reilly Media, Inc., 2006.

H. Topi et al., “Revising the MSIS Curriculum: Specifying Graduate Competencies (Second Public
Deliverable of the ACM/AIS MSIS 2016 Task Force),” Joint ACM/AIS MSIS 2016 Task Force, 2016.

D. Traynor, “Focus on the Job, Not the Customer,” Inside Intercom. 2016.

M. Treacy and F. Wiersema, The Discipline of Market Leaders: Choose Your Customers, Narrow Your
Focus, Dominate Your Market. New York, N.Y.: Basic Books - Perseus Books Group, 1997.

E. R. Tufte, The Visual Display of Quantitative Information, vol. 4. 2001.

Uptime Institute, “Explaining the Uptime Institute’s Tier Classification System,” Uptime Institute
Journal. 2014.

Uptime Institute, “Tier Certification Tiers is the Global Language of Data Center Performance Tier
Certification is Worldwide Credibility.” 2016.

P. Venezia, “Murder in the Amazon cloud,” InfoWorld. 2014.

A. Venkatraman, “2e2 datacentre administrators hold customers’ data to \poundslm ransom,”
ComputerWeekly.com. 2013.

D. Vergun, “Toxic leaders decrease Soldiers’ effectiveness, experts say,” www.army.mil. 2015.

J. von Neumann and H. H. Goldstine, “Planning and Coding of Problems for an Electronic
Computing Instrument,” Institute for Advanced Study, Princeton N.J., 1947.

A. Ward and D. K. Sobek, Lean Product and Process Development, 2nd Ed. Lean Enterprise Institute,
2014, p. 349.

S. Wardley, “Designing for constant evolution,” Hacker Noon. 2017.

G. West, Scale: The Universal Laws of Life and Death in Organisms, Cities, and Companies. London:
Weidenfeld & Nicolson: The Orion Publishing Group Ltd, 2017.

G. Westerman, D. Bonnet, and A. Mcafee, “The Nine Elements of Digital Transformation,” MIT Sloan
Management Review, vol. January, pp. 1-6, 2014.

WEFMC, “Adaptive Case Management,” Http.//Www.Xpdl.Org. pp. 1-23, 2010.

J. A. Whittaker, J. Arbon, and J. Carollo, How Google tests software. Upper Saddle River, NJ: Addison-
Wesley, 2012, pp. xxvii, 281 p.

N. Wiener, “Cybernetics,” Scientific American, vol. 179, pp. 14-18, 1948.

Digital Practitioner Body of Knowledge™ Standard 25

Informative References Referenced Documents

302.
303.
304.
305.
306.
307.

308.

309.

310.
311.

312.

313.

26

A. Wiggins, “The Twelve-Factor App.” 2017.

Wikipedia, “DevOps.” 2016.

Wikipedia, “Wikipedia:Learned Helplessness.” 2016.

Wikipedia, “Kubernetes.” 2019.

Wikipedia Authors, “Multicloud,” Wikipedia, The Free Encyclopedia. 2019.

J. P. Womack and D. T. Jones, Lean thinking: banish waste and create wealth in your corporation, 1St
Free P. New York: Free Press, 2003, pp. 396 p.

J. P. Womack, D. T. Jones, D. Roos, and Massachusetts Institute of Technology., The machine that
changed the world : based on the Massachusetts Institute of Technology 5-million dollar 5-year study
on the future of the automobile. New York: Rawson Associates, 1990, pp. viii, 323 p.

A. Woolley, T. W. Malone, and C. F. Chabris, “Why Some Teams Are Smarter Than Others,” New York
Times, no. 12. Jan-2015.

S. Yegulalp, “Why GPL still gives enterprises the jitters | InfoWorld,” Infoworld.com. 2014.

W. Young and N. G. Leveson, “An integrated approach to safety and security based on systems
theory,” Communications of the ACM, vol. 57, no. 2, pp. 31-35, Feb. 2014.

E. Yourdon and L. L. Constantine, Structured design : fundamentals of a discipline of computer
program and systems design. Englewood Cliffs, N.J.: Prentice Hall, 1979, pp. xix, 473.

J. Zachman, “Zachman Framework,” IBM Systems Journal, vol. 26, no. 3, pp. 276-292, 1987.

The Open Group Standard (2020-01-06)

Chapter 1. Introduction 1.1. Objective

Chapter 1. Introduction
1.1. Objective

This document is intended to assist individuals and organizations who wish to create and manage
product offerings with an increasing digital component, or lead their organization through Digital
Transformation. It is a synthesis of practices and guidance from a wide variety of practitioners and
professional communities active in digital technology. It integrates concepts from diverse sources such
as business model innovation, product research and monetization, behavioral economics, Agile,
DevOps, Enterprise Architecture, organizational development, service management, product
management, data management, operations management, and corporate governance. Through
providing an integrated and rationalized framework, based on notable and proven practices and
perspectives, this document is positioned as leading guidance for digital technology and management
professionals worldwide.

1.2. Overview

This document describes the resources, services, and assets that may be involved in creating and
delivering such experiences. It provides guidance for the Digital Practitioner, whether based in a
traditional "IT" organization, manufacturing unit, sales, customer support, or embedded in a cutting-
edge integrated product team.

1.3. Conformance

Readers are advised to check The Open Group website for any conformance and certification
requirements referencing this standard.

1.4. Terminology

For the purposes of this document, the following terminology definitions apply:

Can

Describes a possible feature or behavior available to the user or application.

May

Describes a feature or behavior that is optional. To avoid ambiguity, the opposite of “may” is
expressed as “need not”, instead of “may not”.

Shall

Describes a feature or behavior that is a requirement. To avoid ambiguity, do not use “must” as an
alternative to “shall”.

Shall not

Describes a feature or behavior that is an absolute prohibition.

Digital Practitioner Body of Knowledge™ Standard 27

1.5. Future Directions Chapter 1. Introduction

Should
Describes a feature or behavior that is recommended but not required.

will
Same meaning as “shall”; “shall” is the preferred term.

1.5. Future Directions

While digital is a fast-evolving field, the intent of this document is to identify the business and
technical practices needed for a digital business, and to stay as independent of the implementation
technology as possible. However, it is expected that this document will need to be revised from time to
time to remain current with both practice and technology. To maintain the coherence of the document
in the face of this evolution, a set of Principles of the DPBoK Standard have been established.

28 The Open Group Standard (2020-01-06)

Chapter 2. Definitions

Chapter 2. Definitions

For the purposes of this document, the following terms and definitions apply. Merriam-Webster’s
Collegiate Dictionary should be referenced for terms not defined in this section.

Body of Knowledge

A collection of knowledge items or areas generally agreed to be essential to understanding a
particular subject. [Source:ISO/IEC 24773-1:2019]

Digital Enterprise

An enterprise characterized by: 1. creation of digitalized products or services that are either
delivered fully digitally (e.g., digital media or online banking), or 2. where physical products and
services are obtained by the customer by digital means (e.g., online car-sharing services).

Digital Technology

IT in the form of a product or service that is digitally consumable to create or enable business value.

Digital Transformation

The radical, fundamental change towards becoming a digital enterprise.

Digitalization
The application of digital technology to create additional business value within the primary value
chain of enterprises.

Digitization
The conversion of analog information into digital form.

Process

An ordered, countable set of activities; an event-driven, value-adding sequence that can be
measured and improved.

Digital Practitioner Body of Knowledge™ Standard 29

3.1. Example Scenario Chapter 3. Digital Transformation

Chapter 3. Digital Transformation

This chapter describes Digital Transformation.

3.1. Example Scenario

Consider a scenario wherein an individual is looking to buy a prosthetic limb for her brother. Today
and in the near future she is likely to perform the following activities:

» Send a picture of her brother to a limb designer

» Use an electronic device to measure the limb

* Visualize the design options of the limb with her brother and designer

* Get the limb design and connections validated by a specialist several thousand miles from her
home

* Select a facility closer to her home for final fitting and delivery
» Share the design electronically with the local facility
* Complete necessary arrangements with the local facility and the insurance company
* Transfer money to the designer and the print facility
* Make a reservation and have it honored at the print facility
» Use a wayfinding application on a smart device
» Watch the limb 3D printed, quality-tested, assembled, and fitted
* Make sure the insurance company has paid all parties
* And, most importantly, watch her brother light up in delight
Each of these experiences is co-created by her desire for value, and the responses of a set of digital

resources. It also reflects how distance, time, and costs have shrunk while the consumer’s experience
is increasingly customized and personal.

The resources and capabilities required to deliver such experiences are vast and complex, spanning
mainframe and distributed computers housed in data centers and managed in various ways, including
advanced cloud services. Every individual involved in the design and delivery of these contemporary,
evolving digital technologies is a Digital Practitioner.

3.2. Digital Transformation as Strategy

Jim Fowler, CIO of GE, stated in 2016: "When I am in business meetings, I hear people talk about digital
as a function or a role. It is not. Digital is a capability that needs to exist in every job. Twenty years ago,
we broke e-commerce out into its own organization, and today e-commerce is just a part of the way we
work. That’s where digital and IT are headed; IT will be no longer be a distinct function, it will just be
the way we work. ... we have moved to a flatter organizational model with “teams of teams” who are

30 The Open Group Standard (2020-01-06)

Chapter 3. Digital Transformation 3.3. What is Digital?

focused on outcomes. These are co-located groups of people who own a small, minimal viable product
deliverable that they can produce in 90 days. The team focuses on one piece of work that they will own
through its complete lifecycle ... in [the “back-office”] model, the CIO controls infrastructure, the
network, storage, and makes the PCs run. The CIOs who choose to play that role will not be relevant for
long.” [128]

Digital Transformation is fundamentally a strategy and an operating model change, in which
technological advancements are leveraged to improve human experiences and operating efficiencies,
and to evolve the products and services to which customers will remain loyal. It is the consequence of:

* The ability to handle information in the digital form

» Using digital technologies to manage the process of creating, capturing, and analyzing information
to deliver perceptive human-machine interaction experience

The modern digital enterprise faces multiple challenges in its transformation to the digital economy.
New technologies (cloud, IoT, machine learning) and new techniques (DPM, reliability engineering,
continuous delivery) both demand attention. This family of guidance will address both aspects.
However, technologies are faster moving, while techniques and practices evolve at a slower pace.

For organizations to cope with this fast technology evolution pace and succeed in this Digital
Transformation, changes should be pervasive through the whole organization. Digital Transformation
as strategy should be aligned with the overall organization context and environment, and should be
derived and sometimes even replace the existing organization strategy.

This strategy shift should encompass the new business and IT disruptive trends, using an outside-in
perspective, and lead the development of new business and operational models connected with digital
technologies and platforms and with the digital economy as a whole.

3.3. What is Digital?

Being "digital", in the sense of digitizing information, is not new. It has existed, arguably, since
Shannon mapped Boolean logic onto electronic circuits [253]. This document uses the definitions
defined in Chapter 2, Definitions.

A "digital-first" culture is where the business models, plans, architectures, and implementation
strategies are based on a digital organization architecture that inspires and rewards a number of
desired behaviors, such as servant leadership, strategic value chain thinking, consumer focus, fault
tolerance, agility, and more. It requires a workforce with a sense of psychological safety, digitally savvy
enough to execute a “digital-first approach".

As part of this paradigm shift, it is important to have a clear understanding of the existing capabilities,
which can be retired, and the new ones that will be needed. In some cases, organizations may need to
deal with all these changes while keeping their current legacy platform and supporting applications.

Digital Practitioner Body of Knowledge™ Standard 31

3.4. Seven Levers of Change Chapter 3. Digital Transformation

3.4. Seven Levers of Change

To succeed in today’s digital era, organizations will need to consider the following seven levers of
change, as discussed in the White Paper: "The Seven Levers of Digital Transformation" [81]:

* Business process transformation

» Customer engagement and experience
* Product or service digitization

 IT and delivery transformation

* Organizational culture

* Strategy

* Business ecosystem

These levers require a fundamental understanding of value creation for both the organization and the
customer. They equip businesses with a structure to reduce the number of failed projects, guide
investment decisions, and create a set of products and services designed to seal customer loyalty. For
digital success you will need to assess readiness, actively include your people, measure and govern for
value - not activities performed, develop your roadmap top-down, and pivot often with bottom-up
learnings.

The example given at the start of this section is an illustration of the impact of seven levers to the
primary value chain. In the example, some organizations that enabled the experience may be startups,
but others may be more established firms now changing the way they have been operating. The
printing facility, the orthopedic and prosthetic specialist, and even the customer changed their
expectations and ways they used to function. The change has been made possible with the innovations
in digital technologies.

Technology is the glue that connects all players in the ecosystem - suppliers, distributors, service
providers, employees, and the customers - and it is a powerful means to building a future-ready
organization. However, it is worth bearing in mind that it is not an end in itself. The seven levers are
symbiotic pillars that amplify the effects of one another.

For an organization to become Agile, change should start with organizational structure and cultural
change — the whole organization should be aligned with the Agile view. The new paradigm for an Agile
enterprise should focus on becoming flexible by design: the ability to modify tactics and operations to
respond to changing conditions.

32 The Open Group Standard (2020-01-06)

Chapter 4. Principles of the DPBoK Standard 4.1. Guiding Concepts

Chapter 4. Principles of the DPBoK Standard

4.1. Guiding Concepts

The content of this document will change over time, but shall remain consistent with these core
guiding concepts:

* Comprehensiveness

* Currency

 Capability-based

* Verifiability

* Fine-grained and Clinical Terminology

» Compatibility with Other Frameworks

» Compatibility with Agile Principles

» Compatibility with Enterprise Architecture

* A Learning Artifact

* Developed as a Digital Product

* Competency-based Content

» Scaling Model as Learning Progression

4.2. Comprehensiveness

This document shall provide comprehensive guidance for the digital and IT professional in his or her
professional contexts, whether market-facing or supporting. It shall address the complete spectrum of
concerns encountered by the Digital Practitioner, from the initial decision for digital investment
through value discovery, design, construction, delivery, operation, and ongoing evolution. It shall cover
management and organizational development topics of collaboration, coordination, structure, and
culture, in the context of Digital Product Management (DPM). It shall cover sourcing and human
resource management in the digital context. It shall cover Governance, Risk Management, and
Compliance (GRC), data and information management, and architecture. It shall strive to be the “go-to”
guidance for orienting Digital Practitioners worldwide to their chosen career.

This document shall demonstrate thorough and current consistency with the principles and practices
of Agile development and related trends, such as continuous delivery, DevOps, Lean Product
Development, Kanban and Lean IT, design thinking in the digital context, SRE, and web-scale
computing. It shall curate notable current guidance while maintaining a neutral and clinical overall
position on controversial topics. It shall serve the Digital Practitioner by identifying relationships and
overarching themes across this curated Body of Knowledge.

The focus of this document, however, is on longer-lived professional and management practices, not

Digital Practitioner Body of Knowledge™ Standard 33

4.3. Currency Chapter 4. Principles of the DPBoK Standard

the ephemeral aspects of technology. The following should be, in general, discussed primarily by
reference at a level suitable for non-technical audiences:

» Technical standards (platforms, protocols, formats, interoperability, etc.)

* Specific programming languages and frameworks
The following in general should be avoided, even by reference:

 Particular vendors and commercial products (this does not include notable open source products
with demonstrated longevity); if commercial products are mentioned as examples, at least two
examples should be supplied

» Specific commercial methodologies (some exceptions to this may exist, such as ITIL and SAFe,
subject to evidence of substantial notability and demonstrated longevity)

Specific technical practices, such as Infrastructure as Code (IaC), virtualization, cloud, and SRE, may be
in scope, to be determined on a case-by-case basis. Broader technical trends such as Internet of Things
(IoT) and cognitive technologies may be discussed, primarily in terms of their impact on technical
practices. (There are many other bodies of work for the practitioner to refer to on such topics.) In
general, this document should not be so technically-neutral and abstract as to appear academic and
irrelevant to the modern Digital Practitioner.

4.3. Currency

This document shall remain current with industry practices and trends, subject to evidence of
notability and reasonable longevity.

4.4. Capability-Based

Much current computing and IT guidance uses the concept of “process” as a fundamental building
block, with various issues:

* Inconsistency with the definition of “process” favored by the Business Process Management (BPM)
community [32]

* Promotion of formalized “process” as a primary, preferred coordination and delivery model and
basis for improvement, rather than one mechanism among several

This document should prefer the concept of “capability” as its fundamental structure, in a definition
consistent with other work of The Open Group. The concept of “practice” may also be used. The
highest-order DPBoK capabilities shall be cross-cutting, large-grained concepts, not to be confused with
organizational functions or processes. They shall be derived and ordered based on a scaling model.
Establishment or alteration of DPBoK capabilities and practices must be evidence-based. This
document shall align with emerging Business Architecture standards in this regard.

34 The Open Group Standard (2020-01-06)

Chapter 4. Principles of the DPBoK Standard 4.5. Verifiability

4.5. Verifiability

In the computing and digital professions, there is currently a significant and destructive gap between
academic theory and research and industrial practice. This can be corrected. For example, medicine
has a much more productive feedback loop between researchers and practicing clinicians.

In the interest of narrowing this gap, this document shall be verifiable. Its concepts must be well-
grounded, with clear evidence as to their notability. It must not propose concepts or terminology that
have little or no evidence of practical adoption in industry. Its structure, principles, practices, and
concepts must be falsifiable. It shall be open to rational skepticism and criticism and adaptive in the
face of evidence such as surveys, market assessments, analysis of industry narratives and cases, and
simulations of socio-technical systems. It should also demonstrate an awareness of useful academic
research and problem framing.

The principle of verifiability does permit for analysis, synthesis, and interpretation. This document
should seek to "add value" to industry understanding wherever possible, but must also remain well-
grounded while doing so.

Finally, this document must not fall into the trap of excessive semantic debate and the fruitless search
for universally applicable abstract ontologies. A framework with recognized inconsistencies but well
grounded in industry domain language is preferable to a perfectly consistent framework based on
conjectural concepts.

4.6. Fine-Grained and Clinical Terminology

Within its capability progression, this document shall strive to employ terminology and concepts that
are fine-grained, precise, objective, well-supported, and clinical. For example, it is helpful to break a
management concern such as “process management” down into lower-level concepts of task ordering
and dependencies, cadence, and synchronization. See, for example, Reinertsen’s work on “Managing
Flow under Variability” ([230], Chapter 7).

4.7. Compatibility with Other Frameworks

This document should be to the greatest extent possible compatible with other bodies of knowledge
and frameworks, while still adhering to the previously articulated principles. It should be positioned as
a “standard of standards”, with the objective of aligning and bringing a coherent approach to
navigating the currently fragmented information base in the digital industry.

Because other frameworks are large-grained combinations of many concerns, it may not be possible to
be compatible in all regards. This document should seek to interoperate with other frameworks using
fine-grained terminology. For example, rather than asserting consistency with the Project Management
Body of Knowledge® (PMBOK®) as a whole, it is preferable that this document frames its relationship
in terms of components such as investment management, planning, resource allocation, risk
management, and execution. Similarly, rather than characterizing its relationship to ITIL as a whole,
this document should frame its relationship more specifically in terms of the ITIL approaches to

Digital Practitioner Body of Knowledge™ Standard 35

4.8. Compatibility with Agile Principles Chapter 4. Principles of the DPBoK Standard

product management, process management, and continuous improvement.

Where other frameworks cover a topic sufficiently, this document shall not repeat that coverage. The
role of this document is to integrate and synthesize. However, this document shall not overlook or fail
to identify points where its point of view varies from the recommendations of other guidance. In such
cases, it shall do so in a principled fashion based on clear evidence and with specificity as to the nature
of the differences.

Not all sound practice has been formalized through standards. This document may, subject to evidence
of notability, reference the contributions of individuals.

4.8. Compatibility with Agile Principles

Agile software development has emerged as a dominant approach in software-intensive systems
creation, and is expanding its reach and insights into non-software, non-computing fields as well [234,
233]. There are a variety of principles and perspectives on Agile, starting with the well-known Agile
Manifesto [8], furthered by the work of the Agile Alliance. Commercial Agile frameworks are
increasing in number and scope; for example, [177, 18].

Agile principles can be described in specific and precise ways; Agile’s history and influence in the
computing profession are broad and notable [174], and the underlying intellectual foundations of Agile
are robust [250, 230]. Agile describes sound approaches and practices for product management with a
high Research and Development (R&D) component. Using collaborative, focused, cross-functional
teams with iterative, feedback-enhanced methods is the most effective approach for solving complex
problems (as compared to routing problem-solving work across functional team boundaries with
sequential “phase gates”). Where digital systems management involves the discovery of information
and coping with “unknown unknowns”, this document shall favor Agile principles.

However, Agile (as a specific set of documented, curated practices) is at its strongest in the cohesive
team context. It does not have the same level of consensus or clarity in larger contexts, and the topic of
“scaling Agile” is controversial in the industry. This document should approach the scaling problem in
part as a problem of coordination, which is a topic of research attention in academia. Scaling issues are
also driven by the organization’s approach to internal investment and organizational development, up
to and including culture. Corporate governance must be addressed as well. These are broad topics in
management, with many notable and qualified influences for this document to curate into the digital
context.

4.9. Compatibility with Enterprise Architecture

As part of the paradigm shift to digital, it is important to have a clear understanding of which existing
capabilities can be retired, and which new ones will be needed. In some cases, organizations may need
to deal with all these changes while keeping their current legacy platform and supporting applications.
Integrating new capabilities with existing ones in an effective and efficient way requires a clear
landscape and overall view of the organization context. This is provided by Enterprise Architecture.
While architecture as a competency area is covered in Competency Area 12, this document should

36 The Open Group Standard (2020-01-06)

Chapter 4. Principles of the DPBoK Standard 4.10. A Learning Artifact

implicitly reflect its principles throughout:

» A systemic view of organizational reality, capabilities, and dependencies

* Recognizing and communicating internal and external context, integrating the "outside in" and
"Inside out” views

* Driving strategic alignment and synergy among organizational components

* Enabling innovation while also managing technical debt

This systemic and holistic view can be provided by an Enterprise Architecture capability. Due to the
continuous and rapid evolution of these disruptive trends, however, a shift to a more Agile style in the
Enterprise Architecture capability is also needed. Evolvability should become an Enterprise
Architecture concern that facilitates the modification of the enterprise’s products and supporting
operating model while preserving non-functional requirements. An example can be seen in The Open
Group White Paper "Agile Architecture in the Digital Age".

Enterprise Architecture standards such as the TOGAF Standard, Version 9.2 and the ArchiMate
Specification can be used to achieve this, and should be used along with other practices like Agile,
Lean, and DevOps methodologies mentioned later.

4.10. A Learning Artifact

Participants in developing this document shall recognize their responsibility in developing a learning
artifact. This document may be used in both commercial and academic settings for educating the next
generation of Digital Practitioners, and assisting Digital Practitioners and leaders in understanding
their challenges and options. This document may in part be expressed as competencies and learning
objectives compatible with Bloom’s taxonomy.

4.11. Developed as a Digital Product

This document itself must exemplify the new practices it describes. It is itself a product entering a
market. It must have:

Clear and broad feedback channels

* Clear audience targeting

* A defined release cadence

As frictionless and collaborative a development process as possible

» A production pipeline automated to the highest degree possible
Its audiences also need to be clearly stated; for example:

¢ Executive

* Management

Digital Practitioner Body of Knowledge™ Standard 37

4.12. Competency-Based Content Chapter 4. Principles of the DPBoK Standard

* Technologist

e New to workforce

e Domain audiences
o Service management
o Architecture

o Information management

4.12. Competency-Based Content

This document shall contain competency-based content, and shall be organized based on the structure
of the 2016 rewrite of the Masters' level Information Systems guidance (MSIS2016) [285]. It shall
contain:

Contexts (four, ordered by scale; this layer is additional to MSIS2016)
» Competency Areas (Chapters)
* Competency Categories

* Example Competencies

Context (‘organizational scale)
- DPescription

- High level dimensions

Competency Area
- DPescription

- High level dimensions

rﬂampe#enﬁy Ca#egar;
- Recognition statement
- Description
- Evidence of notability
- Limitations
- Example competencies
- Eelated categaries

Figure 1. DPBoOK Structure

Contexts and Competency Areas contain descriptions and high-level "dimensions” that will list the
expected competency outcomes for the area as a whole.

38 The Open Group Standard (2020-01-06)

Chapter 4. Principles of the DPBoK Standard 4.12. Competency-Based Content

Formalized Competency Categories shall be the majority of the standard and shall follow this
structure:

* Description statement(s): the Competency Category consists of ...

» Evidence of Notability statement: the evidence for this competency’s importance is ... (Sources must
be cited)

* Limitations: known ways in which the Competency Category can fail, be mis-applied, or lead to
undesired results

* Example Competencies: competencies are granular and more transient; a decision will need to be
made as to how "normative" they are. Note that Example Competencies are not the same as
Learning Objectives, especially Learning Objectives that are "Lower Order" Dimensions in Bloom’s
Taxonomy (Remembering, Understanding). They may be based on, or reflect, "Higher Order"
Dimensions in Bloom’s Taxonomy (Applying, Evaluating, Creating). This document follows the
MSIS2016 lead in describing competency as "an integrative concept that brings together [the
learner’s] knowledge, skills, and attitudes" [285 p. 8].

As of the DPBoK Standard, Version 1, competencies are mostly undefined and some
NOTE stated dimensions may need further evolution from a learning outcome bias to a true
competency orientation.

» Related Competency Categories: the following topic(s) underpin/relate to/depend on this topic
Example
This is an example only and the actual Competency Category for this topic may differ from this.
Context: Individual
Competency Area: Infrastructure
Competency Category: Infrastructure as Code

Description. Per Kief Morris, "Infrastructure as Code (IaC) is an approach to infrastructure automation
based on practices from software development" [203]. For example, instead of using an interactive
console to create and configure virtual servers on a one-time basis, an IaC approach would define the
parameters of the desired resources (OS, capacity, software installed) as a text artifact. This text artifact
can then be employed by configuration management tooling to create the infrastructure consistently.

Evidence. Evidence for this topic’s importance is pervasive throughout the modern cloud, DevOps,
Agile, and SRE communities. Current examples include the Phoenix Project [165], Infrastructure as
Code by Kief Morris [203], and ...

Limitations. Infrastructure as Code may not be possible in certain environments where infrastructure
management platforms are not driven by text artifacts.

Competency examples. Suggested competencies with reference to current sources are as follows:

Digital Practitioner Body of Knowledge™ Standard 39

4.13. Scaling Model as Learning Progression Chapter 4. Principles of the DPBoK Standard

* Compare and contrast various current approaches for infrastructure as code, such as shell scripts,
declarative configuration management, and open source Cloud-native technologies (e.g., Helm,
CNAB) and define an appropriate approach for a given organization.

* Define, deploy, and manage an application as a distributed system across several nodes using
infrastructure as code techniques

Related Topics:

» Version Control

* Configuration Management

Package Management
* Deployment Management

* Operations

* SRE
End of Example
It is expected that the material will have extensive internal cross-referencing. The
NOTE above example depends on other Competency Areas, such as source control and

configuration management. Use of pervasive cross-referencing will help with the
inevitable taxonomy debates over "does X belong under Y?".

4.13. Scaling Model as Learning Progression

The sequence or learning progression of any body of knowledge is critical for its transmission and
adoption [15]. Bodies of knowledge are used in part to educate newcomers to a field, and should reflect
an ordering suitable for this purpose. For maximum accessibility, the structure of this document shall
be based on a scaling model, that can be summarized as "from startup to enterprise".

See Models for Learning Progression in the next chapter.

40 The Open Group Standard (2020-01-06)

Chapter 5. Structure of the Body of Knowledge 5.1. Models for Learning Progression

Chapter 5. Structure of the Body of Knowledge

This chapter describes how the Body of Knowledge is structured.

5.1. Models for Learning Progression

The term learning progression refers to the purposeful sequencing of teaching and learning expectations
across multiple developmental stages, ages, or grade levels. The term is most commonly used in reference
to learning standards - concise, clearly articulated descriptions of what students should know and be able
to do at a specific stage of their education. [115]

If a learning progression starts with overly abstract or remote concerns, it may be less accessible to the
student. Some may dismiss the course of learning as irrelevant, despite the presence of valuable
material further in. In this section we consider a number of models.

Figure 2. Lifecycle Dimension

Lifecycle Approach

Many bodies of knowledge in the digital profession are ordered using a "lifecycle" (planning, designing,
building, running). See Figure 2, “Lifecycle Dimension”. The biggest challenge with the "lifecycle"
concept is that it is easily mistaken for advocacy of sequential, stage-gated, open-loop "waterfall"
development methods. Ordering a standard with "requirements" or "analysis" as an initial section also
raises concerns from an Agile perspective. Professionals oriented to Agile methods deprecate excessive
focus on requirements prior to actual system delivery, preferring instead to deliver "walking skeletons"
or "Minimum Viable Products (MVPs)" in an overall strategy of iterative learning.

Starting with planning is also challenging because planning is an abstract activity and difficult to
formalize. It is an activity that is deeply controversial and scale and organization-dependent, with few
"best practices" and many contrary points of view. When guidance begins with an in-depth discussion
of planning (because that is "where the lifecycle starts"), it risks plunging the student or trainee
immediately into remote concerns that are experienced primarily by senior personnel in larger-scale
organizations.

Digital Practitioner Body of Knowledge™ Standard 41

5.1. Models for Learning Progression Chapter 5. Structure of the Body of Knowledge

Business processes

Applications

Infrastructure

Figure 3. Stack Dimension
Stack Approach

Other guidance (e.g., the Zachman® Framework for Enterprise Architecture) is based on a "stack" of
abstractions. See Figure 3, “Stack Dimension”. Computer engineers and scientists start "at the bottom"
of the stack, with electrical and electronic engineering, Boolean logic, automata theory, and so forth.
This foundational material is difficult and abstract; not all practitioners need to follow such a learning
progression (although certain fundamentals such as the concept of computability should be
understood at least at a high level by all Digital Practitioners). Conversely, Enterprise Architects are
taught decomposition from business objectives, to data, to applications, to technologies.

Whether bottom-up or top-down, layered approaches to technology have utility, but are also prone to
reductionism; i.e., that a complex system can be understood as "merely an application” of an
underlying layer, or that once a business intent is defined, automating it with a computer is "merely a
matter of execution" in decomposition, design, and implementation.

Scaling Model

For maximum accessibility, a different "on-ramp" is needed to best serve the modern Digital
Practitioner. The DPBoK structure is based on a scaling model, that can be summarized as "from
startup to enterprise".

Verne Harnish, in the book Scaling Up [122 pp. 25-26], describes how companies tend to cluster at
certain levels of scale. (See Figure 4, “Organizations Cluster at Certain Sizes”, similar to [122 p. 25].) Of
28 million US firms, the majority of firms (96%) never grow beyond a founder; a small percentage
emerge as a viable team of 8-12, and even smaller numbers make it to the stable plateaus of 40-70 and
350-500. The “scaling crisis” is the challenge of moving from one major level to the next. (Harnish uses
the more poetic term “Valley of Death".) This scaling model, and the needs that emerge as companies
grow through these different stages, is the basis for this document’s learning progression.

42 The Open Group Standard (2020-01-06)

Chapter 5. Structure of the Body of Knowledge 5.1. Models for Learning Progression

=$50m
350-500 employees
17,000

>570m
H40-70 employees
0-4%

Scaling crisis

=$7m
&-12 employees
4% Scaling crisis
<$im
-3 employees
967%

Scaling crisis

Scaling crisis

Founder Team Team Enterprise ——3
of

Teams
Figure 4. Organizations Cluster at Certain Sizes

It draws from the concepts and research of Robin Dunbar [91] and Verne Harnish [122], Barry Boehm’s
Spiral Model [38], Eric Ries' Lean Startup [232], Alistair Cockburn’s Walking Skeleton design pattern [
64], John Gall’s heuristic that complex systems always evolve from simpler, functional systems [107],
Scott Ambler’s work on Agility@Scale [17], and the early Ward Cunningham recommendation: "Do the
simplest thing that could possibly work ... if you’re not sure what to do yet" [79]. A related approach
can be seen in Simon Wardley’s concepts of "pioneer/settler/town planner" [296]. The book Scale by
physicist Geoffrey West [297] provides a useful foundation, based on fundamental physical principles.

The scaling progression can be seen as a third dimension to the previously discussed Stack and
Lifecycle (see Figure 5, “Scale as Third Dimension”).

Digital Practitioner Body of Knowledge™ Standard 43

5.1. Models for Learning Progression Chapter 5. Structure of the Body of Knowledge

Stack

Lifecycle

Figure 5. Scale as Third Dimension

A scaling digital startup exposes with great clarity the linkage between IT and “the business". The
success or failure of the company itself depends on the adept and responsive creation and deployment
of the software-based systems. The lessons that digital entrepreneurs have learned through this trial
by fire shed great light on IT’s value to the business. Thinking about a startup allows us to consider the
most fundamental principles as a sort of microcosm, a small laboratory model of the same problems
that the largest enterprises face.

The thought experiment does not limit the DPBoK Standard to entrepreneurial startups. It also may
represent the individual’s journey through their career in the organization, from individual developer
or engineer, to team lead, to group manager, to senior executive. Or, the journey of an experimental
product within an enterprise portfolio.

The Scaling Model and Enterprise Digital Transformation

Large enterprises may find the scaling model useful in their Digital Transformation execution. By
reviewing each layer of the model, they can identify whether they are sufficiently supporting critical
delivery capabilities. One common problem in the enterprise is the proliferation of processes and
controls at the upper levels (Contexts III and IV), to the point where team collaboration and
cohesiveness (Context II) is degraded.

44 The Open Group Standard (2020-01-06)

Chapter 5. Structure of the Body of Knowledge 5.2. Four Contexts

5.2. Four Contexts

The DPBoK structure represents four contexts of organizational evolution:

e Individual/Founder
e Team
e Team of Teams

* Enduring Enterprise
The thought experiment is as follows:

Take a startup, one or two people in the proverbial garage, or an autonomous "skunkworks" team in a
large enterprise, with a powerful idea for a new product with a large digital component. Assume they
intend to remain self-funding and grow organically (no venture capital acceleration, or large corporate
budget until they have proven their viability). What capabilities do these people need to attract enough
revenue to hire others and form a team?

Suppose they succeed in building a viable concept, and hire a team. What new capabilities does this
organization need? (And, by omission, which can be deferred until further growth?)

Suppose the team grows to the point that it must be divided into multiple teams, or the internal
product is at a point where it must be re-integrated into the enterprise. Again, what new capabilities
are needed? And why?

Suppose that, finally, the organization (or product value stream) grows large enough to have formal
corporate governance, regulation, external audits, and/or relatively long time spans to manage in
terms of its core operating concepts, product portfolio, technology base, and commitments to both
suppliers and customers? What new capabilities are needed?

Criteria of Likely Formalization

Topics shall be selected to each context based on the criteria of likely formalization. For example, it
would be unusual for a two-person startup to establish a formal portfolio management process for
structuring investments; the startup is almost always one unitary investment (perhaps, itself, part of a
larger venture portfolio). It would also be unusual for a small startup to have a formalized risk
management process. Conversely, it would be unusual for an established large organization to not
have a formal portfolio or risk management.

The DPBoK hypothesis is that the conflict between Agile methods and traditional approaches revolves
around the transition from a single, collaborative team to a "team of teams" requiring coordination,
and the eventual institution of architecture and governance practices. The DPBoK shall curate the most
current and relevant industry guidance and academic research on these matters. Providing a rich set
of resources and approaches for solving this problem will be valuable for DPBoK consumers struggling
to integrate collaborative Agile approaches with service management, process management, project
management, architecture, and governance.

Digital Practitioner Body of Knowledge™ Standard 45

5.3. Context Summaries Chapter 5. Structure of the Body of Knowledge

The progression shall be held to the above principle of verifiability. It is expected and hoped that the
concept of likely formalization will be supported by empirical evidence of organizational development
research. Such research might inform further evolution or re-ordering of the proposed capabilities.

Any DPBoK capability may be a concern at any time in an organization’s evolution. Security and
architectural thinking are of course required from Day 1. Formalization, however, implies one or more
of the following:

» The concern is explicit rather than tacit

* Dedicated staff or organization

* Defined processes or practices
As with Boehm’s spiral model, the same concern may be addressed from different perspectives or
contexts in the framework. Attempting to cover all nuances of a given practice area such as
requirements, or release management when it is first encountered in the team context, results in
coverage that is too detailed, bringing in the enterprise context too soon. Advanced discussions or

representations of the framework may include foreshadowing of higher-context concerns (e.g.,
discussion of security or architecture concerns in the Individual/Founder context, pre-formalization).

5.3. Context Summaries

72+ Architecture

17- Information Management

10- Governance, Risk,
Security, and Compliance

9- Organization and Culture
&- Investment and Portfolio

7- Coordination and Process

6- Operations Management
5- Work Management

4- Product Management

3- Application Delivery
2- Digital Infrastructure

7- Digital Fundamentals

Figure 6. Overview of DPBoK Structure

46 The Open Group Standard (2020-01-06)

Chapter 5. Structure of the Body of Knowledge 5.3. Context Summaries

Brief summaries of the four levels follow.
Context I: Individual/Founder

The Individual/Founder context represents the bare minimum requirements of delivering digital
value. The governing thought experiment is that of one or two founders of a startup, or an R&D team
with high autonomy (e.g.,"skunkworks") in a larger organization. What are the minimum essential
concerns they must address to develop and sustain a basic digital product?

Proposed capabilities include:

* Conception of digital value

* Digital infrastructure and related practices; this topic will likely be the most susceptible to the
problem of keeping up with the fast pace of technology evolution

» Agile development and continuous delivery practices
The startup thought experiment should be relevant for individuals in organizations of all sizes. The
guidance is not intended for entrepreneurs specifically. Rather, the startup is a powerful frame for

all Digital Practitioners, as it represents an environment where there can be no distinctions
between "business" and "IT" concerns.

Context II: Team

The collaboration level represents the critical team-level experience. Establishing team collaboration
as a fundamental guiding value is essential to successful digital product development. The insights of
the Agile movement and related themes such as Lean are primary in this context. Competency Areas
include:

* Product management

* Work execution

* Operations
Context III: Team of Teams

The thought experiment here is the "team of teams" (a term borrowed from the title of a well-known
book by General Stanley S. McChrystal [192]). Coordinating across the "team of teams" is a hard
problem. Too often, coordination mechanisms (such as overly process-centric operating models)
degrade team cohesion and performance. The Agile movement can be seen in part as a reaction to this
problem. There is a significant opportunity to compile industry guidance on this topic. Competency
Areas are focused on the required capabilities to ensure alignment and joint execution:

* Coordination mechanisms (including process management and ITSM)
* Investment and sourcing (including project management)

* Organization and cultural factors

Digital Practitioner Body of Knowledge™ Standard 47

5.3. Context Summaries Chapter 5. Structure of the Body of Knowledge

Context IV: Enduring Enterprise

The thought experiment here is "the growing enterprise” and the establishment of additional feedback
mechanisms for steering, managing risk, and assuring performance at scale and over increasing time

horizons and increasingly complex ecosystems:
* Governance, risk, security, and compliance
* Information management

* Architecture and portfolio management

48 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

Chapter 6. The Body of Knowledge

6.1. Context I: Individual/Founder
This is the introduction to Context I.
Context Description

The founder or individual context represents the bare minimum requirements of delivering digital
value. The governing thought experiment is that of one or two founders of a startup, or an R&D team
with high autonomy. What are the minimum essential concerns they must address to develop and
sustain a product in a digital environment? There is little or no concern for process or method.
Approaches and practices are opportunistic and tactical, driven by technical choices such as
programming language, delivery pipeline, and target execution platform.

In this context, the guidance must strike a fine balance between being too applied and technical, versus
being too abstract and theoretical. In the interest of not becoming outdated, much existing guidance
opts for the latter, seeking to provide generic guidance applicable to all forms of technology. However,
this approach encounters issues in topics such as Configuration Management, which is challenging to
abstract from platform and technology particulars. There is no definitive solution to this problem, but
the DPBoK Standard in general should be somewhat more tolerant of real-world examples reflecting
actual digital systems practices, while not becoming overly coupled to particular languages, tools, or
frameworks. Being technology-agnostic ultimately may not be possible.

6.1.1. Digital Fundamentals

There are many ways in which digital systems deliver value. Some systems serve as the modern
equivalent of file cabinets: massive and secure storage for financial transactions, insurance records,
medical records, and the like. Other systems enable the transmission of information around the globe,
whether as emails, web pages, voice calls, video on-demand, or data to be displayed in a smartphone
application (app). Some of these systems support engaged online communities and social interactions
with conversations, media sharing, and even massive online gaming ecosystems. Yet other systems
enable penetrating analysis and insight by examining the volumes of data contained in the first two
kinds of systems for patterns and trends. Sophisticated statistical techniques and cutting-edge
approaches like neural network-based machine learning increase the insights of which our digital
systems are capable, at a seemingly exponential rate.

Digital technology generates value in both direct and indirect ways. Some of the best known uses of
digital technology were and are very indirect — for example, banks and insurance agencies using the
earliest computers to automate the work of thousands of typists and file clerks. More directly, people
have long consumed (and paid for) communication services, such as telephone services. Broadcast
entertainment was a different proposition, however. The consumer (the person with the radio or
television) was not the customer (the person paying for the programming to go out over the airwaves).
New business models sprung up to support the new media through the sale of advertising air time. In
other words, the value proposition was indirect, or at least took multiple parties to achieve: the

Digital Practitioner Body of Knowledge™ Standard 49

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

listener, the broadcaster, and the advertiser. This model, originating in the analog era, has carried
through into the digital economy.

From these early business models have evolved and blossomed myriads of creative applications of
digital technology for the benefit of human beings in their ongoing pursuit of happiness and security.
Digital and IT pervades all of the major industry verticals (e.g., manufacturing, agriculture, finance,
retail, healthcare, transportation, services) and common industry functions (e.g., supply chain, human
resources, corporate finance, and even IT itself). Digital systems and technologies also are critical
components of larger-scale industrial, military, and aerospace systems. For better or worse, general-
purpose computers are increasingly found controlling safety-critical infrastructure and serving as an
intermediating layer between human actions and machine response. Robotic systems are based on
software, and the IoT ultimately will span billions of sensors and controllers in interconnected webs
monitoring and adjusting all forms of complex operations across the planet.

6.1.1.1. Digital Context

Description

6.1.1.1.1. Positioning Digital Products

Digital services can be:

* Directly market and consumer-facing (e.g., Facebook®, LinkedIn®), to be used by external
consumers and paid for by either them or closely associated customers (e.g., Netflix®, or an online
banking system)

* Customer “supporting” systems, such as the online system that a bank teller uses when interacting
with a customer; customers do not interact directly with such systems, but customer-facing
representatives do, and problems with such systems may be readily apparent to the end customer

» Completely “back-office” systems (human resources, payroll, marketing, etc.)

Note, however, that (especially in the current digitally transforming market) a service previously
thought of as “back office” (wWhen run internally) becomes “market-facing” when developed as a profit-
seeking offering. For example, a human resources system built internally is “back office”, but Workday
is a directly market-facing product, even though the two services may be similar in functionality.

In positioning a digital offering, one must consider the likelihood of its being adopted. Is it part of a
broader “movement” of technological innovation? Where is the customer base in terms of its
willingness to adopt the innovation? A well-known approach is the idea of "diffusion theory”, first
researched by Everett Rogers and proposed in his Diffusion of Innovations, [236].

Rogers' research proposed the idea of “Adopter Categorization on the Basis of Innovativeness”, with a
well-known graphic (see Figure 7, “Technology Adoption Categories (Rogers)”, similar to [236] Figure 7-
3, p.281).

50 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

Figure 7. Technology Adoption Categories (Rogers)
Rogers went on to characterize the various stages:

e Innovators: venturesome risk-takers

Early adopters: opinion leaders
» Early majority: deliberative, numerous
* Late majority: skeptical, also numerous

» Laggards: traditional, isolated, conservative

Steve Blank, in The Four Steps to Epiphany [36], argues there are four categories for startups (p.31):

Startups that are entering an existing market

Startups that are creating an entirely new market
 Startups that want to re-segment an existing market as a low-cost entrant

« Startups that want to re-segment an existing market as a niche player

Understanding which category you are attempting is critical, because “the four types of startups have
very different rates of customer adoption and acceptance”.

Another related and well-known categorization of competitive strategies comes from Michael Treacy
and Fred Wiersma [287]:

* Customer intimacy
* Product leadership

* Operational excellence

It is not difficult to categorize well-known brands in this way:

Digital Practitioner Body of Knowledge™ Standard 51

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

Table 1. Companies and their Competitive Strategies

Customer Intimacy Product Leadership Operational Excellence
Nordstrom Apple Dell Technologies
Home Depot Nike Wal-Mart

However, deciding which strategy to pursue as a startup may require some experimentation.

6.1.1.1.2. Defining Consumer, Customer, and Sponsor

In understanding IT value, it is essential to clarify the definitions of user, customer, and sponsor, and
understand their perspectives and motivations. Sometimes, the user is the customer. But more often,
the user and the customer are different, and the role of system or service sponsor may additionally
need to be distinguished.

The following definitions may help:
* The consumer (sometimes called the user) is the person actually interacting with the IT or digital
service

* The customer is a source of revenue for the service

o If the service is part of a profit center, the customer is the person actually purchasing the
product (e.g., demand deposit banking). If the service is part of a cost center (e.g., a human
resources system), the customer is best seen as an internal executive, as the actual revenue-
producing customers are too far removed.

* The sponsor is the person who authorizes and controls the funding used to construct and operate
the service

Depending on the service type, these roles can be filled by the same or different people. Here are some
examples:

52 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

Table 2. Defining Consumer, Customer, and Sponsor
Example Consumer Customer Sponsor Notes

Online banking Bank account holder Managing Director, Customer-facing
consumer banking profit center with
critical digital

component

Online restaurant Restaurant Restaurant owners Product owner Profit-making
reservation customers digital product
application
Enterprise human Human resources Vice-president, human resources Cost center funded
resources analyst through corporate
application profits
Online video End video Streaming account Streaming video Profit-making
streaming service consumer (e.g., any holder (e.g., product owner digital product

family member) parent)
Social traffic Driver Advertiser, data Product owner Profit-making
application consumer digital product

So, who paid for the user’s enjoyment? The bank and restaurant both had clear motivation for
supporting a better online experience, and people now expect that service organizations provide this.
The bank experiences less customer turnover and increased likelihood that customers add additional
services. The restaurant sees increased traffic and smoother flow from more efficient reservations.
Both see increased competitiveness.

The traffic application is a somewhat different story. While it is an engineering marvel, there is still
some question as to how to fund it long term. It requires a large user base to operate, and yet end
consumers of the service are unlikely to pay for it. At this writing, the service draws on advertising
dollars from businesses wishing to advertise to passersby, and also sells its real-time data on traffic
patterns to a variety of customers, such as developers considering investments along given routes.

This last example illustrates the maxim (attributed to media theorist and writer Douglas Rushkoff [
265]) that “if you don’t know how the product is making money, you are the product”.

Evidence of Notability

The context for the existence and operation of a digital system is fundamental to its existence; the
digital system in fact typically operates as part of a larger sociotechnical system. The cybernetics
literature [301, 25] provides theoretical grounding. The IT Service Management (ITSM) literature is also
concerned with the context for IT services, in terms of the desired outcomes they provide to end
consumers [282].

Digital Practitioner Body of Knowledge™ Standard 53

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge
Limitations

Understanding a product context is important; however, there is feedback between a product and its
context, so no amount of initial analysis will be able to accurately predict the ultimate outcome of
fielding a given digital product (internally or externally). A concrete example is the concept of a
network effect, in which a product becomes more valuable due to the size of its user base [117].

Related Topics

* Product Management
» Portfolio and Investment Management
* Governance

* Enterprise Architecture

6.1.1.2. Digital Value Methods

This topic is covered in further depth in Context II, when product management
NOTE emerges as a fully formalized capability. However, even in the individual context the
practitioner should have some idea of product positioning and discovery.

Description

Once context is at least initially understood, there are a number of well-known approaches that can
help the practitioner bridge from an understanding of your product context, to an effective vision for
building and sustaining a product:

» Traditional business case analysis

* Alexander Osterwalder’s Business Model Canvas

 Eric Ries' Lean Startup
The Business Model Canvas and the Lean Startup may seem more suitable for truly entrepreneurial

contexts, but there are many practitioners in larger organizations who apply these techniques as well;
the thought experiment is "business within a business"; i.e., intrapreneurship [162].

6.1.1.2.1. Business Model Canvas

One recent book that has been influential among entrepreneurs is Alex Osterwalder’s Business Model
Generation [215]. This document is perhaps best known for introducing the concept of the Business
Model Canvas, which it defines as: “a shared language for describing, visualizing, assessing, and
changing business models”. The Business Model Canvas uses nine major categories to describe the
business model:

* Key Partners

* Key Activities

54 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge

Value Proposition

* Customer Relationships

Key Resources

Channels

¢ Cost Structure

Customer Segments

Revenue Streams

6.1. Context I: Individual/Founder

and suggests they be visualized as in Figure 8, “Business Model Canvas” (similar to [215], p.44).

Key Key Value Customer Customer
Partners Activities Proposition Relationships | Segments
Key Channels

Resources
Cost Revenhue
Structure Streams

Figure 8. Business Model Canvas

The canvas is then used in collaborative planning; e.g., as a large format wall poster where the
business team can brainstorm, discuss, and fill in the boxes (e.g., what is the main “Value Proposition"?
Mobile bank account access?).

Osterwalder and his colleagues, in Business Model Generation and the follow-up Value Proposition
Design [216], suggest a wide variety of imaginative and creative approaches to developing business
models and value propositions, in terms of patterns, processes, design approaches, and overall

strategy.

6.1.1.2.2. Business Case Analysis

There are a wide variety of analysis techniques for making a business case at a more detailed level.
Donald Reifer, in Making the Software Business Case [228], lists:

Digital Practitioner Body of Knowledge™ Standard

55

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

* Breakeven analysis

* Cause-and-effect analysis

* Cost/benefit analysis

» Value chain analysis

* Investment opportunity analysis

* Pareto analysis

* Payback analysis

 Sensitivity analysis

* Trend analysis
Empirical, experimental approaches are essential to digital management. Any analysis, carried to an
extreme without a sound basis in real data, risks becoming a “castle in the air”. But when real money
is on the line (even the opportunity costs of the time you are spending on your startup), it is advisable
to look at the decision from various perspectives. These techniques can be useful for that purpose.

However, once you have some indication there might be business value in a given idea, applying Lean
Startup techniques may be more valuable than continuing to analyze.

6.1.1.2.3. Lean Startup

[Initial

version is ~

termed Develop hypothesis

“Minimum (strategy, approach,

Viable solution)
\ Product” l —
Build product to test U”g"":’/bf result
: ivots/change
hypothesis et

Favorable result
Persevere,
develop &

optimize

Learning result

Figure 9. Lean Startup Flowchart

56 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

Lean Startup is a philosophy of entrepreneurship developed by Eric Ries [232]. It is not specific to IT;
rather, it is broadly applicable to all attempts to understand a product and its market. (According to
our definition of product management a workable market position is essential to any product.)

The idea of the Lean Startup has had profound influence on product design, including market-facing
and even internal IT systems. It is grounded in Agile concepts such as:

“Do the simplest thing that could possibly work.”

Lean Startup calls for an iterative, “Build-Measure-Learn” cycle (see Figure 9, “Lean Startup
Flowchart”, summary of ideas in [232]). Repeating this cycle frequently is the essential process of
building a successful startup (whatever the digital proportion):

* Develop an idea for a "Minimum Viable Product" MVP

¢ Measure its effectiveness in the market (internal/external)

* Learn from the experiment

Decide to persevere or pivot (change direction while leveraging momentum)

* New idea development, evolution of MVP

Flowcharts such as Figure 9, “Lean Startup Flowchart” are often seen to describe the Lean Startup
process.

6.1.1.2.4. Digital Security

A Digital Practitioner often starts by thinking about value creation through their digital products or
services. However, now is also the time to think about protecting that digital value. Your customers will
be sharing data about themselves, their preferences, and even financial information; e.g., credit cards
to make purchases. Failure to protect that data can irreparably damage any other digital value you
manage to create; it will certainly damage your or your organization’s reputation, and may have
financial consequences.

Architects of buildings need to appreciate that the physical materials that will implement their
creations need to be strong enough to produce the envisioned construct. Similarly, a Digital
Practitioner needs to understand that software can be weak and they need to appreciated how to
examine the software artifacts for the precursors of those weaknesses that would threaten the
operational capabilities and integrity of their envisioned constructs.

Attack surface analysis, design reviews for security weaknesses, static source code analysis for
weaknesses, dynamic fuzz testing, adversary-based pen testing, and binary analysis are all techniques
used to gain confidence that dangerous failure modes of the software-based system are not rampant
and that some evidence-based argument can be made about the adequacy of the rigor used to create
the software.

In the building of buildings, this is done by the engineering elements of a team, along with building
code inspectors and material scientists, but the analogous activities are not the norm in software

Digital Practitioner Body of Knowledge™ Standard 57

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

systems. So, as you go through both the analysis and description phase and the construction phase,
keep in mind that that all software has strengths and weaknesses and needs to be checked for
weaknesses that would impact the intended functionality, reasoning, and logic. See the [Common
Weakness Enumeration (Mitre)] for examples of weaknesses with security, performance, reliability,
and maintainability consequences.

As software-enabled elements become more entwined in our physical lives, both at work and not,
there needs to be attention paid to this line of thinking in the education of the software-based systems
work force.

A deeper treatment of this subject can be found in the later chapter on Security and in The Open Group
Guide to Integrating Risk and Security Within a TOGAF® Enterprise Architecture.

Evidence of Notability

The complex process of discovering and supporting digital value is covered in industry work on Digital
Transformation [298, 81]. It is also addressed as an important sub-topic within the product
management literature, especially at its intersection with Agile. Product management is a large and
growing professional community, with a major professional organization (the Product Development
and Marketing Association) and many less formalized meetings and groups. It has a correspondingly
rich body of professional literature [36, 53, 114]. Product management is also a major topic at Agile
conferences.

Limitations

Some digital efforts are more instrumental, and provide value in the same way that a cog provides
value to a machine. They have little independence. Discussions of value imply greater autonomy to act
on the analysis. Business case analysis would rarely be applied in the engineering of a small
component; similarly, business case analysis makes less sense with digital systems whose existence is
required by a larger whole. It is at the level of that larger whole that value analysis should take place.

Related Topics

* Product Management
» Portfolio and Investment Management
e Governance

e Architecture

58 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder
6.1.1.3. The Digital Stack

Description

6.1.1.3.1. The Moment of Truth

Any human-facing digital service can be seen as delivering a “moment of truth”. In terms of digital
systems, this English-language cliche (elaborated into an important service concept by SAS group
president Jan Carlzon [55]) represents the user’s outcome, their experience of value. All discussions of
digital value should either start or end there.

In order to view a bank balance, a user may use an application downloaded from a “store” of
applications made available to her device. On her device, this “app” is part of an intricate set of
components performing functions such as:

* Accepting “input” (user intent) through a screen or voice input

* Processing that input through software and acting on her desire to see her bank balance

* Connecting to the phone network

» Securely connecting over the mobile carrier network to the Internet and then to the bank

* Identifying the user to the bank’s systems

* Requesting the necessary information (in this case, an account balance)

* Receiving that information and converting it to a form that can be represented on a screen

* Finally, displaying the information on the screen
The application, or “app”, downloaded to the phone plays a primary role, but is enabled by:

* The phone’s Operating System (OS) and associated services
* The phone’s hardware
* The telecommunications infrastructure (cell phone towers, long distance fiber optic cables,

switching offices, and much more)

Of course, without the banking systems on the other end, there is no bank balance to transmit. These
systems are similar, but on a much larger scale than the end user’s device:
* Internet and middleware services to receive the request from the international network

* Application services to validate the user’s identity and route the request to the appropriate
handling service

* Data services to store the user’s banking information (account identity and transactions) along with
millions of other customers

* Many additional services to detect fraud and security attacks, report on utilization, identify any
errors in the systems, and much more

* Physical data centers full of computers and associated hardware including massive power and

Digital Practitioner Body of Knowledge™ Standard 59

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

cooling infrastructure, and protected by security systems and personnel

Consider: what does all this mean to the user? Does she care about cell phone towers, or middleware,
or triply redundant industrial-strength Power Distribution Units ? Usually, not in the least. Therefore,
as we study this world, we need to maintain awareness of her perspective. The user is seeking some
value that digital technology uniquely can enable, but does not want to consider all the complexity that
goes into it. She just wants to go out with friends. The moment of truth (see Figure 10, “The Digital
Stack Supports the Moment of Truth”) depends on the service; the service may contain great
complexity, but part of its success lies in shielding the user from that complexity.

6.1.1.3.2. Stack Examples

QuBWOLY)

yanaa 40

Edge
devicess
services

Applications

\ Middleware (-

Compute,
storage,
networking

Racks, cabling

Communication
lines and radio
waves

Fhysical

security Mechanical,

electrical, and
plant

Digital Stack

Figure 10. The Digital Stack Supports the Moment of Truth

The outcome of a digital service (e.g., an account balance lookup for an online banking application) is
supported by a complex, layered structure of technology. For example, a simple systems architecture
might be represented in layers as:

60 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

» User interface

* Middleware/business logic

* Data management

* OS

* Network
Architecture also uses a layered method, but in a different way that is more abstracted from the
particular and concrete to the conceptual; for example:

* Business process architecture

* Information architecture

* Application architecture

e Technical architecture
Evidence of Notability

The use of layered abstractions in digital systems engineering is well established. Such abstractions
may be highly technical, such as the OSI stack describing layered networking protocols [154], or more
conceptual, such as the Zachman Framework [313].

Limitations

Sometimes, organizations attempt to structure themselves around the stack, with separate functional
units for user interface, middleware, data management, network, and so forth. This approach may
result in monolithic, hard to change systems. See Conway’s Law.

Related Topics

* Infrastructure Management
» Application Development
* Product Management

* Operations Management

Architecture

Digital Practitioner Body of Knowledge™ Standard 61

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

6.1.1.4. The Digital Lifecycle

6.1.1.4.1. The Essential States of the Digital Product

Description
Consume
Provision

2

¢ S Support
S

g3

5= o

Change
Restore
Construct

Digital
Service

Fund Retire
Improve

ldea

Figure 11. The Essential States of the Digital Product

The digital or IT service is based on a complex stack of technology, from local devices to global
networks to massive data centers. Software and hardware are layered together in endlessly inventive
ways to solve problems people did not even know they had ten years ago. However, these IT service
systems must come from somewhere. They must be designed, built, and operated, and continually
improved over time. A simple representation of the IT service lifecycle is:

* An idea is developed for an IT-enabled value proposition that can make a profit, or better fulfill a
mission

» The idea must garner support and resources so that it can be built

* The idea is then constructed, at least as an initial proof of concept or MVP (construction is assumed
to include an element of design; in this document, design and construction are not represented as

two large-scale separate phases; the activities may be distinct, but are conducted within a context
of faster design-build iterations)

» There is a critical state transition, however, that will always exist; initially, it is the change from
OFF to ON when the system is first constructed - after the system is ON, there are still distinct
changes in state when new features are deployed, or incorrect behaviors ("bugs" or "defects") are

62 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

rectified

* The system may be ON, but it is not delivering value until the user can access it; sometimes, that
may be as simple as providing someone with a network address, but usually there is some initial
"provisioning" of system access to the user, who needs to identify themselves

* The system can then deliver services (moments of truth) to the end users; it may deliver millions or
billions of such experiences, depending on its scale and how to count the subjective concept of
value experience

» The user may have access, but may still not receive value, if they do not understand the system well
enough to use it; whether via a formal service desk, or informal social media channels, users of IT
services will require and seek support on how to maximize the value they are receiving from the
system

* Sometimes, something is wrong with the system itself; if the system is no longer delivering value
experiences (bank balances, restaurant reservations, traffic directions) then some action must be
taken promptly to restore service

 All of the previous states in the lifecycle generate data and insight that lead to further evolution of
the system; there is a wide variety of ways systems may evolve: new user functionality, more stable
technology, increased system capacity, and more - such motivations result in new construction and
changes to the existing system, and so the cycle begins again

Unless ... the system’s time is at an end; if there is no reason for the system to exist any longer, it
should be retired

The digital service/product evolves over time, through many repetitions ("iterations") of the
improvement cycle. An expanding spiral is a useful visualization:

7 '?;'z‘

> X

yaniz jo
qusLIoLy

d
22iA43 G jparbiq

321A42G |01kl

o
VI ¥
g i; i Digital
= m 2
ldea & 3 :)
g s Service Retire

Evolution over time >

Figure 12. The Digital Service Lifecycle

This entire process, from idea to decommissioning (“inspire to retire”) can be understood as the service
lifecycle (see Figure 12, “The Digital Service Lifecycle”). Sometimes, the service lifecycle is simplified as
"plan, build, run"; however, this can lead to the assumption that only one iteration is required, which is

Digital Practitioner Body of Knowledge™ Standard 63

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

in general incorrect in digital systems. Multiple iterations should be assumed as the product is fine-
tuned and evolves to meet changing demand.

We can combine the service experience (moment of truth) with the service/product lifecycle into the
“dual-axis value chain” (originally presented in [32]):

Product Lifecycle

} User Experience >

Figure 13. Dual-Axis Value Chain

The dual-axis value chain can be seen in many representations of IT and digital delivery systems.
Product evolution flows from right to left, while day-to-day value flows up, through the technical stack.
It provides a basis for (among other things) thinking about the IT user, customer, and sponsor, which
we will cover in the next section.

6.1.1.4.2. The Three Ways of DevOps

DevOps is discussed in depth later in this document. At this point, however, as originally conceived in
The Phoenix Project [165], there are three core DevOps principles applicable at the earliest stages of the
digital product:

* Flow (the "First Way")
» Feedback (the "Second Way")

* Continuous Learning (the "Third Way")

DevOps emphasizes speeding up the flow of value in the product lifecycle (left to right), and the
feedback of learning (right to left) "at all stages of the value stream". When this is done consistently at
scale over time, DevOps advocates argue that the result is a: "generative, high-trust culture that
supports a dynamic, disciplined, and scientific approach to experimentation and risk-taking,
facilitating the creation of organizational learning, both from our successes and failures. Furthermore,
by continually shortening and amplifying our feedback loops, we create ever-safer systems of work
and are better able to take risks and perform experiments that help us learn faster than our
competition and win in the marketplace.” [166 p. 12].

64 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

Limitations

The limitations of relying on a lifecycle model as a basis for systems implementation are by now well
known. Attempting to fully understand a system’s "requirements"” prior to any development can lead to
project failure, and deferring integration of sub-modules until late in a project also is risky. See Agile
canon for further discussion (e.g., [250, 220, 230, 68]). Nevertheless, the concept of the lifecycle remains
a useful model; these state transitions exist and drive organizational behavior.

Evidence of Notability

The evidence for this topic’s importance is seen across much guidance for software and systems
professionals. Examples include the original statement of "waterfall" development [241], the
overlapping phases of the Rational Unified Process [227], the ITIL Service Lifecycle’s
"strategy/design/transition/operate/improve,” [282], the clear reach and influence of the DevOps
movement, and many more.

Related Topics

» Application Development
* Product Management
* Work Management

» Operations Management

6.1.2. Digital Infrastructure

Area Description

A Digital Practitioner cannot start developing a product until deciding what it will be built with. They
also need to understand something of how computers are operated, enough to make decisions on how
the system will run. Most startups choose to run IT services on infrastructure owned by a cloud
computing provider, but there are other options. As the product scales up, the practitioner will need to
be more and more sophisticated in their understanding of its underlying IT services. Finally,
developing deep skills in configuring the base platform is one of the most important capabilities for the
practitioner.

6.1.2.1. Computing and Information Principles
Description

“Information Technology” (IT) is ultimately based on the work of Claude Shannon, Alan Turing, Alonzo
Church, John von Neumann, and the other pioneers who defined the central problems of information
theory, digital logic, computability, and computer architecture.

Pragmatically, there are three major physical aspects to “IT infrastructure” relevant to the practitioner:

* Computing cycles (sometimes called just “compute”)

Digital Practitioner Body of Knowledge™ Standard 65

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

* Memory and storage (or “storage”)

* Networking and communications (or “network”)

6.1.2.1.1. Compute

Compute is the resource that performs the rapid, clock-driven digital logic that transforms data inputs
to outputs.

Software is the thing that structures the logic and reasoning of the “compute” and allows for the
dynamic use of inputs to vary the output following the logic and reasoning laid down by the software
developer. While the computers process instructions at the level of “true” and “false”, represented as
binary “1s” and “0s”, because humans cannot easily understand binary data and processing, higher-
level abstractions of machine code and programming languages are used.

It is critical to understand that computers, traditionally understood, can only operate in precise,
"either-or" ways. Computers are often used to automate business processes, but in order to do so, the
process needs to be carefully defined, with no ambiguity. Complications and nuances, intuitive
understandings, judgment calls — in general, computers can’t do any of this, unless and until you
program them to — at which point the logic is no longer intuitive or a judgment call.

Creating programs for a specific functionality is challenging in two different ways:

* Understanding the desired functionality, logic, and reasoning of the intended program takes skill as
does the implementation of that reasoning into software and requires much testing and validation

* The software programming languages, designs, and methods used can be flawed and unable to
withstand the intended volume of data, user interactions, malicious inputs, or careless inputs, and
testing for these must also be done, known as abuse "case testing"

Computer processing is not free. Moving data from one point to another — the fundamental
transmission of information — requires matter and energy, and is bound up in physical reality and the
laws of thermodynamics. The same applies for changing the state of data, which usually involves
moving it somewhere, operating on it, and returning it to its original location. In the real world, even
running the simplest calculation has physical and therefore economic cost, and so we must pay for
computing.

6.1.2.1.2. Storage

Storage is the act of computation that is bound up with the concept of state, but they are also distinct.
Computation is a process; state is a condition. Many technologies have been used for digital storage [
71]. Increasingly, the IT professional need not be concerned with the physical infrastructure used for
storing data. Storage increasingly is experienced as a virtual resource, accessed through executing
programmed logic on cloud platforms. “Underneath the covers” the cloud provider might be using
various forms of storage, from Random Access Memory (RAM) to solid state drives to tapes, but the end
user is, ideally, shielded from the implementation details (part of the definition of a service).

In general, storage follows a hierarchy. Just as we might “store” a document by holding it in our hands,

66 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

setting it on a desktop, filing it in a cabinet, or archiving it in a banker’s box in an offsite warehouse, so
computer storage also has different levels of speed and accessibility:

* On-chip registers and cache

* Random Access Memory (RAM), aka “main memory”

* Online mass storage, often “disk”

» Offline mass storage; e.g., “tape”

6.1.2.1.3. Networking

With a computing process, one can change the state of some data, store it, or move it. The last is the
basic concern of networking, to transmit data (or information) from one location to another. We see
evidence of networking every day; coaxial cables for cable TV, or telephone lines strung from pole to
pole in many areas. However, like storage, there is also a hierarchy of networking:

¢ Intra-chip pathways

* Motherboard and backplane circuits

» Local area networks

* Wide area networks

* Backbone networks
Like storage and compute, networking as a service increasingly is independent of implementation. The

developer uses programmatic tools to define expected information transmission, and (ideally) need not
be concerned with the specific networking technologies or architectures serving their needs.

Evidence of Notability

* Body of computer science and information theory (Church/Turing/Shannon et al.)

 Basic IT curricula guidance and textbooks
Limitations

* Quantum computing

* Computing where mechanisms become opaque (e.g., neural nets) and therefore appear to be non-
deterministic

Related Topics

* Infrastructure Management
* Application Development

» Operations Management

Digital Practitioner Body of Knowledge™ Standard 67

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

6.1.2.2. Virtualization

6.1.2.2.1. Virtualization Basics

Description

Assume a simple, physical computer such as a laptop. When the laptop is first turned on, the OS loads;
the OS is itself software, but is able to directly control the computer’s physical resources: its Central
Processing Unit (CPU), memory, screen, and any interfaces such as WiFi, USB, and Bluetooth. The OS (in
a traditional approach) then is used to run “applications” such as web browsers, media players, word
processors, spreadsheets, and the like. Many such programs can also be run as applications within the
browser, but the browser still needs to be run as an application.

o= ™~
= =B
= B

Figure 14. Virtualization is Computers within a Computer

In the simplest form of virtualization, a specialized application known as a hypervisor is loaded like
any other application. The purpose of this hypervisor is to emulate the hardware computer in
software. Once the hypervisor is running, it can emulate any number of “virtual” computers, each of
which can have its own OS (see Figure 14, “Virtualization is Computers within a Computer”). The
hypervisor mediates the "virtual machine" access to the actual, physical hardware of the laptop; the
virtual machine can take input from the USB port, and output to the Bluetooth interface, just like the
master OS that launched when the laptop was turned on.

There are two different kinds of hypervisors. The example we just discussed was an example of a Type
2 hypervisor, which runs on top of a host OS. In a Type 1 hypervisor, a master host OS is not used; the
hypervisor runs on the “bare metal” of the computer and in turn “hosts” multiple virtual machines.

Paravirtualization, e.g., containers, is another form of virtualization found in the marketplace. In a
paravirtualized environment, a core OS is able to abstract hardware resources for multiple virtual
guest environments without having to virtualize hardware for each guest. The benefit of this type of
virtualization is increased Input/Output (I/O) efficiency and performance for each of the guest
environments.

However, while hypervisors can support a diverse array of virtual machines with different OSs on a
single computing node, guest environments in a paravirtualized system generally share a single OS.
See Figure 15, “Virtualization Types” for an overview of all the types.

68 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

6.1.2.2.2. Virtualization and Efficiency

No virtualization Type 7 (no O5) Type 2 Containers
() h
D L Qo D) L Q. [N
cl<]< o] < <
sl s ol s Guest Guest -Conta.r'ner C.;on;‘:afner'
o< <)< 0S 0S . '
Shared libraries
oo s Guest Guest 7 . .
<l<]< 05 05 1 gpervisor Docker engine
Host 05 Hypervisor Host 05 Host 05
F
Hardware Hardware Hardware Hardware

Figure 15. Virtualization Types

Virtualization attracted business attention as a means to consolidate computing workloads. For years,
companies would purchase servers to run applications of various sizes, and in many cases the
computers were badly underutilized. Because of configuration issues and (arguably) an
overabundance of caution, average utilization in a pre-virtualization data center might average 10-
20%. That’s up to 90% of the computer’s capacity being wasted (see Figure 16, “Inefficient Utilization”).

[[R

Excess

F
Utilization tlorkload ﬁ] Workload E

40% 35% 20% 10% 207%

5 physical servers at 320,000 = $700,000
Capacity pool as a whole is 25% utilized
= 375,000 excess capacity

Workload € | ¥ iorkioad D| | Werklead E

Figure 16. Inefficient Utilization

The above figure is a simplification. Computing and storage infrastructure supporting each application
stack in the business were sized to support each workload. For example, a payroll server might run on
a different infrastructure configuration than a Data Warehouse (DW) server. Large enterprises needed

to support hundreds of different infrastructure configurations, increasing maintenance and support
costs.

The adoption of virtualization allowed businesses to compress multiple application workloads onto a
smaller number of physical servers (see Figure 17, “Efficiency through Virtualization”).

Digital Practitioner Body of Knowledge™ Standard 69

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

Excess

Workload E

orkload D
Workload €
Utilization

Workload E

Workload A

7 physical server at $40,000
with virtualized workloads
Capacity 62-5% utilized
= 375,000 excess capacity

Figure 17. Efficiency through Virtualization

NOTE For illustration only. A utilization of 62.5% might actually be a bit too high for comfort,
depending on the variability and criticality of the workloads.

In most virtualized architectures, the physical servers supporting workloads share a consistent

configuration, which makes it easy to add and remove resources from the environment. The virtual

machines may still vary greatly in configuration, but the fact of virtualization makes managing that

easier — the virtual machines can be easily copied and moved, and increasingly can be defined as a

form of code.

Virtualization thus introduced a new design pattern into the enterprise where computing and storage
infrastructure became commoditized building blocks supporting an ever-increasing array of services.
But what about where the application is large and virtualization is mostly overhead? Virtualization
still may make sense in terms of management consistency and ease of system recovery.

6.1.2.2.3. Container Management and Kubernetes

Containers (paravirtualization) have emerged as a powerful and convenient technology for managing
various workloads. Architectures based on containers running in Cloud platforms, with strong API
provisioning and integrated support for load balancing and autoscaling, are called "cloud-native". The
perceived need for a standardized control plane for containers resulted in various initiatives in the
2010s: Docker Swarm, Apache Mesos®, and (emerging as the de facto standard), the Cloud Native
Computing Foundation’s Kubernetes.

70 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

Kubernetes is an open source orchestration platform based on the following primitives (see Figure 18,

“Kubernetes Infrastructure, Pods, and Services”):

* Pods: group containers
» Services: a set of pods supporting a common set of functionality

* Volumes: define persistent storage coupled to the lifetime of pods (therefore lasting across
container lifetimes, which can be quite brief)

* Namespaces: in Kubernetes (as in computing generally) provide mutually-exclusive labeling to

Kubernetes node \

Service

partition resources

Pod) Pod
L L L L_1 L .
LA L] 1] L] L] L]
=l =] = s ||l || =
x L] x x L] x
Ea] 43 Ea] B 43 B
g g g g g g
Lw] Ls] L] L] Ls] L]
J I J “J “J “J

[r—— ——— —
0S5 + Docker 0S5 + Docker 0S5 + Docker

Hardware Hardware Hardware

i _—

Figure 18. Kubernetes Infrastructure, Pods, and Services

Kubernetes management (see Figure 19, “Kubernetes Cluster Architecture”) is performed via a Master
controller which supervisees the nodes. This consists of:

» API server: the primary communication point for provisioning and control requests

* Controller manager: implements declarative functionality, in which the state of the cluster is
managed against policies; the controller seeks to continually converge the actual state of the cluster
with the intended (policy-specified) state (see Imperative and Declarative)

» Scheduler: manages the supply of computing resources to the stated (policy-drive) demand

The nodes run:

Digital Practitioner Body of Knowledge™ Standard 71

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

» Kubelet for managing nodes and containers

» Kube-proxy for services and traffic management

Much other additional functionality is available and under development; the Kubernetes ecosystem as
of 2019 is growing rapidly.

sers

Q

Developers ~~

Controller Manager J
— (PP Servr
. Scheduler]

- etcd
jJ

r—_/ =)
— 1

Kubernetes node l) Kubernetes hode l

. Y
Kubelet Kube-mey] Kubelet E(ube' Proxy

Pod | Pod [7 Pod J Pod Pod Pod
» |
_J

Figure 19. Kubernetes Cluster Architecture

Graphics similar to those presented in [305+]+.
Competency Category "Virtualization" Example Competencies

¢ Install and configure a virtual machine

* Configure several virtual machines to communicate with each other
Evidence of Notability

Virtualization was predicted in the earliest theories that led to the development of computers. Turing
and Church realized that any general-purpose computer could emulate any other. Virtual systems have
existed in some form since at latest 1967 — only 20 years after the first fully functional computers.

Virtualization is discussed extensively in core computer science and engineering texts and is an
essential foundation of cloud computing.

The Cloud-Native community is at this writing (2019) one of the most active communities in

72 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder
computing.

Limitations

Virtualization is mainly relevant to production computing. It is less relevant to edge devices.

Related Topics

* Computing
* Infrastructure Management

* Cloud Computing

6.1.2.3. Cloud Services

Description

Companies have always sought alternatives to owning their own computers. There is a long tradition
of managed services, where applications are built out by a customer and then their management is
outsourced to a third party. Using fractions of mainframe “time-sharing” systems is a practice that
dates back decades. However, such relationships took effort to set up and manage, and might even
require bringing physical tapes to the third party (sometimes called a “service bureau”). Fixed-price
commitments were usually high (the customer had to guarantee to spend X dollars). Such relationships
left much to be desired in terms of responsiveness to change.

As computers became cheaper, companies increasingly acquired their own data centers, investing
large amounts of capital in high-technology spaces with extensive power and cooling infrastructure.
This was the trend through the late 1980s to about 2010, when cloud computing started to provide a
realistic alternative with true “pay as you go” pricing, analogous to electric metering.

The idea of running IT completely as a utility service goes back at least to 1965 and the publication of
The Challenge of the Computer Utility, by Douglas Parkhill (see Figure 20, “Initial Statement of Cloud
Computing”). While the conceptual idea of cloud and utility computing was foreseeable 50 years ago, it
took many years of hard-won IT evolution to support the vision. Reliable hardware of exponentially
increasing performance, robust open-source software, Internet backbones of massive speed and
capacity, and many other factors converged towards this end.

Digital Practitioner Body of Knowledge™ Standard 73

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

r

THHNYYd 4 SY19N00

Figure 20. Initial Statement of Cloud Computing

However, people store data — often private — on computers. In order to deliver compute as a utility, it
is essential to segregate each customer’s workload from all others. This is called multi-tenancy. In
multi-tenancy, multiple customers share physical resources that provide the illusion of being
dedicated.

The phone system has been multi-tenant ever since they got rid of party lines. A party

NOTE . . .
line was a shared line where anyone on it could hear every other person.

In order to run compute as a utility, multi-tenancy was essential. This is different from electricity (but
similar to the phone system). As noted elsewhere, one watt of electric power is like any other and there
is less concern for information leakage or unexpected interactions. People’s bank balances are not
encoded somehow into the power generation and distribution infrastructure.

Virtualization is necessary, but not sufficient for cloud. True cloud services are highly automated, and
most cloud analysts will insist that if virtual machines cannot be created and configured in a
completely automated fashion, the service is not true cloud. This is currently where many in-house
“private” cloud efforts struggle; they may have virtualization, but struggle to make it fully self-service.

Cloud services have refined into at least three major models:

» Software as a Service (SaaS)
» Platform as a Service (PaaS)

e Infrastructure as a Service (IaaS)

74 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

From the NIST Definition of Cloud Computing (p.2-3):

Software as a Service (SaaS) The capability provided to the consumer is to use the provider’s
applications running on a cloud infrastructure. The applications are accessible from various
client devices through either a thin client interface, such as a web browser (e.g., web-based
email), or a program interface. The consumer does not manage or control the underlying cloud
infrastructure including network, servers, OSs, storage, or even individual application
capabilities, with the possible exception of limited user-specific application configuration
settings.

Platform as a Service (PaaS) The capability provided to the consumer is to deploy onto the
cloud infrastructure consumer-created or acquired applications created using programming
languages, libraries, services, and tools supported by the provider. The consumer does not
manage or control the underlying cloud infrastructure including network, servers, OSs, or
storage, but has control over the deployed applications and possibly configuration settings for
the application-hosting environment.

Infrastructure as a Service (IaaS) The capability provided to the consumer is to provision
processing, storage, networks, and other fundamental computing resources where the consumer
is able to deploy and run arbitrary software, which can include OSs and applications. The
consumer does not manage or control the underlying cloud infrastructure but has control over
OSs, storage, and deployed applications; and possibly limited control of select networking
components (e.g., host firewalls) [209].

There are cloud services beyond those listed above (e.g., Storage as a Service). Various platform
services have become extensive on providers such as Amazon™, which offers load balancing,
development pipelines, various kinds of storage, and much more.

Evidence of Notability

Cloud computing is one of the most economically active sectors in IT. Cloud computing has attracted
attention from the US National Institute for Standards and Technology (NIST) [209]. Cloud law is
becoming more well defined [196].

Limitations

The future of cloud computing appears assured, but computing and digital competencies also extend to
edge devices and in-house computing. The extent to which organizations will retain in-house
computing is a topic of industry debate.

Related Topics

* Application Development
* Operations Management

» Sourcing and Vendor Management

Digital Practitioner Body of Knowledge™ Standard 75

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge
6.1.2.4. Configuration Management and Infrastructure as Code

Description
This section covers:

* Version control

» Source control

* Package management

* Deployment management

* Configuration management

6.1.2.4.1. Managing Infrastructure

Two computers may both run the same version of an OS, and yet exhibit vastly different behaviors.
This is due to how they are configured. One may have web serving software installed; the other may
run a database. One may be accessible to the public via the Internet; access to the other may be tightly
restricted to an internal network. The parameters and options for configuring general-purpose
computers are effectively infinite. Mis-configurations are a common cause of outages and other issues.

In years past, infrastructure administrators relied on the ad hoc issuance of commands either at an
operations console or via a GUI-based application. Such commands could also be listed in text files; i.e.,
"batch files" or "shell scripts" to be used for various repetitive processes, but systems administrators by
tradition and culture were empowered to issue arbitrary commands to alter the state of the running
system directly.

However, it is becoming more and more rare for a systems administrator to actually “log in” to a
server and execute configuration-changing commands in an ad hoc manner. Increasingly, all actual
server configuration is based on pre-developed specification.

Because virtualization is becoming so powerful, servers increasingly are destroyed and rebuilt at the
first sign of any trouble. In this way, it is certain that the server’s configuration is as intended. This
again is a relatively new practice.

Previously, because of the expense and complexity of bare-metal servers, and the cost of having them
offline, great pains were taken to fix troubled servers. Systems administrators would spend hours or
days troubleshooting obscure configuration problems, such as residual settings left by removed
software. Certain servers might start to develop “personalities”. Industry practice has changed
dramatically here since around 2010.

As cloud infrastructures have scaled, there has been an increasing need to configure many servers
identically. Auto-scaling (adding more servers in response to increasing load) has become a widely
used strategy as well. Both call for increased automation in the provisioning of IT infrastructure. It is
simply not possible for a human being to be hands on at all times in configuring and enabling such
infrastructures, so automation is called for.

76 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

Sophisticated Infrastructure as Code techniques are an essential part of modern SRE practices such as
those used by Google®. Auto-scaling, self-healing systems, and fast deployments of new features all
require that infrastructure be represented as code for maximum speed and reliability of creation.

Infrastructure as Code is defined by Morris as: an approach to infrastructure automation based on
practices from software development. It emphasizes consistent, repeatable routines for provisioning and
changing systems and their configuration. Changes are made to definitions and then rolled out to systems
through unattended processes that include thorough validation. [203+]+

6.1.2.4.2. Infrastructure as Code

e

|7 home/you

! | = ~

#!/bin/bash
mkdir foo bar

X
cd foo | =
touch x y z |Bar
cd --/bar
touch a b ¢

_J

jac-sh

Figure 21. Simple Directory/File Structure Script

In presenting Infrastructure as Code at its simplest, we will start with the concept of a shell script.
Consider the following set of commands:

$ mkdir foo bar
$ cd foo

$ touch x y z

$ cd ../bar

$ touch a b c

What does this do? It tells the computer:

Create (mkdir) two directories, one named foo and one named bar

Move (cd) to the one named foo

* Create (touch) three files, named X, y, and z

Move to the directory named bar

Digital Practitioner Body of Knowledge™ Standard 77

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

e Create three blank files, named a, b, and c

A user with the appropriate permissions at a UNIX® or Linux® command prompt who runs those
commands will wind up with a configuration that could be visualized as in Figure 21, “Simple
Directory/File Structure Script”. Directory and file layouts count as configuration and in some cases are
critical.

Assume further that the same set of commands is entered into a text file thus:

#!/bin/bash
mkdir foo bar
cd foo

touch x y z
cd ../bar
touch a b ¢

The file might be named 1iac.sh, and with its permissions set correctly, it could be run so that the
computer executes all the commands, rather than a person running them one at a time at the console.
If we did so in an empty directory, we would again wind up with that same configuration.

Beyond creating directories and files shell scripts can create and destroy virtual servers and
containers, install and remove software, set up and delete users, check on the status of running
processes, and much more.

The state of the art in infrastructure configuration is not to use shell scripts at all but
either policy-based infrastructure management or container definition approaches.

NOTE Modern practice in cloud environments is to use templating capabilities such as
Amazon CloudFormation or Hashicorp Terraform (which is emerging as a de facto
platform-independent standard for cloud provisioning).

6.1.2.4.3. Version Control

Consider again the iac.sh file. It is valuable. It documents intentions for how a given configuration
should look. It can be run reliably on thousands of machines, and it will always give us two directories
and six files. In terms of the previous section, we might choose to run it on every new server we create.
Perhaps it should be established it as a known resource in our technical ecosystem. This is where
version control and the broader concept of configuration management come in.

For example, a configuration file may be developed specifying the capacity of a virtual server, and
what software is to be installed on it. This artifact can be checked into version control and used to re-
create an equivalent server on-demand.

Tracking and controlling such work products as they evolve through change after change is important
for companies of any size. The practice applies to computer code, configurations, and, increasingly,
documentation, which is often written in a lightweight markup language like Markdown or Asciidoc.

78 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

In terms of infrastructure, configuration management requires three capabilities:

* The ability to backup or archive a system’s operational state (in general, not including the data it is
processing — that is a different concern); taking the backup should not require taking the system
down

* The ability to compare two versions of the system’s state and identify differences

* The ability to restore the system to a previously archived operational state

Version control is critical for any kind of system with complex, changing content, especially when
many people are working on that content. Version control provides the capability of seeing the exact
sequence of a complex system’s evolution and isolating any particular moment in its history or
providing detailed analysis on how two versions differ. With version control, we can understand what
changed and when — which is essential to coping with complexity.

While version control was always deemed important for software artifacts, it has only recently become
the preferred paradigm for managing infrastructure state as well. Because of this, version control is
possibly the first IT management system you should acquire and implement (perhaps as a cloud
service, such as Github, Gitlab, or Bitbucket).

Version control in recent years increasingly distinguishes between source control and package
management (see Figure 22, “Types of Version Control” and Figure 27, “Configuration Management
and its Components” below): the management of binary files, as distinct from human-understandable
symbolic files. It is also important to understand what versions are installed on what computers; this
can be termed “deployment management”. (With the advent of containers, this is a particularly fast-
changing area.)

Version Control

Source Fackage
Control Management

Figure 22. Types of Version Control

Version control works like an advanced file system with a memory. (Actual file systems that do this are
called versioning file systems.) It can remember all the changes you make to its contents, tell you the
differences between any two versions, and also bring back the version you had at any point in time.

Survey research presented in the annual State of DevOps report indicates that version control is one of
the most critical practices associated with high-performing IT organizations [44]. Forsgren [98]
summarizes the practice of version control as:

* Our application code is in a version control system

* Our system configurations are in a version control system

Digital Practitioner Body of Knowledge™ Standard 79

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

* Our application configurations are in a version control system

* Our scripts for automating build and configuration are in a version control system

6.1.2.4.4. Source Control

-
-

>
>
>
>
>

D

>

First commit Second commit Difference

Source repository

Figure 23. Source Control

Digital systems start with text files; e.g., those encoded in ASCII or Unicode. Text editors create source
code, scripts, and configuration files. These will be transformed in defined ways (e.g., by compilers and
build tools) but the human-understandable end of the process is mostly based on text files. In the
previous section, we described a simple script that altered the state of a computer system. We care
very much about when such a text file changes. One wrong character can completely alter the
behavior of a large, complex system. Therefore, our configuration management approach must track
to that level of detail.

Source control is at its most powerful when dealing with textual data. It is less useful in dealing with
binary data, such as image files. Text files can be analyzed for their differences in an easy to
understand way (see Figure 23, “Source Control”). If “abc” is changed to “abd”, then it is clear that the
third character has been changed from “c” to “d”. On the other hand, if we start with a digital image
(e.g., a *png file), alter one pixel, and compare the resulting before and after binary files in terms of
their data, it would be more difficult to understand what had changed. We might be able to tell that
they are two different files easily, but they would look very similar, and the difference in the binary
data might be difficult to understand.

80 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

The “Commit” Concept

Although implementation details may differ, all version control systems have some concept of
“commit”. As stated in Version Control with Git [181]:

In Git, a commit is used to record changes to a repository ... Every Git commit represents a single, atomic
changeset with respect to the previous state. Regardless of the number of directories, files, lines, or bytes
that change with a commit ... either all changes apply, or none do. [emphasis added]

The concept of a version or source control “commit” serves as a foundation for IT management and
governance. It both represents the state of the computing system as well as providing evidence of the
human activity affecting it. The “commit” identifier can be directly referenced by the build activity,
which in turn is referenced by the release activity, which typically visible across the IT value chain.

Also, the concept of an atomic “commit” is essential to the concept of a “branch” — the creation of an
experimental version, completely separate from the main version, so that various alterations can be
tried without compromising the overall system stability. Starting at the point of a “commit”, the
branched version also becomes evidence of human activity around a potential future for the system. In
some environments, the branch is automatically created with the assignment of a requirement or
story. In other environments, the very concept of branching is avoided. The human-understandable,
contextual definitions of IT resources is sometimes called metadata.

6.1.2.4.5. Package Management

Source Binary

nionroooroior

‘ ororrionioriont

#include <iostream> Compile & forriorianonio
build friorooooioointt

int main(’) ‘ o1101010101010
QooTiornonor

std:icout << "Hello, world\n"; 10000

}
\— _/

Figure 24. Building Software

Much if not most software, once created as some kind of text-based artifact suitable for source control,
must be compiled and further organized into deployable assets, often called “packages” (see Figure 24,
“Building Software”).

In some organizations, it was once common for compiled binaries to be stored in the same repositories
as source code (see Figure 25, “Common Version Control”). However, this is no longer considered a best
practice. Source and package management are now viewed as two separate things (see Figure 26,
“Source versus Package Repos”). Source repositories should be reserved for text-based artifacts whose

Digital Practitioner Body of Knowledge™ Standard 81

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

differences can be made visible in a human-understandable way. Package repositories in contrast are
for binary artifacts that can be deployed.

>

“Version Control”

MaIIooororor
oranienonont
T01MONIONONI0
Moe00oToonT
oneloraiorero
aoarnantenor
10000

Source Biﬂay

Build
management

1

Figure 25. Common Version Control

Package repositories also can serve as a proxy to the external world of downloadable software. That is,
they are a cache, an intermediate store of the software provided by various external or “upstream”
sources. For example, developers may be told to download the approved Ruby on Rails version from
the local package repository, rather than going to get the latest version, which may not be suitable for
the environment.

Package repositories furthermore are used to enable collaboration between teams working on large
systems. Teams can check in their built components into the package repository for other teams to
download. This is more efficient than everyone always building all parts of the application from the
source repository.

82 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

External
sources

“Source Control” “Package Management”
— WONTI060IGI0
QronIenoIrorr
- 1GIHOTIONOTO
— nroteocet0ot! .
——= | Source Sommana| Binary
10000

Build
management

Figure 26. Source versus Package Repos

The boundary between source and package is not hard and fast, however. We sometimes sees binary
files in source repositories, such as images used in an application. Also, when interpreted languages
(such as JavaScript™) are “packaged”, they still appear in the package as text files, perhaps compressed
or otherwise incorporated into some larger containing structure.

While in earlier times, systems would be compiled for the target platform (e.g., compiled in a
development environment, and then re-compiled for subsequent environments such as quality
assurance and production) the trend today is decisively towards immutability. With the
standardization brought by container-based architecture, current preference increasingly is to compile
once into an immutable artifact that is deployed unchanged to all environments, with any necessary
differences managed by environment-specific configuration such as source-managed text artifacts and
shared secrets repositories.

6.1.2.4.6. Deployment Management

Version control is an important part of the overall concept of configuration management. But
configuration management also covers the matter of how artifacts under version control are combined
with other IT resources (such as virtual machines) to deliver services. Figure 27, “Configuration
Management and its Components” elaborates on Figure 22, “Types of Version Control” to depict the
relationships.

Resources in version control in general are not yet active in any value-adding sense. In order for them

Digital Practitioner Body of Knowledge™ Standard 83

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

to deliver experiences, they must be combined with computing resources: servers (physical or virtual),
storage, networking, and the rest, whether owned by the organization or leased as cloud services. The
process of doing so is called deployment. Version control manages the state of the artifacts; meanwhile,
deployment management (as another configuration management practice) manages the combination
of those artifacts with the needed resources for value delivery.

Configuration Management

Version Control \ rDe,::vlc:rymemﬂ
& Operations
(Source Control Package) P
Management o What was
Code installed when
Infrastructure e [n-house built and where
definitions executables e Exceptions
* Build o Assets from and drift
definitions external o QOwnership &
* Deployment sources operational
definitions)) dependencies

Figure 27. Configuration Management and its Components

6.1.2.4.7. Imperative and Declarative Approaches

Before we turned to source control, we looked at a simple script that changed the configuration of a
computer. It did so in an imperative fashion. Imperative and declarative are two important terms from
computer science.

In an imperative approach, one tells the computer specifically how we want to accomplish a task; e.g.:

* Create a directory

* Create some files

* Create another directory
* Create more files

Many traditional programming languages take an imperative approach. A script such as our iac.sh
example is executed line by line; i.e., it is imperative.

In configuring infrastructure, scripting is in general considered “imperative”, but state-of-the-art
infrastructure automation frameworks are built using a “declarative”, policy-based approach, in which
the object is to define the desired end state of the resource, not the steps needed to get there. With such
an approach, instead of defining a set of steps, we simply define the proper configuration as a target,
saying (in essence) that “this computer should always have a directory structure thus; do what you
need to do to make it so and keep it this way”.

84 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

Declarative approaches are used to ensure that the proper versions of software are always present on
a system and that configurations such as Internet ports and security settings do not vary from the
intended specification.

This is a complex topic, and there are advantages and disadvantages to each approach [47].
Evidence of Notability

Andrew Clay Shafer, credited as one of the originators of DevOps, stated: "In software development,
version control is the foundation of every other Agile technical practice. Without version control, there
is no build, no test-driven development, no continuous integration" [14 p. 99]. It is one of the four
foundational areas of Agile, according to the Agile Alliance [10].

Limitations

Older platforms and approaches relied on direct command line intervention and (in the 1990s and
2000s) on GUI-based configuration tools. Organizations still relying on these approaches may struggle
to adopt the principles discussed here.

Competency Category "Configuration Management and Infrastructure as Code" Example
Competencies
» Develop a simple Infrastructure as Code definition for a configured server
* Demonstrate the ability to install, configure, and use a source control tool
* Demonstrate the ability to install, configure, and use a package manager
* Develop a complex Infrastructure as Code definition for a cluster of servers, optionally including
load balancing and failover

Related Topics

* Infrastructure Management
* DevOps Technical Practices

* Operations Management

6.1.2.5. Securing Infrastructure

Security as an enterprise capability is covered in Section 6.4.1, “Governance, Risk,
Security, and Compliance”, as a form of applied risk management involving concepts of
controls and assurance. But, securing infrastructure and applications must be a focus
from the earliest stages of the digital product.

NOTE

This document recognizes the concept of securing infrastructure as critical to the practice of digital
delivery:

* Physical security

Digital Practitioner Body of Knowledge™ Standard 85

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

* Networking issues
* Core OS

e Cloud issues
Description

Infrastructure security, whether for on-premises computing or for cloud services, is first and foremost
a security architecture issue. Many existing security control frameworks are available that describe
various categories of controls which can be used to secure infrastructure. These include ISO/IEC
27002:2013, NIST 800-53, Security Services Control Catalog (jointly developed by The Open Group and
The SABSA® Institute), and the Center for Internet Security Controls Version 7. These are
comprehensive sets of security controls spanning many domains of security. While these control
frameworks predate cloud computing, most of the control categories affecting infrastructure security
apply in cloud services as well. In addition, security practitioners tasked with securing infrastructure
may benefit from reference security architectures such as the Open Enterprise Security Architecture
(O-ESA) from The Open Group, which describes basic approaches to securing enterprise networks,
including infrastructure.

The diagram below ! depicts some broad categories of security control types:

5+ Encryption

&4 Authentication

3+ Logging

2+ Asset and Configuration Management

1+ Zoning and Containment

Figure 28. Security Hierarchy

86 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder
6.1.2.5.1. Common security practices

Since the advent of cloud computing, securing cloud infrastructure has been a key concern. Most of the
security issues that exist in non-cloud environments exist in cloud services as well. In other words,
access control, user authentication, vulnerability management, patching, securing network access,
anti-malware capabilities, data loss prevention, encryption of data, and a host of other security
controls that we deploy in on-premises computing require careful consideration in cloud services. The
security concerns around cloud computing vary depending on whether the cloud service is Saa$, Paas,
or IaaS.

6.1.2.5.2. On premise versus Cloud security practices

There are also fundamental differences in security controls deployed in on-premises infrastructure
(security controls may be physical or virtual), and those deployed in cloud infrastructure (which is
purely virtual). These differences follow on from the shift brought by cloud computing. In on-premises
computing, security architects and security solution providers had access to the physical computing
networks, so physical security devices could be deployed in-line. The most common security design
patterns leverage this physical access. In cloud services, there is no ability to insert security
components which are physically in-line. This means that in cloud computing, we may have to utilize
virtual security appliances, and virtual network segmentation solutions such as VLANs and Software-
Defined Networks (SDNs) versus physical security approaches.

Another difference in securing physical versus cloud infrastructure arises in defining and
implementing microsegmentation (small zones of access control). In physical networks, multiple
hardware firewalls are required to achieve this. In cloud computing, VLANs and SDNs may be used to
deliver equivalent capability, with some unique advantages (they are more manageable, at a lower
capital expense).

In addition, the responsibility for securing cloud infrastructure varies considerably based upon the
service model as well. While early focus on cloud security tended to focus on potential security
concerns and gaps in security capabilities, the security community today generally acknowledges that
while security concerns relating to cloud computing persist, there is also an opportunity for cloud
services to “raise the bar”, improving upon baseline security for many customer organizations. Hybrid
cloud computing combining public cloud services with private cloud infrastructure brings further
complexity to infrastructure security.

Evidence of Notability

The need to secure computing infrastructure has been obvious and self-evident for decades, and has
evolved alongside changes in popular computing paradigms, including the mainframe era,
client/server computing, and now cloud computing. The need for specific, unique guidance relating to
securing cloud services of various types emerged in 2009, when the Cloud Security Alliance (CSA) was
first formed, and when they published Version 1 of their Security Guidance for Critical Areas of Focus
in Cloud Computing. The CSA guidance is now on Version 4, and includes 14 different security
domains.

Digital Practitioner Body of Knowledge™ Standard 87

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

Limitations

Organizations accustomed to deploying physical security capabilities on their own infrastructure may
find it difficult to adapt to the challenges of securing cloud infrastructure in the various types cloud
services. They may also have challenges adapting to the changes in responsibilities that are brought by
the use of cloud services, where the Cloud Service Provider (CSP) is responsible for delivering many
security capabilities, especially in SaaS services, and as a result the customer organization needs to
specify needed security capabilities in Request for Proposals (RFPs). In addition, incident response
management routines will require change.

Related Topics

ISO/IEC 27002:2013 (International Standards Organization

NIST SP 800-53 Rev. 4 (National Institute of Standards and Technology)

CIS Controls Version 7 (Center for Internet Security)
» Security Services Control Catalog (jointly developed by The Open Group and The SABSA Institute)
* Enterprise Security Architecture (The Open Group)

* Security Guidance for Critical Areas of Focus in Cloud Computing (CSA)

6.1.3. Application Delivery

Not all Digital Practitioners develop applications. As SaaS options expand, many
practitioners will focus on acquiring, configuring, and operating them. However, the
premise of this Competency Area is that all Digital Practitioners need to understand at
least the basics of modern application delivery in order to effectively manage digital
sourcing and operations. Understanding these basics will help the practitioner develop
a sense of empathy for their vendors supplying digital services.

NOTE

Area Description

Based on the preceding competencies of digital value understanding and infrastructure, the
practitioner can now start building.

IT systems that directly create value for non-technical users are usually called “applications”, or
sometimes “services” or "service systems". As discussed in the Digital Fundamentals Competency Area,
they enable value experiences in areas as diverse as consumer banking, entertainment and hospitality,
and personal transportation. In fact, it is difficult to think of any aspect of modern life untouched by
applications. (This overall trend is sometimes called Digital Transformation [298].)

Applications are built from software, the development of which is a core concern for any IT-centric
product strategy. Software development is a well-established career, and a fast-moving field with new
technologies, frameworks, and schools of thought emerging weekly, it seems. This Competency Area
will cover applications and the software lifecycle, from requirements through construction, testing,
building, and deployment of modern production environments. It also discusses earlier approaches to

88 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

software development, the rise of the Agile movement, and its current manifestation in the practice of
DevOps.

This document uses an engineering definition of “application”. To an electrical engineer, a toaster or a
light bulb is an “application” of electricity (hence the term “appliance”). Similarly, a Customer
Relationship Management (CRM) system, or a web video on-demand service, are “applications” of the
digital infrastructure covered previously.

Without applications, computers would be merely a curiosity. Electronic computers were first
“applied” to military needs for codebreaking and artillery calculations. After World War II, ex-military
officers like Edmund Berkeley at Prudential realized computers' potential if “applied” to problems like
insurance record-keeping [11]. At first, such systems required actual manual configuration or
painstaking programming in complex, tedious, and unforgiving low-level programming languages. As
the value of computers became obvious, investment was made in making programming easier through
more powerful languages.

The history of software is well documented. Low-level languages (binary and assembler) were
increasingly replaced by higher-level languages such as FORTRAN, COBOL, and C. Proprietary
machine/language combinations were replaced by open standards and compilers that could take one
kind of source code and build it for different hardware platforms. Many languages followed, such as
Java, Visual Basic, and JavaScript. Sophisticated middleware was developed to enable ease of
programming, communication across networks, and standardization of common functions.

Today, much development uses frameworks like Apache Struts, Spring, and Ruby on Rails, along with
interpreted languages that take much of the friction out of building and testing code. But even today,
the objective remains to create a binary executable file or files that computer hardware can “execute”;
that is, turn into a computing-based value experience, mediated through devices such as workstations,
laptops, smartphones, and their constituent components.

In the first decades of computing, any significant application of computing power to a new problem
typically required its own infrastructure, often designed specifically for the problem. While awareness
existed that computers, in theory, could be “general-purpose”, in practice, this was not so easy.
Military/aerospace needs differed from corporate information systems, which differed from scientific
and technical uses. And major new applications required new compute capacity.

The software and hardware needed to be specified in keeping with requirements, and acquiring it took
lengthy negotiations and logistics and installation processes. Such a project from inception to
production might take nine months (on the short side) to 18 or more months.

Hardware was dedicated and rarely re-used. Servers compatible with one system might have few other
applications if they became surplus. In essence, this sort of effort had a strong component of systems
engineering, as designing and optimizing the hardware component was a significant portion of the
work.

Today, matters are quite different, and yet echoes of the older model persist. As mentioned, any
compute workloads are going to incur economic cost. However, capacity is being used more efficiently

Digital Practitioner Body of Knowledge™ Standard 89

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

and can be provisioned on-demand. Currently, it is a significant application indeed that merits its own
systems engineering.

NOTE To “provision” in an IT sense means to make the needed resources or services available
for a particular purpose or consumer.

Instead, a variety of mechanisms (as covered in the previous discussion of cloud systems) enable the
sharing of compute capacity, the raw material of application development. The fungibility and agility
of these mechanisms increase the velocity of creation and evolution of application software. For small
and medium-sized applications, the overwhelming trend is to virtualize and run on commodity
hardware and OSs. Even 15 years ago, non-trivial websites with database integration would be hosted
by internal PaaS clusters at major enterprises (for example, Microsoft® ASP, COM+, and SQL server
clusters could be managed as multi-tenant).

The general-purpose capabilities of virtualized public and private cloud today are robust. Assuming
the organization has the financial capability to purchase computing capacity in anticipation of use, it
can be instantly available when the need surfaces. Systems engineering at the hardware level is more
and more independent of the application lifecycle; the trend is towards providing compute as a
service, carefully specified in terms of performance, but not particular hardware.

Hardware physically dedicated to a single application is rarer, and even the largest engineered systems
are more standardized so that they may one day benefit from cloud approaches. Application
architectures have also become much more powerful. Interfaces (interaction points for applications to
exchange information with each other, generally in an automated way) are increasingly standardized.
Applications are designed to scale dynamically with the workload and are more stable and reliable
than in years past.

6.1.3.1. Application Basics

Description

This section discusses the generally understood phases or stages of application development. With
current trends towards Agile development, it is critical to understand that these phases are not
intended as a prescriptive plan, nor is there any discussion of how long each should last. It is possible
to spend months at a time on each phase, and it is possible to perform each phase in the course of a
day. However, there remains a rough ordering of:

* Understanding intended outcome

* Analyzing and designing the "solution" that can support the outcome

Building the solution
» Evaluating whether the solution supports the intended outcome (usually termed "testing")

* Delivering or transitioning the solution into a state where it is delivering the intended outcome

This set of activities is sometimes called the "Software Development Lifecycle" (SDLC). These activities
are supported by increasingly automated approaches which are documented in succeeding sections.

90 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder
6.1.3.1.1. Documenting System Intent

The application or digital product development process starts with a concept of intended outcome.

In order to design and build a digital product, the Digital Practitioner needs to express what theory
needs the product to do. The conceptual tool used to do this has historically been termed the
Requirement. The literal word “Requirement” has fallen out of favor with the rise of Agile [217], and
has a number of synonyms and variations:

* Use-case

» User story

* Non-functional requirement

» Epic

* Architectural epic

* Architectural requirement
While these may differ in terms of focus and scope, the basic concept is the same — the requirement,

however named, expresses some outcome, intent, or constraint the system must fulfill. This intent calls
for work to be performed.

Requirements management is classically taught using the "shall" format. For example, the system shall
provide ..., the system shall be capable of ..., etc.

More recently, Agile-aligned teams sometimes prefer user story mapping [217]. Here is an example
from [68]:

“As a shopper, I can select how I want items shipped based on the actual costs of shipping to my
address so that I can make the best decision.”

The basic format is:
As a <type of user>, I want <goal>, so that <some value>.

The story concept is flexible and can be aggregated and decomposed in various ways, as we will
discuss in Section 6.2.1, “Product Management”. Our interest here is in the basic stimulus for
application development work that it represents.

6.1.3.1.2. Analysis and Design

The analysis and design of software-based systems itself employs a variety of techniques. Starting from
the documented system intent, in general, the thought process will seek to answer questions such as:

* Is it possible to support the intended outcome with a digital system?

* What are the major data concepts and processing activities the proposed digital system will need to
support?

Digital Practitioner Body of Knowledge™ Standard 91

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

* What are the general attributes or major classifications of such a potential solution? Will it be a
transactional system, an analytic system?

* How do these major concepts decompose into finer-grained concepts, and how are these finer-
grained concepts translated into executable artifacts such as source code and computable data
structures?

A variety of tools and approaches may be used in analysis and design. Sometimes, the analysis and
design is entirely internal to the person building the system. Sometimes, it may be sketched on paper
or a whiteboard. There are a wide variety of more formalized approaches (process models, data
models, systems models) used as these systems and organizations scale up; these will be discussed in
future Competency Areas.

6.1.3.1.3. Construction

When an apparently feasible approach is determined, construction may commence. How formalized
"apparently feasible" is depends greatly on the organization and scale of the system. "You start coding
and I'll go find out what the users want" is an old joke in IT development. It represents a long-standing
pair of questions: Are we ready to start building? Are we engaged in excessive analysis - sometimes
called "analysis paralysis"? Actually writing source code and executing it, preferably with
knowledgeable stakeholders evaluating the results, provides unambiguous confirmation of whether a
given approach is feasible.

Actual construction techniques will typically center around the creation of text files in specialized
computing languages such as C++, Javascript, Java®, Ruby on Rails, or Python. These languages are the
fundamental mechanisms for accessing the core digital infrastructure services of compute,
transmission, and storage discussed previously. There is a vast variety of instructional material
available on the syntax and appropriate techniques for using such languages.

6.1.3.1.4. Testing

Evaluating whether a developed system fulfills the intended outcome is generally called testing. There
is a wide variety of testing types, such as:

* Functional testing (does the system, or specific component of it, deliver the intended outcomes as
specified in requirements?)

* Integration testing (if the system is modularized, can modules interoperate as needed to fulfill the
intended outcomes?)

 Usability testing (can operators navigate the system intuitively, given training that makes economic
sense? are there risks of operator error presented by system design choices?)

* Performance testing (does the system scale to necessary volumes and speeds?)

 Security testing (does the system resist unauthorized attempts to access or change it?)

Although testing is logically distinct from construction, in modern practices they are tightly integrated
and automated, as will be discussed below.

92 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder
6.1.3.1.5. Delivery

Finally, the system completes construction and testing activities - it must be made available (delivered
or transitioned) into a state where it can fulfill its intended outcomes. This is sometimes called the state
of "production”, discussed below. Delivery may take two forms:

* Moving installable "packages" of software to a location where users can install them directly on
devices of their choice; this includes delivery media such as DVDs as well as network-accessible
locations

* Installing the software so that its benefits - its intended outcomes - are available "as a service" via
networks; outcomes may be delivered via the interface of an application or "app" on a mobile
phone or personal computer, a web page, an Application Programming Interface (API), or other
behavior of devices responding to the programmed application (e.g., IoT)

Delivery is increasingly automated, as will be covered in the section on DevOps technical practices.
Evidence of Notability

The basic concepts of the "software lifecycle" as expressed here are broadly discussed in software
engineering; e.g., [140, 276, 266].

Limitations

Application construction, including programming source code, is not necessary (in general) when
consuming SaaS. Many companies prefer to avoid development as much as possible, relying on
commercially available services. Such companies still may be pursuing a digital strategy in important
regards.

Related Topics

 Digital Value

Digital Infrastructure

Digital Product Management

Digital Operations

* Investment Management

Architecture

6.1.3.2. Agile Software Development

Description

6.1.3.2.1. Waterfall Development

When a new analyst would join a large systems integrator Andersen Consulting (now Accenture) in
1998, they would be schooled in something called the Business Integration Method (BIM). The BIM was

Digital Practitioner Body of Knowledge™ Standard 93

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

a classic expression of what is called “waterfall development".

What is waterfall development? It is a controversial question. Walker Royce, the original theorist who
coined the term named it in order to critique it [241]. Military contracting and management
consultancy practices, however, embraced it, as it provided an illusion of certainty. The fact that
computer systems until recently included a substantial component of hardware systems engineering
may also have contributed.

Waterfall development as a term has become associated with a number of practices. The original
illustration was similar to Figure 29, “Waterfall Lifecycle” (similar to [241]):

System

requirements ‘w

Software

requirements —\
Analysis —\

Program

design ')

Coding

Testing \

Operations

Figure 29. Waterfall Lifecycle

First, requirements need to be extensively captured and analyzed before the work of development can
commence. So, the project team would develop enormous spreadsheets of requirements, spending
weeks on making sure that they represented what “the customer” wanted. The objective was to get the
customer’s signature. Any further alterations could be profitably billed as “change requests”.

The analysis phase was used to develop a more structured understanding of the requirements; e.g.,
conceptual and logical data models, process models, business rules, and so forth.

In the design phase, the actual technical platforms would be chosen; major subsystems determined
with their connection points, initial capacity analysis (volumetrics) translated into system sizing, and so
forth. (Perhaps hardware would not be ordered until this point, leading to issues with developers now
being “ready”, but hardware not being available for weeks or months yet.)

Only after extensive requirements, analysis, and design would coding take place (implementation).
Furthermore, there was a separation of duties between developers and testers. Developers would write

94 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

code and testers would try to break it, filing bug reports to which the developers would then need to
respond.

Another model sometimes encountered at this time was the V-model (see Figure 30, “V-Model”™). This
was intended to better represent the various levels of abstraction operating in the systems delivery
activity. Requirements operate at various levels, from high-level business intent through detailed
specifications. It is all too possible that a system is “successfully” implemented at lower levels of
specification, but fails to satisfy the original higher-level intent.

Concept of
Operations

Operation and

Verification and]
Maintenance

Validation

Requirements

nd Lser
a
Acceptance
Architecture P
Integration
Detailed Tect and

Design Verification

Prog Project
rol F{_t Construction Unit Test Implementation
Definition and Test

>

Time
Figure 30. V-Model

The failures of these approaches at scale are by now well known. Large distributed teams would
wrestle with thousands of requirements. The customer would “sign off” on multiple large binders,
with widely varying degrees of understanding of what they were agreeing to. Documentation became
an end in itself and did not meet its objectives of ensuring continuity if staff turned over. The
development team would design and build extensive product implementations without checking the
results with customers. They would also defer testing that various component parts would effectively
interoperate until the very end of the project, when the time came to assemble the whole system.

Failure after failure of this approach is apparent in the historical record [111]. Recognition of such
failures, dating from the 1960s, led to the perception of a “software crisis”.

However, many large systems were effectively constructed and operated during the “waterfall years",
and there are reasonable criticisms of the concept of a “software crisis” [39].

Successful development efforts existed back to the earliest days of computing (otherwise, there
probably wouldn’t be computers, or at least not so many). Many of these successful efforts used
prototypes and other means of building understanding and proving out approaches. But highly
publicized failures continued, and a substantial movement against “waterfall” development started to
take shape.

Digital Practitioner Body of Knowledge™ Standard 95

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge
6.1.3.2.2. Origins and Practices of Agile Development

By the 1990s, a number of thought leaders in software development had noticed some common themes
with what seemed to work and what didn’t. Kent Beck developed a methodology known as “eXtreme
Programming” (XP) [24]. XP pioneered the concepts of iterative, fast-cycle development with ongoing
stakeholder feedback, coupled with test-driven development, ongoing refactoring, pair programming,
and other practices. (More on the specifics of these in the next section.)

Various authors assembled in 2001 and developed the Agile Manifesto [8], which further emphasized
an emergent set of values and practices:
The Agile Manifesto

We are uncovering better ways of developing software by doing it and helping others do it.
Through this work we have come to value:

» Individuals and interactions over processes and tools
» Working software over comprehensive documentation
* Customer collaboration over contract negotiation

* Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more.

The Manifesto authors further stated:

96 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

We follow these principles:
* Our highest priority is to satisfy the customer through early and continuous delivery of
valuable software

* Welcome changing requirements, even late in development; Agile processes harness change
for the customer’s competitive advantage

» Deliver working software frequently, from a couple of weeks to a couple of months, with a
preference for the shorter time scale

* Business people and developers must work together daily throughout the project

* Build projects around motivated individuals - give them the environment and support they
need, and trust them to get the job done

* The most efficient and effective method of conveying information to and within a
development team is face-to-face conversation

» Working software is the primary measure of progress

» Agile processes promote sustainable development - the sponsors, developers, and users
should be able to maintain a constant pace indefinitely

» Continuous attention to technical excellence and good design enhances agility
» Simplicity - the art of maximizing the amount of work not done - is essential
» The best architectures, requirements, and designs emerge from self-organizing teams

* At regular intervals, the team reflects on how to become more effective, then tunes and
adjusts its behavior accordingly

See http://agilemanifesto.org/.

Agile methodologists emphasize that software development is a learning process. In general, learning
(and the value derived from it) is not complete until the system is functioning to some degree of
capability. As such, methods that postpone the actual, integrated verification of the system increase
risk. Alistair Cockburn visualizes risk as the gap between the ongoing expenditure of funds and the lag
in demonstrating valuable learning (see Figure 31, “Waterfall Risk”, similar to [66]).

Digital Practitioner Body of Knowledge™ Standard 97

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

Time

Requirements Design Build Test Go-live

Figure 31. Waterfall Risk

Because Agile approaches emphasize delivering smaller batches of complete functionality, this risk gap
is minimized (see Figure 32, “Agile Risk”, similar to [66]).

Time
Reguirements Requirements Requirements Reguirements
Design Design Design Design
Build Build Build Build
Test Test Test Test
Deploy Deploy Deploy Deploy

Figure 32. Agile Risk

98

The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

The Agile models for developing software aligned with the rise of cloud and web-scale IT. As new
customer-facing sites like Flickr®, Amazon, Netflix, Etsy®, and Facebook scaled to massive
proportions, it became increasingly clear that waterfall approaches were incompatible with their
needs. Because these systems were directly user-facing, delivering monetized value in fast-moving
competitive marketplaces, they required a degree of responsiveness previously not seen in “back-
office” IT or military-aerospace domains (the major forms that large-scale system development had
taken to date). We will talk more of product-centricity and the overall DevOps movement in the next
section.

This new world did not think in terms of large requirements specifications. Capturing a requirement,
analyzing and designing to it, implementing it, testing that implementation, and deploying the result to
the end user for feedback became something that needed to happen at speed, with high repeatability.
Requirements “backlogs” were (and are) never “done”, and increasingly were the subject of ongoing
re-prioritization, without high-overhead project “change” barriers.

These user-facing, web-based systems integrate the SDLC tightly with operational concerns. The sheer
size and complexity of these systems required much more incremental and iterative approaches to
delivery, as the system can never be taken offline for the “next major release” to be installed. New
functionality is moved rapidly in small chunks into a user-facing, operational status, as opposed to
previous models where vendors would develop software on an annual or longer version cycle, to be
packaged onto media for resale to distant customers.

Contract software development never gained favor in the Silicon Valley web-scale community;
developers and operators are typically part of the same economic organization. So, it was possible to
start breaking down the walls between “development” and “operations”, and that is just what
happened.

Large-scale systems are complex and unpredictable. New features are never fully understood until
they are deployed at scale to the real end user base. Therefore, large-scale web properties also started
to “test in production” (more on this in the Operations Competency Area) in the sense that they would
deploy new functionality to only some of their users. Rather than trying to increase testing to
understand things before deployment better, these new firms accepted a seemingly higher-level of risk
in exposing new functionality sooner. (Part of their belief is that it actually is lower risk because the
impacts are never fully understood in any event.)

Evidence of Notability

See [174] for a thorough history of Agile and its antecedents. Agile is recognized as notable in leading
industry and academic guidance [276, 140] and has a large, active, and highly visible community (see
http://www.agilealliance.org). It is increasingly influential on non-software activities as well [234, 233].

Limitations

Agile development is not as relevant when packaged software is acquired. Such software has a more
repeatable pattern of implementation, and more up-front planning may be appropriate.

Digital Practitioner Body of Knowledge™ Standard 99

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

Related Topics

Core SDLC Practices

Digital Product Management
* Work Management
* Coordination

* Investment Management

Digital Governance

Agile Information Management

6.1.3.3. DevOps Technical Practices

Description

Consider this inquiry by Mary and Tom Poppendieck:

How long would it take your organization to deploy a change that involved one single line
of code? Do you deploy changes at this pace on a repeat, reliable basis? [221 p. 92]

The implicit goal is that the organization should be able to change and deploy one line of code, from
idea to production in under an hour, and in fact, might want to do so on an ongoing basis. There is
deep Lean/Agile theory behind this objective; a theory developed in reaction to the pattern of massive
software failures that characterized IT in the first 50 years of its existence. (This document discusses
systems theory, including the concept of feedback, in Context II and other aspects of Agile theory,
including the ideas of Lean Product Development, in Contexts II and III.)

Achieving this goal is feasible but requires new approaches. Various practitioners have explored this
problem, with great success. Key initial milestones included:

» The establishment of “test-driven development” as a key best practice in creating software [24]

Duvall’s book Continuous Integration [92]

* Allspaw & Hammonds’s seminal “10 Deploys a Day” presentation describing technical practices at
Flickr [13]

Humble & Farley’s Continuous Delivery [136]
» The publication of The Phoenix Project [165]

100 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

Lean Product
Development

Organization &
Culture

Continuous
Delivery

Figure 33. DevOps Definition

6.1.3.3.1. Defining DevOps

“DevOps” is a broad term, encompassing product management, continuous delivery, organization
structure, team behaviors, and culture (see Figure 33, “DevOps Definition”). Some of these topics will
not be covered until Contexts IT and III in this document. At an execution level, the fundamental goal of
moving smaller changes more quickly through the pipeline is a common theme. Other guiding
principles include: “If it hurts, do it more frequently”. (This is in part a response to the poor practice, or
antipattern, of deferring integration testing and deployment until those tasks are so big as to be
unmanageable.) There is a great deal written on the topic of DevOps currently; the Humble/Farley
book is recommended as an introduction. Let’s go into a little detail on some essential Agile/DevOps
practices:

* Test-driven development

* Ongoing refactoring

* Continuous integration

* Continuous deployment

6.1.3.3.2. Continuous Delivery Pipeline

The infrastructure Competency Area suggests that the Digital Practitioner may need to select:

* Development stack (language, framework, and associated enablers such as database and
application server)

* Cloud provider that supports the chosen stack

e Version control

Digital Practitioner Body of Knowledge™ Standard 101

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge
* Deployment capability

The assumption is that the Digital Practitioner is going to start immediately with a continuous delivery
pipeline.

What is meant by a continuous delivery pipeline? Figure 34, “A Simple Continuous Delivery Toolchain”
presents a simplified, starting overview.

Conti
aasinuous { Release

Honitorin
Choreagraphy Integration’ Build) | ? l
Automation

\ @ /', \‘ @ /' Deploymant T
O

repository

@ Source code —_

repasitories

/ Target infrastructure
Iafrastructure as
fnfrastructures

codea

Packages /\
fibrary/image /\/

Infrastructurs
definition

Autamation

Frovisioning and
control

Figure 34. A Simple Continuous Delivery Toolchain

First, some potential for value is identified. It is refined through product management techniques into
a feature — some specific set of functionality that when complete will enable the value proposition
(i.e., as a moment of truth).

1. The feature is expressed as some set of IT work, today usually in small increments lasting between
one and four weeks (this of course varies). Software development commences; e.g., the creation of
Java components by developers who first write tests, and then write code that satisfies the test.

2. More or less simultaneously, the infrastructure configuration is also refined, also "as-code".
3. The source repository contains both functional and infrastructure artifacts (text-based).

4. When the repository detects the new “check-in”, it contacts the build choreography manager,
which launches a dedicated environment to build and test the new code. The environment is
configured using “Infrastructure as Code” techniques; in this way, it can be created automatically
and quickly.

5. If the code passes all tests, the compiled and built binary executables may then be “checked in” to a
package management repository.

6. Infrastructure choreography may be invoked at various points to provision and manage compute,
storage, and networking resources (on-premise or cloud-based).

102 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

7. Release automation deploys immutable binary packages to target infrastructure.

8. Examples of such infrastructure may include quality assurance, user acceptance, and production
environments.

9. The production system is monitored for availability and performance.

10. An emerging practice is to manage the end-to-end flow of all of the above activities as
"choreography", providing comprehensive traceability of configuration and deployment activities
across the pipeline.

6.1.3.3.3. Test Automation and Test-Driven Development

Testing software and systems is a critically important part of digital product development. The earliest
concepts of waterfall development called for it explicitly, and “software tester” as a role and “software
quality assurance” as a practice have long histories. Evolutionary approaches to software have a
potential major issue with software testing:

As a consequence of the introduction of new bugs, program maintenance
requires far more system testing per statement written than any other
programming. Theoretically, after each fix one must run the entire bank of test
cases previously run against the system, to ensure that it has not been
damaged in an obscure way. In practice, such regression testing must indeed
approximate this theoretical ideal, and it is very costly.

— Fred Brooks, Mythical Man-Month

This issue was and is well known to thought leaders in Agile software development. The key response
has been the concept of automated testing so that any change in the software can be immediately
validated before more development along those lines continues. One pioneering tool was JUnit:

The reason JUnit is important ... is that the presence of this tiny tool has been
essential to a fundamental shift for many programmers. A shift where testing
has moved to a front and central part of programming. People have advocated it
before, but JUnit made it happen more than anything else.

— Martin Fowler, http://martinfowler.com/books/meszaros.html

From the reality that regression testing was “very costly” (as stated by Brooks in the above quote), the
emergence of tools like JUnit (coupled with increasing computer power and availability) changed the
face of software development, allowing the ongoing evolution of software systems in ways not
previously possible.

In test-driven development, the idea essence is to write code that tests itself, and in fact to write the
test before writing any code. This is done through the creation of test harnesses and the tight
association of tests with requirements. The logical culmination of test-driven development was

Digital Practitioner Body of Knowledge™ Standard 103

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

expressed by Kent Beck in eXtreme Programming: write the test first [24]. Thus:

1. Given a “user story” (i.e., system intent), figure out a test that will demonstrate its successful
implementation

2. Write this test using the established testing framework

3. Write the code that fulfills the test

Employing test-driven development completely and correctly requires thought and experience. But it
has emerged as a practice in the largest-scale systems in the world. Google runs many millions of
automated tests daily [300]. It has even been successfully employed in hardware development [118].

6.1.3.3.4. Refactoring and technical debt

Test-driven development enables the next major practice, that of refactoring. Refactoring is how
technical debt is addressed. What is technical debt? Technical debt is a term coined by Ward
Cunningham and is now defined by Wikipedia as:

... the eventual consequences of poor system design, software architecture, or software development
within a codebase. The debt can be thought of as work that needs to be done before a particular job can be
considered complete or proper. If the debt is not repaid, then it will keep on accumulating interest,
making it hard to implement changes later on ... Analogous to monetary debt, technical debt is not
necessarily a bad thing, and sometimes technical debt is required to move projects forward. [303]

Test-driven development ensures that the system’s functionality remains consistent, while refactoring
provides a means to address technical debt as part of ongoing development activities. Prioritizing the
relative investment of repaying technical debt versus developing new functionality will be examined
in future sections.

Technical debt is covered further in here.

6.1.3.3.5. Continuous Integration

As systems engineering approaches transform to cloud and Infrastructure as Code, a large and
increasing percentage of IT work takes the form of altering text files and tracking their versions. This
was covered in the discussion of configuration management with artifacts such as scripts being
created to drive the provisioning and configuring of computing resources. Approaches which
encourage ongoing development and evolution are increasingly recognized as less risky since systems
do not respond well to big “batches” of change. An important concept is that of “continuous
integration”, popularized by Paul Duvall in his book of the same name [92].

In order to understand why continuous integration is important, it is necessary to discuss further the
concept of source control and how it is employed in real-world settings. Imagine Mary has been
working for some time with her partner Aparna in their startup (or on a small team) and they have
three code modules (see Figure 35, “File B being Worked on by Two People”). Mary is writing the web
front end (file A), Aparna is writing the administrative tools and reporting (file C), and they both
partner on the data access layer (file B). The conflict, of course, arises on file B that they both need to

104 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

work on. A and C are mostly independent of each other, but changes to any part of B can have an
impact on both their modules.

If changes are frequently needed to B, and yet they cannot split it into logically separate modules, they
have a problem; they cannot both work on the same file at the same time. They are each concerned
that the other does not introduce changes into B that “break” the code in their own modules A and C.

X
3
\C

}

ll

|

A

il

B

}
| d

Aparna

;
r

Il

beeesa

i

o
o |

B

i
»

L---

Local versions Local versions

Master versions

Figure 35. File B being Worked on by Two People

In smaller environments, or under older practices, perhaps there is no conflict, or perhaps they can
agree to take turns. But even if they are taking turns, Mary still needs to test her code in A to make sure
it has not been broken by changes Aparna made in B. And what if they really both need to work on B
(see Figure 35, “File B being Worked on by Two People”) at the same time?

Given that they have version control in place, each of them works on a “local” copy of the file (see
illustration “File B being worked on by two people”).

That way, they can move ahead on their local workstations. But when the time comes to combine both
of their work, they may find themselves in “merge hell”. They may have chosen very different
approaches to solving the same problem, and code may need massive revision to settle on one
codebase. For example, in the accompanying illustration, Mary’s changes to B are represented by
triangles and Aparna’s are represented by circles. They each had a local version on their workstation
for far too long, without talking to each other.

The diagrams represent the changes graphically; of course, with real code, the different graphics

Digital Practitioner Body of Knowledge™ Standard 105

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

represent different development approaches each person took. For example, Mary had certain needs
for how errors were handled, while Aparna had different needs.

ook o0k | oo

" R . e) ! \ : i

2 igo i%o iigo |
i AAA P 00 i ABA P AOQ
AV NE B HE I iy el I RVNENON
L i Qo O i O i o Qi
L A - 10 LB QO O
i A P P o E 1 o
Sy thanses Fand's changes | Change alisions Reconciintion

to B te B

Figure 36. Merge Hell

In Figure 36, “Merge Hell”, where triangles and circles overlap, Mary and Aparna painstakingly have to
go through and put in a consolidated error handling approach, so that the code supports both of their
needs. The problem, of course, is there are now three ways errors are being handled in the code. This
is not good, but they did not have time to go back and fix all the cases. This is a classic example of
technical debt.

Suppose instead that they had been checking in every day. They can identify the first collision quickly
(see Figure 37, “Catching Errors Quickly is Valuable”), and have a conversation about what the best
error handling approach is. This saves them both the rework of fixing the collisions, and the technical
debt they might have otherwise accepted:

106 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

. i OO0 K Hele

v R P P — ‘
L i D Q0
- P P A i QOO0 |
s B | gy
5 P P e
" Mary’s small Aparna’s small Fagt idensification Outcome

changes to B changes to B

Figure 37. Catching Errors Quickly is Valuable

These problems have driven the evolution of software configuration management for decades. In
previous methods, to develop a new release, the code would be copied into a very long-lived “branch”
(a version of the code to receive independent enhancement). Ongoing “maintenance” fixes of the
existing codebase would also continue, and the two codebases would inevitably diverge. Switching
over to the “new” codebase might mean that once-fixed bugs (bugs that had been addressed by
maintenance activities) would show up again, and, logically, this would not be acceptable. So, when the
newer development was complete, it would need to be merged back into the older line of code, and
this was rarely if ever easy (again, “merge hell”). In a worst-case scenario, the new development might
have to be redone.

Digital Practitioner Body of Knowledge™ Standard 107

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

Merge hell
New maljor version £ &
N\ F
/ N/
_\‘.“ \"-*' ‘Q‘*’
) £\ i
Production codebase —U / e
bugfixes & small
enhancements
& & & &
() Y I) -
i f i T o g @ E
o-1—ol—o—o-
Production codebase —u Cutover
bugfixes & small
enhancements

Figure 38. Big Bang versus Continuous Integration

Enter continuous integration (see Figure 38, “Big Bang versus Continuous Integration”). As presented in
[92] the key practices (note similarities to the pipeline discussion) include:
* Developers run private builds including their automated tests before committing to source control
* Developers check in to source control at least daily

o Distributed version control systems such as git are especially popular, although older
centralized products are starting to adopt some of their functionality

o Integration builds happen several times a day or more on a separate, dedicated machine

100% of tests must pass for each build, and fixing failed builds is the highest priority

» A package or similar executable artifact is produced for functional testing

A defined package repository exists as a definitive location for the build output

Rather than locking a file so that only one person can work on it at a time, it has been found that the
best approach is to allow developers to actually make multiple copies of such a file or file set and work
on them simultaneously.

This is the principle of continuous integration at work. If the developers are continually pulling each
other’s work into their own working copies, and continually testing that nothing has broken, then
distributed development can take place. So, for a developer, the day’s work might be as follows:

8 AM: check out files from master source repository to a local branch on the workstation. Because files

108 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

are not committed unless they pass all tests, the code is clean. The developer selects or is assigned a
user story (requirement) that they will now develop.

8:30 AM: The developer defines a test and starts developing the code to fulfill it.

10 AM: The developer is close to wrapping up the first requirement. They check the source repository.
Their partner has checked in some new code, so they pull it down to their local repository. They run all
the automated tests and nothing breaks, so all is good.

10:30 AM: They complete their first update of the day; it passes all tests on the local workstation. They
commit it to the master repository. The master repository is continually monitored by the build server,
which takes the code created and deploys it, along with all necessary configurations, to a dedicated
build server (which might be just a virtual machine or transient container). All tests pass there (the test
defined as indicating success for the module, as well as a host of older tests that are routinely run
whenever the code is updated).

11:00 AM: Their partner pulls these changes into their working directory. Unfortunately, some changes
made conflict with some work the partner is doing. They briefly consult and figure out a mutually-
acceptable approach.

Controlling simultaneous changes to a common file is only one benefit of continuous integration.
When software is developed by teams, even if each team has its own artifacts, the system often fails to
“come together” for higher-order testing to confirm that all the parts are working correctly together.
Discrepancies are often found in the interfaces between components; when component A calls
component B, it may receive output it did not expect and processing halts. Continuous integration
ensures that such issues are caught early.

6.1.3.3.6. Continuous Integration Choreography

DevOps and continuous delivery call for automating everything that can be automated. This goal led to
the creation of continuous integration managers such as Hudson, Jenkins, Travis CI, and Bamboo. Build
managers may control any or all of the following steps:

* Detecting changes in version control repositories and building software in response

* Alternately, building software on a fixed (e.g., nightly) schedule

* Compiling source code and linking it to libraries

* Executing automated tests

* Combining compiled artifacts with other resources into installable packages

* Registering new and updated packages in the package management repository, for deployment into
downstream environments

* In some cases, driving deployment into downstream environments, including production (this can
be done directly by the build manager, or through the build manager sending a message to a
deployment management tool)

Digital Practitioner Body of Knowledge™ Standard 109

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

Build managers play a critical, central role in the modern, automated pipeline and will likely be a
center of attention for the new Digital Practitioner in their career.

Mom’f:on’ng]

J Y

Deployment
automation & .
Package policy-based Operational system
Management config (various
environments)
Defect Integration
- .
management testing

Figure 39. Deployment

6.1.3.3.7. Continuous Delivery

Once the software is compiled and built, the executable files that can be installed and run
operationally should be checked into a package manager. At that point, the last mile steps can be taken,
and the now tested and built software can be deployed to pre-production or production environments
(see Figure 39, “Deployment”). The software can undergo usability testing, load testing, integration
testing, and so forth. Once those tests are passed, it can be deployed to production.

Moving new code into production has always been a risky procedure. Changing a running system
always entails some uncertainty. However, the practice of Infrastructure as Code coupled with
increased virtualization has reduced the risk. Often, a rolling release strategy is employed so that code
is deployed to small sets of servers while other servers continue to service the load. This requires
careful design to allow the new and old code to co-exist at least for a brief time.

This is important so that the versions of software used in production are well controlled and
consistent. The package manager can then be associated with some kind of deploy tool that keeps track
of what versions are associated with which infrastructure.

Timing varies by organization. Some strive for true “continuous deployment”, in which the new code
flows seamlessly from developer commit through build, test, package, and deploy. Others put gates in
between the developer and check-in to mainline, or source-to-build, or package-to-deploy so that some
human governance remains in the toolchain. This document goes into more detail on these topics in
the section on digital operations.

110 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder
6.1.3.3.8. The Concept of “Release”

Release management, and the concept of a “release”, are among the most important and widely seen
concepts in all forms of digital management. Regardless of working in a cutting-edge Agile startup with
two people or one of the largest banks with a portfolio of thousands of applications, releases for
coordination and communication are likely being used.

What is a “release?”. Betz defined it this way in other work: “A significant evolution in an IT service,
often based on new systems development, coordinated with affected services and stakeholders”.
Release management’s role is to “Coordinate the assembly of IT functionality into a coherent whole
and deliver this package into a state in which the customer is getting the intended value” [31 p. 68, 31
p- 119].

Evidence of Notability

DevOps has not yet been fully recognized for its importance in academic guidance or peer-reviewed
literature. Nevertheless, its influence is broad and notable. Significant publications include [92, 13, 136,
165, 166, 99]. Large international conferences (notably the DevOps Enterprise Summit,
https://itrevolution.com/devops_events/) are dedicated to the event, as well as many smaller local
events under the banner of "DevOpsDays" (https://www.devopsdays.org/).

Limitations

Like Agile, DevOps is primarily valuable in the development of new digital functionality. It has less
relevance for organizations that choose to purchase digital functionality; e.g., as SaaS offerings. While
it includes the fragment "Ops", it does not cover the full range of operational topics covered in the
Operations Competency Area, such as help desk and field services.

Related Topics

Digital Infrastructure

e Infrastructure as Code

Agile Development

Digital Operations

Digital Product Management
* Work Management

* Lean Product Development

6.1.3.4. APIs, Microservices, and Cloud-Native

This document has now covered modern infrastructure, including container-based infrastructure
available via Cloud providers, and application development from waterfall, through Agile, and on to
DevOps. The industry term for the culmination of all of these trends is "cloud-native". The Cloud Native
Computing Foundation (CNCF) defines "cloud-native" as follows:

Digital Practitioner Body of Knowledge™ Standard 111

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

CNCF Cloud-Native Definition

Cloud-native technologies empower organizations to build and run scalable applications in
modern, dynamic environments such as public, private, and hybrid clouds. Containers, service
meshes, microservices, immutable infrastructure, and declarative APIs exemplify this approach.

These techniques enable loosely-coupled systems that are resilient, manageable, and observable.
Combined with robust automation, they allow engineers to make high-impact changes
frequently and predictably with minimal toil [62].

While this document does not cover specific programming languages or techniques, there are leading
practices for building modern applications that are notable and should be understood by all Digital
Practitioners. In software construction a programming language and execution environment must be
chosen, but this choice is only the start. Innumerable design choices are required in structuring
software, and the quality of these choices will affect the software’s ultimate success and value.

Early computer programs tended to be "monolithic"; that is, they were often built as one massive set of
logic and their internal structure might be very complex and hard to understand. (In fact, considerable
research has been performed on the limitations of human comprehension when faced with software
systems of high complexity.) Monolithic programs also did not lend themselves to re-use, and therefore
the same logic might need to be written over and over again. The use of "functions" and re-usable
"libraries" became commonplace, so that developers were not continuously rewriting the same thing.

Two of the most critical concepts in software design are coupling and cohesion. In one of the earliest
discussions of coupling, Ed Yourdon states:

"Coupling [is] the probability that in coding, debugging, or modifying one module, a programmer will
have to take into account something about another module. If two modules are highly coupled, then
there is a high probability that a programmer trying to modify one of them will have to make a change
to the other. Clearly, total systems cost will be strongly influenced by the degree of coupling between
modules." [312]

This is not merely a technical concern; as Yourdon implies, highly-coupled designs will result in higher
system costs.

Cohesion is the opposite idea: that a given module should do one thing and do it well. Software
engineers have been taught to develop highly-cohesive, loosely-coupled systems since at least the early
1970s, and these ideas continue to underlie the most modern trends in digital systems delivery. The
latest evolution is the concept of cloud-native systems, which achieve these ideals through APIs,
microservices, and container-based infrastructure.

6.1.3.4.1. Application Programming Interfaces

Three smaller software modules may be able to do the job of one monolithic program; however, those
three modules must then communicate in some form. There are a variety of ways that this can occur;

112 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

for example, communication may be via a shared data store. The preferred approach, however, is that
communication occur over APIs.

An API is the public entry point in and out of a softwre component. It can be understood as a sort of
contract; it represents an expectation that if you send a message or signal in a precisely specified
format to the API, you will receive a specific, expected response. For example, your online banking
service can be seen as having an API. You send it your name, password, and an indication that you
want your account balance, and it will return your account balance. In pseudocode, the API might look
like:

GetAccountBalance(user_name, password, account_number) returns amount

The modern digital world runs on APIs; they are pervasive throughout digital interactions. They
operate at different levels of the digital stack; your bank balance request might be transmitted by
HTTP, which is a lower-level set of APIs for all web traffic. At scale, APIs present a challenge of
management: how do you cope with thousands of APIs? Mechanisms must be created for
standardizing, inventorying, reporting on status, and many other concerns.

6.1.3.4.2. Microservices

APIs can be accessed in various ways. For example, a developer might incorporate a "library" in a
program she is writing. The library (for example, one that supports trigonometric functions) has a set
of APIs, that are only available if the library is compiled into the developer’s program and is only
accessible if the program itself is running. Also, in this case, the API is dependent on the programming
language; in general, a C++ library will not work in Java.

Increasingly, however, with the rise of the Internet, programs are continually "up" and running, and
available to any other program that can communicate over the Internet, or an organization’s internal
network. Programs that are continually run in this fashion, with attention to their availability and
performance, are called "services". In some cases, a program or service may only be available as a
visual web page. While this is still an API of a sort, many other services are available as direct API
access; no web browser is required. Rather, services are accessed through protocols such as REST over
HTTP. In this manner, a program written in Java can easily communicate with one written in C++. This
idea is not new; many organizations started moving towards Service-Oriented Architecture (SOA) in
the late 1990s and early 2000s. More recently, discussions of SOA have largely been replaced by
attention to microservices.

Sam Newman, in Building Microservices, provides the following definition: "Microservices are small,
autonomous services that work together" [208]. Breaking this down:

¢ "Small" is a relative term

Newman endorses an heuristic that it should be possible to rewrite the microservice in two weeks.
Matthew Skelton and Manuel Pais in Team Topologies [262] emphasize that optimally-sized teams have
an upper bound to their "cognitive capacity"; this is also a pragmatic limit on the size of an effective
microservice.

Digital Practitioner Body of Knowledge™ Standard 113

6.1.

Context I: Individual/Founder Chapter 6. The Body of Knowledge

"Autonomous"” means "loosely coupled" as discussed above, both in terms of the developer’s
perspective as well as the operational perspective

Each microservice runs independently, typically on its own virtual machines or containers.

Newman observes that microservices provide the following benefits:

6.1.

Technology flexibility: as noted above, microservices may be written in any language and yet
communicate over common protocols and be managed in a common framework

Resilience: failure of one microservice should not result in failure of an entire digital product

Scalability: monolithic applications typically must be scaled as one unit; with microservices, just
those units under higher load can have additional capacity allocated

Ease of deployment: because microservices are small and loosely coupled, change is less risky; see
The DevOps Consensus as Systems Thinking

Organizational alignment: large, monolithic codebases often encounter issues with unclear
ownership; microservices are typically each owned by one team, although this is not a hard and
fast rule

Composability: microservices can be combined and re-combined ("mashed up") in endless
variations, both within and across organizational boundaries; an excellent example of this is
Google Maps, which is widely used by many other vendors (e.g. Airbnb™, Lyft™) when location
information is needed

Replaceability: because they are loosely coupled and defined by their APIs, a microservice can be
replaced without replacing the rest of a broader system; for example, a microservice written in
Java can be replaced by one written in Go, as long as the APIs remain identical

3.4.3. The Twelve-Factor App

A number of good practices are associated with microservices success. One notable representation of
this broader set of concerns is known as the "twelve-factor app" (see https://12factor.net/). To quote
[302]:

114

The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

The twelve-factor app is a methodology for building SaaS apps that:
» Use declarative formats for setup automation, to minimize time and cost for new developers
joining the project

» Have a clean contract with the underlying OS, offering maximum portability between
execution environments

 Are suitable for deployment on modern cloud platforms, obviating the need for servers and
systems administration

* Minimize divergence between development and production, enabling continuous
deployment for maximum agility

» Can scale up without significant changes to tooling, architecture, or development practices
The twelve-factor methodology can be applied to apps written in any programming language,
and which use any combination of backing services (database, queue, memory cache, etc.).
Excerpts from the Twelve-Factor App Website
1. Codebase
One codebase tracked in revision control, many deploys

A copy of the revision tracking database is known as a code repository, often shortened to code
repo or just repo ... A codebase is any single repo (in a centralized revision control system like
Subversion), or any set of repos who share a root commit (in a decentralized revision control
system like Git). Twelve-factor principles imply continuous integration.

2. Dependencies
Explicitly declare and isolate dependencies

A twelve-factor app never relies on implicit existence of system-wide packages. It declares all
dependencies, completely and exactly, via a dependency declaration manifest. Furthermore, it uses
a dependency isolation tool during execution to ensure that no implicit dependencies “leak in”
from the surrounding system. The full and explicit dependency specification is applied uniformly
to both production and development.

3. Configuration management
Store config in the environment

An app’s config is everything that is likely to vary between deploys (staging, production, developer
environments, etc.). Apps sometimes store config as constants in the code. This is a violation of
twelve-factor, which requires strict separation of config from code. Config varies substantially
across deploys, code does not. Typical configuration values include server or hostnames, database

Digital Practitioner Body of Knowledge™ Standard 115

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

names and locations, and (critically) authentication and authorization information (e.g., usernames
and passwords, or private/public keys).

4. Backing services
Treat backing services as attached resources

A backing service [aka a resource] is any service the app consumes over the network as part of its
normal operation. Examples include data stores (such as MySQL or CouchDB®),
messaging/queueing systems (such as RabbitMQ® or Beanstalkd), SMTP services for outbound
email (such as Postfix), and caching systems (such as Memcached).

In addition to these locally-managed services, the app may also have services provided and
managed by third parties. The code for a twelve-factor app makes no distinction between local and
third-party services. To the app, both are attached resources, accessed via a URL or other
locator/credentials stored in the config. A deploy of the twelve-factor app should be able to swap
out a local MySQL database with one managed by a third party - such as Amazon Relational
Database Service (Amazon RDS) - without any changes to the app’s code ... only the resource handle
in the config needs to change.

5. Build, release, run
Strictly separate build and run stages

A codebase is transformed into a (non-development) deploy through three [strictly separated]
stages: The build stage is a transform which converts a code repo into an executable bundle known
as a build. Using a version of the code at a commit specified by the deployment process, the build
stage fetches vendors' dependencies and compiles binaries and assets ... The release stage takes the
build produced by the build stage and combines it with the deploy’s current config. The resulting
release contains both the build and the config and is ready for immediate execution in the
execution environment ... The run stage (also known as “runtime”) runs the app in the execution
environment, by launching some set of the app’s processes against a selected release.

6. Processes
Execute the app as one or more stateless processes

Twelve-factor processes are stateless and share nothing. Any data that needs to persist must be
stored in a stateful backing service, typically a database ... The memory space or file system of the
process can be used as a brief, single-transaction cache. For example, downloading a large file,
operating on it, and storing the results of the operation in the database. The twelve-factor app
never assumes that anything cached in memory or on disk will be available on a future request or
job — with many processes of each type running, chances are high that a future request will be
served by a different process.

116 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder
1. Port binding
Export services via port binding

Web apps are sometimes executed inside a web server container. For example, PHP apps might run
as a module inside Apache® HTTPD, or Java apps might run inside Tomcat ... The twelve-factor app
is completely self-contained and does not rely on runtime injection of a web server into the
execution environment to create a web-facing service. The web app exports HTTP as a service by
binding to a port, and listening to requests coming in on that port ... In a local development
environment, the developer visits a service URL like http://localhost:5000/ to access the service
exported by their app. In deployment, a routing layer handles routing requests from a public-facing
hostname to the port-bound web processes.

2. Concurrency
Scale out via the process model

Any computer program, once run, is represented by one or more processes. Web apps have taken a
variety of process-execution forms. For example, PHP processes run as child processes of Apache,
started on demand as needed by request volume. Java processes take the opposite approach, with
the Java Virtual Machine (JVM) providing one massive [process] that reserves a large block of
system resources (CPU and memory) on startup, with concurrency managed internally via threads.
In both cases, the running process(es) are only minimally visible to the developers of the app ... In
the twelve-factor app, processes are a first-class citizen. Processes in the twelve-factor app take
strong cues from the UNIX process model for running service daemons. Using this model, the
developer can architect their app to handle diverse workloads by assigning each type of work to a
process type. For example, HTTP requests may be handled by a web process, and long-running
background tasks handled by a worker process.

3. Disposability
Maximize robustness with fast startup and graceful shutdown

The twelve-factor app’s processes are disposable, meaning they can be started or stopped at a
moment’s notice. This facilitates fast elastic scaling, rapid deployment of code or config changes,
and robustness of production deploys ... Processes should strive to minimize startup time. Ideally, a
process takes a few seconds from the time the launch command is executed until the process is up
and ready to receive requests or jobs ... Processes shut down gracefully when they receive a
SIGTERM signal from the process manager. For a web process, graceful shutdown is achieved by
ceasing to listen on the service port (thereby refusing any new requests), allowing any current
requests to finish, and then exiting ... For a worker process, graceful shutdown is achieved by
returning the current job to the work queue ... Processes should also be robust against sudden
death ... A twelve-factor app is architected to handle unexpected, non-graceful terminations.

4. Dev/prod parity

Keep development, staging, and production as similar as possible

Digital Practitioner Body of Knowledge™ Standard 117

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

Historically, there have been substantial gaps between development (a developer making live edits
to a local deploy of the app) and production (a running deploy of the app accessed by end users).
These gaps manifest in three areas ... The time gap: A developer may work on code that takes days,
weeks, or even months to go into production ... The personnel gap: Developers write code,
operations engineers deploy it ... The tools gap: Developers may be using a stack like NGINX™,
SQLite, and OS X, while the production deploy uses Apache, MySQL, and Linux ... The twelve-factor
app is designed for continuous deployment by keeping [these gaps] between development and
production small.

Traditional app Twelve-factor app
Time between deploys Weeks Hours
Code authors versus code Different people Same people
deployers
Dev versus production Divergent As similar as possible
environments
5. Logs

Logs are the stream of aggregated, time-ordered events collected from the output streams of all
running processes and backing services. Logs in their raw form are typically a text format with one
event per line (though backtraces from exceptions may span multiple lines). Logs have no fixed
beginning or end, but flow continuously as long as the app is operating ... A twelve-factor app
never concerns itself with routing or storage of its output stream ... Instead, each running process
writes its event stream, unbuffered, to stdout. During local development, the developer will view
this stream in the foreground of their terminal to observe the app’s behavior ... In staging or
production deploys, each process’ stream will be captured by the execution environment, collated
together with all other streams from the app, and routed to one or more final destinations for
viewing and long-term archival.

6. Admin processes

The process formation is the array of processes that are used to do the app’s regular business (such
as handling web requests) as it runs. Separately, developers will often wish to do one-off
administrative or maintenance tasks for the app, such as:

o Running database migrations ...

o Running a console ... to run arbitrary code or inspect the app’s models against the live database

o Running one-time scripts committed into the app’s repo ...

One-off admin processes should be run in an identical environment as the regular long-running
processes of the app. They run against a release, using the same codebase and config as any process
run against that release. Admin code must ship with application code to avoid synchronization
issues.

118 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder
It is strongly recommended that the reader review the unabridged set of guidelines at 12Factor.net.
Evidence of Notability

Cloud-native approaches are at the time of publication receiving enormous industry attention.
Kubecon (the leading conference of the CNCF) attracts wide interest, and all major cloud providers and
many smaller firms participate in the ecosystem. All major cloud providers and scores of smaller firms
participate in the CNCF ecosystem.

Limitations

Trillions of dollars of IT investment have been made in older architectures: bare-metal computing,
tightly-coupled systems, stateful applications, and every imaginable permutation of not following
guidance such as the twelve-factor methodology. The Digital Practitioner should be prepared to
encounter this messy real world.

Related Topics

Digital Infrastructure

* Configuration Management and Infrastructure as Code
* Application Basics

» Agile Development

* DevOps

* Digital Operations

6.1.3.5. Securing Applications and Digital Products

Description

Application security includes a broad range of specialized areas, including secure software design and
development, threat modeling, vulnerability assessment, penetration testing, and the impact of
security on DevOps (and vice versa). As with other aspects of security, the move to cloud computing
brings some changes to application security. The CSA guidance on cloud security specifically addresses
application security considerations in cloud environments in domain 10 of their latest cloud security
guidance.

An important element of application security is Secure Software Development Lifecycle (SSDLC), an
approach toward developing software in a secure manner. Numerous frameworks and resources are
available to follow, including from Microsoft (Security Development Lifecycle), NIST (NIST SP 800-64
Rev. 2), ISO/IEC (ISO/IEC 27034-1:2011), and the Open Web Application Security Project (OWASP Top
Ten). In addition, information resources available from MITRE including Common Weaknesses
Enumeration (CWE) and Common Vulnerability and Exposures (CVE) are helpful to development
teams striving to develop secure code.

A basic approach to secure design and development will include these phases: Training — Define —

Digital Practitioner Body of Knowledge™ Standard 119

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge
Design — Develop — Test.”) A component of an SSDLC is threat modeling. Good resources on threat

modeling are available from Microsoft and from The Open Group.

It is worth noting that the move to cloud computing affects all aspects of an SSDLC, because cloud
services abstract various computing resources, and there are automation approaches used in cloud
services that fundamentally change the ways in which software is developed, tested, and deployed in
cloud services versus in on-premises computing. In addition, there are significant differences in the
degree of visibility and control that is provided to the customer, including availability of system logs at
various points in the computing stack.

Application security will also include secure deployment, encompassing code review, unit, regression,
and functional testing, and static and dynamic application security testing.

Other key aspects of application security include vulnerability assessment and penetration testing.
Both have differences in cloud versus on-premises, as a customer’s ability to perform vulnerability
scans and penetration tests may be restricted by contract by the CSP, and there may be technical issues
relating to the type of cloud service, single versus multi-tenancy of the application, and so on.

Evidence of Notability

To be added in a future version.
Limitations

To be added in a future version.
Related Topics

» Security Development Lifecycle (Microsoft)

» Threat Modeling (Microsoft)

* Open Enterprise Security Architecture (O-ESA) (The Open Group)

 Security Considerations in the System Development Life Cycle (NIST)

» Security Guidance for Critical Areas of Focus in Cloud Computing (CSA)

» Application Security - Part 1: Overview and Concepts, ISO/IEC27034-1:2011 (ISO/IEC)
* OWASP Top 10

* https://cwe.mitre.org/, Common Weaknesses Enumeration, Common Vulnerability, and Exposures
(MITRE)

6.1.4. Context | Conclusion

Preparing for the state transition to team.

120 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge

6.1.4.1. Architectural View

6.1. Context I: Individual/Founder

The DPBoK contexts can be represented as subsets of The Open Group IT4IT Reference Architecture
([278]). The IT4IT Reference Architecture is fully elaborated to support the largest digital delivery
organizations, and includes components that are critical from the earliest days of an organization’s
evolution. A proposed implementation order for IT4IT functional components is mapped onto the
DPBoK Standard at the end of each context.

Strategy to
Portfolio

Enterprise
Architecture

"0 Component
Archi-
tecture

Policy
Component

Requirement to Deploy

Requirement
Component

Proposal

Component

Scope
Agree-

ment

Portfolio
Demand
Component

Service
Portfolio
Component

Con-
ceptual

Source

Project

Component

Service
Design

Component

Service

Figure 40. Architectural View

Logical
Service

Defect
Component

Defect

Test
Component

Build
Package

Release
Composition
Component

IT@)T

Copyright © 2017 The Open Group

This diagram was developed/published by the IT4IT™ Forum, a Forum of The Open Group®

Request to Fulfill

Added in
this context

Detect to Correct

Added in prior
contexts

1
Not used in |
this context |

1

Offer Consumption Component

Offer
Management
Component

Catalog
Composition

_‘

Request

Rationalization

7]

Chargeback/
Showback
Component

Problem Incident
Component Component
Problem,
Known
Error
Service Level Event
Component Component
Diagnostics & Service
Remediation Monitoring
Component Component

Fulfillment
Execution

Service

Release

Change
Control

Service
Monitor

Actual

Blueprint

Desired
Service

Service

In this first context, the automation requirements are minimal but present. The ability to track the
state of the digital service across a rudimentary build/run pipeline is essential from the earliest efforts.

The digital nucleus should implement:

» Source Control Component

* Build Component

* Build Package Component

* Configuration Management Component

There is some ambiguity in the terminology, in that Source Control and Package Management are both
forms of Configuration Management in an abstract sense. However, neither of them covers
deployment to operational systems; additional capability is required for that.

Context I "Architectural View" Learning Objectives

* Identify the IT4IT components suitable for Context I

Digital Practitioner Body of Knowledge™ Standard

121

6.2. Context II: Team Chapter 6. The Body of Knowledge
Related Topics

* Configuration Management and Infrastructure as Code

* DevOps Technical Practices

6.2. Context Il: Team

Context Description

The hypothetical startup or product prototype has met with some success, and is now supported by a
team. (If the founder was based in an enterprise, they have been promoted to team lead.) The team has
a single mission and a cohesive identity, but still does not need a lot of overhead to get the job done.

Even with a few new people comes the need to more clearly establish product direction, so people are
building the right thing. The team is all in the same location, and can still communicate informally, but
there is enough going on that it needs a more organized approach to getting work done.

Things are getting larger and more complex. The product has a significant user base, and the founder
is increasingly out meeting with users, customers, and investors. As a result, she isn’t in the room with
the product team as much any more; in fact, she just named someone to be “product owner”. Finally,
the product is not valuable if people cannot understand how best to use it, or if it is not running and
the right people can’t get to it.

The practices and approaches established at the team level are critical to the higher levels of scale
discussed in Contexts III and IV. Context II focuses on small, cross-functional, outcome-oriented teams,
covering product management, work management, shared mental models, visualization, and systems
monitoring. It covers collaboration and customer intimacy, and the need to limit work-in-process, and
blameless cultures where people are safe to fail and learn. All of these are critical foundations for
future growth; scaling success starts with building a strong team level.

Competency Area: Product Management

The original product developer is spending more time with investors and customers, and maintaining
alignment around the original product vision is becoming more challenging as they are pulled in
various directions. They need some means of keeping the momentum here. The concept of “product
management” represents a rich set of ideas for managing the team’s efforts at this stage.

Competency Area: Work Management

Even with a small team of five people (let alone eight or nine), it is too easy for balls to get dropped as
work moves between key contributors. The team probably doesn’t need a complex software-based
process management tool yet, but it does need some way of managing work-in-process. More generally,
work takes many forms and exists as a concept at different scales.

One of the most important aspects of DevOps and Agile is "systems thinking", and even a small team
building one digital product can be viewed as a system. The term "information system" has a long

122 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.2. Context II: Team

history, but what is a "system"? What is feedback? There is a rich body of knowledge describing these
topics.

Competency Area: Operations Management

Since Section 6.1.3, “Application Delivery”, application developers have been running the product and
even answering the occasional phone call from customers. The team is now big enough that it starts to
become more specialized. Dedicated support staff answer phone calls, and even if the team rotates
operational responsibilities across developers, they are a distinct kind of “interrupt-driven” work that
is not compatible with heads-down, focused software development. Complex digital systems are fragile
and tend to fail; how you learn (or don’t) from those failures is a critical question. The learnings gained
from scaling systems in fact become a new source of demand on your product teams' development
time.

6.2.1. Product Management

Area Description

As a company or team grows, how does it ensure that newcomers share the same vision that inspired
the organization’s creation? This is the goal of product management as a formalized practice.

Product strategy was largely tacit in Context I. The founder or individual used product management
and product discovery practices, and may well be familiar with the ideas here, but the assumption is
that they did not explicitly formalize their approach to them. Now the team needs a more prescriptive
and consistent approach to discovering, defining, designing, communicating, and executing a product
vision.

This Competency Area defines and discusses product management, and distinguishes it from project
and process management. It covers how product teams are formed and what practices and attitudes
should be established quickly.

Product management has various schools of thought and practices, including Gothelf’s Lean UX,
Scrum, and more specific techniques for product “discovery”. The concepts of design and design
thinking are important philosophical foundations.

6.2.1.1. Product Management Basics

Description

Before work, before operations, there must be a vision of the product. A preliminary vision may exist,
but now as the organization grows, the Digital Practitioner needs to consider further how they will
sustain that vision and establish an ongoing capability for realizing it. Like many other topics in this
document, product management is a significant field in and of itself.

Historically, product management has not been a major theme in enterprise IT management. IT
systems started by serving narrow purposes, often “back-office” functions such as accounting or
materials planning. Mostly, such systems were managed as projects assembled on a temporary basis,

Digital Practitioner Body of Knowledge™ Standard 123

6.2. Context II: Team Chapter 6. The Body of Knowledge

resulting in the creation of a system to be “thrown over the wall” to operations. Product management,
on the other hand, is concerned with the entire lifecycle. The product manager (or owner, in Scrum
terms) cares about the vision, its execution, the market reaction to the vision (even if an internal
market), the health, care, and feeding of the product, and the product’s eventual sunset or
replacement.

In the enterprise IT world, “third-party” vendors (e.g., IBM®) providing the back-office systems had
product management approaches, but these were external to the IT operations. Nor were IT-based
product companies as numerous 40 years ago as they are today; as noted in the section on Digital
Transformation, the digital component of modern products continues to increase to the point where it
is often not clear whether a product is “IT” or not.

Reacting to market feedback and adapting product direction is an essential role of the product owner.
In the older model, feedback was often unwelcome, as the project manager typically was committed to
the open-loop dead reckoning of the project plan and changing scope or direction was seen as a failure,
more often than not.

Now, it is accepted that systems evolve, perhaps in unexpected directions. Rapidly testing, failing fast,
learning, and pivoting direction are all part of the lexicon, at least for market-facing IT-based products.
And even back-office IT systems with better understood scope are being managed more as systems (or
products) with lifecycles, as opposed to transient projects. (See the Amazon discussion, below.)

6.2.1.1.1. Defining Product Management

In order to define product management, the product first needs to be defined. Previously, it was
established that products are goods, services, or some combination, with some feature that provides
value to some consumer. BusinessDictionary.com defines it as follows:

[A Product is] A good, idea, method, information, object, or service created as a
result of a process and serves a need or satisfies a want. It has a combination
of tangible and intangible attributes (benefits, features, functions, uses) that a
seller offers a buyer for purchase. For example, a seller of a toothbrush offers
the physical product and also the idea that the consumer will be improving the
health of their teeth. A good or service [must] closely meet the requirements of
a particular market and yield enough profit to justify its continued existence.

— BusinessDictionary.com

Product management, according to the same source, is:

124 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.2. Context II: Team

The organizational structure within a business that manages the development,
marketing, and sale of a product or set of products throughout the product
lifecycle. It encompasses the broad set of activities required to get the product
to market and to support it thereafter.

— BusinessDictionary.com

Product management in the general sense often reports to the Chief Marketing Officer (CMO). It
represents the fundamental strategy of the firm, in terms of its value proposition and viability. The
product needs to reflect the enterprise’s strategy for creating and maintaining customers.

Product strategy for internally-facing products is usually not defined by the enterprise CMO. If it is a
back-office product, then “business within a business” thinking may be appropriate. (Even the payroll
system run by IT for human resources is a “product”, in this view.) In such cases, there still is a need
for someone to function as an “internal CMO” to the external “customers".

With Digital Transformation, all kinds of products have increasing amounts of “IT” in them. This
means that an understanding of IT, and ready access to any needed IT specialty skills, is increasingly
important to the general field of product management. Product management includes R&D, which
means that there is considerable uncertainty. This is of course also true of IT systems development.

Perhaps the most important aspect of product design is focusing on the user, and what they need. The
concept of outcome is key. This is easier said than done. The general problem area is considered
marketing, a core business school topic. Entire books have been written about the various tools and
techniques for doing this, from focus groups to ethnographic analysis.

However, Marty Cagan recommends distinguishing product management from product marketing. He
defines the two as follows:

The product manager is responsible for defining — in detail — the product to be built and validating that
product with real customers and users. The product marketing person is responsible for telling the world
about that product, including positioning, messaging and pricing, managing the product launch,
providing tools for the sales channel to market and sell the product, and for leading key programs such as
online marketing and influencer marketing programs [53 pp. 10-11].

Criticisms of overly marketing-driven approaches are discussed below.
6.2.1.1.2. Process, Project, and Product Management
In the remainder of this document, we will continually encounter three major topics:

* Product Management (this Competency Area)
* Process Management (covered in Section 6.3.1, “Coordination and Process”)

* Project Management (covered in Section 6.3.1, “Coordination and Process” and Section 6.3.2,
“Investment and Portfolio”)

Digital Practitioner Body of Knowledge™ Standard 125

6.2. Context II: Team Chapter 6. The Body of Knowledge

They have an important commonality: all of them are concepts for driving results across
organizations. Here are some of the key differences between process, project, and product
management in the context of digital services and systems:

Table 3. Process, Project, and Product Management

Process Project Product

Task-oriented Deliverable-oriented Outcome-oriented

Repeatable with a high degree of Executable with a medium Significant component of R&D,
certainty degree of certainty less certain of outcome —

empirical approaches required

Fixed time duration, relatively Limited time duration, often No specific time duration; lasts
brief (weeks/months) scoped to a year or less as long as there is a need

Fixed in form, no changes Difficult to change scope or Must accommodate market
usually tolerated direction, unless specifically set feedback and directional change

up to accommodate

Used to deliver service value and Often concerned with system Includes service concept and
operate system (the “Ops” in design and construction, but system design, construction,
DevOps) typically not with operation (the operations, and retirement (both
“Dev” in DevOps) “Dev” and “Ops”)
Process owners are concerned Project managers are trained in Product managers need to have
with adherence and continuous resource and timeline project management skills as
improvement of the process; management, dependencies, and well as understanding market
otherwise can be narrow in scheduling; they are not typically dynamics, feedback, building
perspective incented to adopt a long-term long-term organizational
perspective capability
Resource availability and Resources are specifically Resources are assigned long-
fungibility is assumed planned for, but their term to the product (work is

commitment is temporary (team “brought to the team”)
is “brought to the work”)

The above distinctions are deliberately exaggerated, and there are of course exceptions (short projects,
processes that take years). However, it is in the friction between these perspectives we see some of the
major problems in modern IT management. For example, an activity which may be a one-time task or
a repeatable process results in some work product - perhaps an artifact (see Figure 41, “Activities
Create Work Products”).

Activities

(including | > | Work products

Processes)

Figure 41. Activities Create Work Products

126 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.2. Context II: Team

The consumer or stakeholder of that work product might be a project manager.

Project management includes concern for both the activities and the resources (people, assets,
software) required to produce some deliverable (see Figure 42, “Projects Create Deliverables with
Resources and Activities”).

Projects)

Activities Resources Q Deliverables

—

Figure 42. Projects Create Deliverables with Resources and Activities

The consumer of that deliverable might be a product manager. Product management includes concern
for projects and their deliverables, and their ultimate outcomes, either in the external market or
internally (see Figure 43, “Product Management may Use Projects”).

r Products \

Projects

r
1] Deliverables] :> Outcomes

Activities ResourceJ

_J

Figure 43. Product Management may Use Projects

Notice that product management may directly access activities and resources. In fact, earlier-stage
companies often do not formalize project management (see Figure 44, “Product Management
Sometimes does not Use Projects”).

Products)

[Hctfw‘tfesJ Resources Deliverables | [::> Outcomes

-

Figure 44. Product Management Sometimes does not Use Projects

In our scenario, you are now on a tight-knit, collaborative team. You should think in terms of
developing and sustaining a product. However, projects still exist, and sometimes you may find
yourself on a team that is funded and operated on that basis. You also will encounter the concept of
“process” even on a single team; more on that in Section 6.2.2, “Work Management”. We will go further
into projects and process management in Context III.

Digital Practitioner Body of Knowledge™ Standard 127

6.2. Context II: Team Chapter 6. The Body of Knowledge
6.2.1.1.3. Productization as a Strategy at Amazon

Amazon (the online retailer) is an important influence in the modern trend towards product-centric IT
management. First, all Amazon teams were told to assume that the functionality being built might at
some point be offered to external customers [3].

Second, a widely reported practice at Amazon.com is the limitation of product teams to between five
and eight people, the number that can be fed by “two pizzas” (depending on how hungry they are) [
110]. It has long been recognized in software and IT management that larger teams do not necessarily
result in higher productivity. The best known statement of this is "Brooks' Law” from The Mythical
Man-Month, that “adding people to a late project will make it later” [42].

The reasons for “Brooks' Law” have been studied and analyzed (see, for example, [183, 59]) but in
general, it is due to the increased communication overhead of expanded teams. Product design work
(of which software development is one form) is creative and highly dependent on tacit knowledge,
interpersonal interactions, organizational culture, and other “soft” factors. Products, especially those
with a significant IT component, can be understood as socio-technical systems, often complex. This
means that small changes to their components or interactions can have major effects on their overall
behavior and value.

This, in turn, means that newcomers to a product development organization can have a profound
impact on the product. Getting them “up to speed” with the culture, mental models, and tacit
assumptions of the existing team can be challenging and rarely is simple. And the bigger the team, the
bigger the problem. The net result of these two practices at Amazon (and now General Electric and
many other companies) is the creation of multiple nimble services that are decoupled from each other,
constructed and supported by teams appropriately sized for optimal high-value interactions.

Finally, Amazon founder Jeff Bezos mandated that all software development should be service-
oriented. That means that some form of standard API was required for all applications to communicate
with each other. Amazon’s practices are a clear expression of cloud-native development.

Evidence of Notability

Product management has a dedicated professional association, the Product Development and
Management Association (www.pdma.org.) Notable authors include Steve Blank, Marty Cagan, and Jeff
Gothelf. The topic as a whole is closely related to the general topic of R&D. There are many meetups,
conferences, and other events held under various banners such as Agile development.

Limitations

Product management tends to assume the existence of a market, and customers whose reaction is
unpredictable. This is not always the case in digital systems. Sometimes, digital artifacts and
capabilities have greater constraints, and must follow established specifications.

Related Topics

* Digital Value

128 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.2. Context II: Team

» Application Delivery
* Operational Component
* Investment

¢ Architectural Coordination

6.2.1.2. Product Discovery

Description

Now that we have discussed the overall concept of product management and why it is important, and
how product teams are formed, we can turn more specifically to the topics of product discovery and
product design (see Section 6.2.1.3, “Product Design”). We have previously discussed the overall digital
business context, as a startup founder might think of the problem. But the process of discovery
continues as the product idea is refined, new business problems are identified, and solutions (such as
specific feature ideas) are designed and tested for outcomes.

NOTE This guidance favors the idea that products are “discovered” as well as "designed”.

The presence of a section entitled “product discovery” in this document is a departure from other IT
management textbooks. “Traditional” models of IT delivery focus on projects and deliverables,
concepts we touched on previously but that we will not explore in depth until later in the document.
However, the idea of “product discovery” within the large company is receiving more and more
attention. Even large companies benefit when products are developed with tight-knit teams using fast
feedback.

For our discussion here, the challenge with the ideas of projects and deliverables is that they represent
approaches that are more open-loop, or at least delayed in feedback. Design processes do not perform
well when feedback is delayed. System intent, captured as a user story or requirement, is only a
hypothesis until tested via implementation and user confirmation.

6.2.1.2.1. Formalizing Product Discovery

In Section 6.1.3, “Application Delivery”, we needed to consider the means for describing system intent.
Even as a bare-bones startup, some formalization of this starts to emerge, at the very least in the form
of test-driven development (see Figure 45, “Product Discovery Tacit”).

Digital Practitioner Body of Knowledge™ Standard 129

6.2. Context II: Team Chapter 6. The Body of Knowledge

Customer needs
(informally
understood)

Test-driven Source Build Package
-’ ~.-
development control management management

—~

Production

Figure 45. Product Discovery Tacit

But, the assumption in our emergence model is that more formalized product management emerges
with the formation of a team. As a team, we now need to expand “upstream” of the core delivery
pipeline, so that we can collaborate and discover more effectively. Notice the grey box in Figure 46,
“Product Discovery Explicit”.

Customer needs

ey
Product
discovery
techniques

Test-driven Source Build Package
development P control [T management > management

T

Production

Figure 46. Product Discovery Explicit

130 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.2. Context II: Team

The most important foundation for your newly formalized product discovery capability is that it must
be empirical and hypothesis-driven. Too often, product strategy is based on the Highest Paid Person’s
Opinion (HiPPO).

The problem with relying on “gut feeling” or personal opinions is that people — regardless of
experience or seniority — perform poorly in assessing the likely outcome of their product ideas. A
well-known case is the initial rejection of Amazon shopping cart suggestions [179]. Some well-known
research on this topic was conducted by Microsoft’s Ronny Kohavi. In this research, Kohavi and team
determined that “only about 1/3 of ideas improve the metrics they were designed to improve” [170]. As
background, the same report cites that:

» "Netflix considers 90% of what they try to be wrong”

* “75% of important business decisions and business improvement ideas either have no impact on
performance or actually hurt performance” according to Qualpro (a consultancy specializing in
controlled experiments)

It is, therefore, critical to establish a strong practice of data-driven experimentation when forming a
product team and avoid any cultural acceptance of “gut feel” or deferring to HiPPOs. This can be a
difficult transition for the company founder, who has until now served as the de facto product
manager.

A useful framework, similar to Lean Startup is proposed by Spotify™, in the “DIBB” model:

e Data
¢ Insight
e Belief

* Bet

Data leads to insight, which leads to a hypothesis that can be tested (i.e., “bet” on — testing hypotheses
is not free). We discuss issues of prioritization further in Section 6.2.2, “Work Management”, in the
section on cost of delay.

Don Reinertsen (whom we will read more about in Competency Area 5) emphasizes that such
experimentation is inherently variable. We can’t develop experiments with any sort of expectation that
they will always succeed. We might run 50 experiments, and only have two succeed. But if the cost of
each experiment is $10,000, and the two that succeeded earned us $1 million each, we gained:

$ 2,000,000
$ — 500,000

$ 1,500,000

Not a bad return on investment! (see [230], Section 6.2.1, “Product Management”, for a detailed,
mathematical discussion, based on options and information theory). Roman Pichler, in Agile Product

Digital Practitioner Body of Knowledge™ Standard 131

6.2. Context II: Team Chapter 6. The Body of Knowledge

Management with Scrum, describes “old-school” versus “new-school” product management as in Table
4, “Old School versus New School Product Management” (summarized from [219], p.xii).

Table 4. Old School versus New School Product Management

0Old School New School

Shared responsibility Single product owner

Detached/distant product management Product owner on the Scrum team

Extensive up-front research Minimal up-front work to define rough vision
Requirements frozen early Dynamic backlog

Late feedback due to lengthy release cycle Early and frequent releases drive fast feedback,

resulting in customer value

6.2.1.2.2. Product Discovery Techniques

There are a wide variety of techniques and even “schools” of product discovery and design. This
section considers a few representatives. At the team level, such techniques must be further formalized.
The techniques are not mutually-exclusive; they may be complementary. User Story Mapping was
previously mentioned. In product discovery terms, User Story Mapping is a form of persona analysis.
But that is only one of many techniques. Roman Pichler mentions “Vision Box and Trade Journal
Review” and the “Kano Model” [219 p. 39]. Here, let’s discuss:

* “Jobs to be Done” analysis
* Impact mapping

* Business analysis and architecture

Jobs to Be Done

The “Jobs to be Done” framework was created by noted Harvard professor Clayton Christensen, in part
as a reaction against conventional marketing techniques that:

"frame customers by attributes - using age ranges, race, marital status, and other categories that
ultimately create products and entire categories too focused on what companies want to sell, rather than
on what customers actually need" [61].

“Some products are better defined by the job they do than the customers they serve”, in other words
[286]. This is in contrast to many kinds of business and requirements analysis that focus on identifying
different user personas (e.g., 45-55 married Black woman with children in the house). Jobs to be Done
advocates argue that “The job, not the customer, is the fundamental unit of analysis” and that
customers “hire” products to do a certain job [60].

To apply the Jobs to be Done approach, Des Traynor suggests filling in the blanks in the following [286]:
People hire your product to do the job of ---—--— every -------- — when -—--------- . The other applicants for
this job are , , and , but your product will always get the job because of ----—--- .

132 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Understanding the alternatives people have is key. It is possible that the job can be fulfilled in multiple
different ways. For example, people may want certain software to be run. This job can be undertaken
through owning a computer (e.g., having a data center). It can also be managed by hiring someone
else’s computer (e.g., using a cloud provider). Not being attentive and creative in thinking about the
diverse ways jobs can be done places you at risk for disruption.

Impact Mapping

Understanding the relationship of a given feature or component to business objectives is critical. Too
often, technologists (e.g., software professionals) are accused of wanting “technology for technology’s
sake”.

Showing the “line of sight” from technology to a business objective is, therefore, critical. Ideally, this
starts by identifying the business objective. Gojko Adzic’s Impact Mapping: Making a big impact with
software products and projects [7] describes a technique for doing so:

An impact map is a visualization of scope and underlying assumptions, created collaboratively by senior
technical and business people.

Starting with some general goal or hypothesis (e.g., generated through Lean Startup thinking), build a
“map” of how the goal can be achieved, or hypothesis can be measured. A simple graphical approach
can be used, as in Figure 47, “Impact Map”.

Retain banking
customers

T

Stay current
with online
sErVices

Home PC-] Sc:sr'm" media

Maintain public
rmage

Mobile services j
based services

presence
i05 app Android app :;i::::;

Figure 47. Impact Map

Impact mapping is similar to mind mapping, and some drawing tools such as Microsoft

NOTE
Visio™ come with “Mind Mapping” templates.

Digital Practitioner Body of Knowledge™ Standard 133

6.2. Context II: Team Chapter 6. The Body of Knowledge

The most important part of the impact map is to answer the question “why are we doing this?”. The
impact map is intended to help keep the team focused on the most important objectives, and avoid less
valuable activities and investments.

For example, in the above diagram, we see that a bank may have an overall business goal of customer
retention. (It is much more expensive to gain a new customer than to retain an existing one, and
retention is a metric carefully measured and tracked at the highest levels of the business.)

Through focus groups and surveys, the bank may determine that staying current with online services
is important to retaining customers. Some of these services are accessed by home PCs, but increasingly
customers want access via mobile devices.

These business drivers lead to the decision to invest in online banking applications for both the
Apple® and Android™ mobile platforms. This decision, in turn, will lead to further discovery, analysis,
and design of the mobile applications.

The Business Analysis Body of Knowledge® (BABOK®)

One well-established method for product discovery is that of business analysis, formalized in the
Business Analysis Body of Knowledge (BABOK), from the International Institute of Business Analysis
[143].

The BABOK defines business analysis as (p.442):

The practice of enabling change in the context of an enterprise by defining needs and recommending
solutions that deliver value to stakeholders.

The BABOK is centrally concerned with the concept of requirements, and classifies them as follows:

* Business requirements

Stakeholder requirements
* Solution requirements
o Functional requirements
- Non-functional requirements
* Transition requirements
The BABOK also provides a framework for understanding and managing the work of business analysts;
in general, it assumes that a Business Analyst capability will be established and that maturing such a
capability is a desirable thing. This may run counter to the Scrum ideal of cross-functional, multi-

skilled teams. Also as noted above, the term "requirements” has fallen out of favor with some Agile
thought leaders.

134 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.2. Context II: Team
6.2.1.3. Product Design

Once we have discovered at least a direction for the product’s value proposition, and have started to
understand and prioritize the functions it must perform, we begin the activity of design. Design, like
most other topics in this document, is a broad and complex area with varying definitions and schools
of thought. The Herbert Simon quote at the beginning of this section is frequently cited.

Design is an ongoing theme throughout the humanities, encountered in architecture (the non-IT
variety), art, graphics, fashion, and commerce. It can be narrowly focused, such as the question of
what color scheme to use on an app or web page. Or it can be much more expansive, as suggested by
the field of design thinking. We will start with the expansive vision and drill down into a few topics.

6.2.1.3.1. Design Thinking

Design thinking is a recent trend with various definitions, but in general, combines a design sensibility
with problem solving at significant scale. It usually is understood to include a significant component of
systems thinking.

Design thinking is the logical evolution of disciplines such as user interface design when such designs
encounter constraints and issues beyond their usual span of concern. Although it has been influential
on Lean UX and related works, it is not an explicitly digital discipline.

There are many design failures in digital product delivery. What is often overlooked is that the entire
customer experience of the product is a form of design.

Consider for example Apple. Their products are admired worldwide and cited as examples of “good
design”. Often, however, this is only understood in terms of the physical product; for example, an
iPhone® or a MacBook Air®. But there is more to the experience. Suppose you have technical
difficulties with your iPhone, or you just want to get more value out of it. Apple created its popular
Genius Bar support service, where you can get support and instruction in using the technology.

Notice that the product you are using is no longer just the phone or computer. It is the combination of
the device PLUS your support experience. This is essential to understanding the modern practices of
design thinking and Lean UX.

Digital Practitioner Body of Knowledge™ Standard 135

6.2. Context II: Team Chapter 6. The Body of Knowledge

The following table condensed from Lotta Hassi and Miko Laakso [125] provides a useful overview of
design thinking:

Table 5. Design Thinking Key Characteristics

PRACTICES THINKING STYLES MENTALITY
* HUMAN-CENTERED * ABDUCTIVE REASONING; e.g., * EXPERIMENTAL &
APPROACH; e.g., people-based, the logic of "what could be", EXPLORATIVE; e.g., the license to
user-centered, empathizing, finding new opportunities, urge explore possibilities, risking
ethnography, observation to create something new, failure, failing fast

challenge the norm
* THINKING BY DOING; e.g., early * AMBIGUITY TOLERANT; e.g.,
and fast prototyping, fast * REFLECTIVE REFRAMING; e.g., allowing for ambiguity, tolerance
learning, rapid iterative rephrasing the problem, going for ambiguity, comfortable with
development cycles beyond what is obvious to see ambiguity, liquid and open

what lies behind the problem, process
* COMBINATION OF DIVERGENT challenge the given problem
AND CONVERGENT * OPTIMISTIC; e.g., viewing
APPROACHES; e.g., ideation, * HOLISTIC VIEW; e.g., systems constraints as positive, optimism
pattern finding, creating thinking, 360 degree view on the attitude, enjoying problem
multiple alternatives issue solving

* COLLABORATIVE WORK STYLE; « INTEGRATIVE THINKING; e.g., « FUTURE-ORIENTED; e.g.,

e.g., multi-disciplinary harmonious balance, creative orientation towards the future,
collaboration, involving many resolution of tension, finding vision versus status quo,
stakeholders, interdisciplinary balance between validity and intuition as a driving force
teams reliability

6.2.1.3.2. Hypothesis Testing

The concept of hypothesis testing is key to product discovery and design. The power of scalable cloud
architectures and fast continuous delivery pipelines has made it possible to test product hypotheses
against real-world customers at scale and in real time. Companies like Netflix and Facebook have
pioneered techniques like "canary deployments” and "A/B testing”.

In these approaches, two different features are tried out simultaneously, and the business results are
measured. For example, are customers more likely to click on a green button or a yellow one? Testing
such questions in the era of packaged software would have required lab-based usability engineering
approaches, which risked being invalid because of their small sample size. Testing against larger
numbers is possible, now that software is increasingly delivered as a service.

6.2.1.3.3. Usability and Interaction

At a lower level than the holistic concerns of design thinking, we have practices such as usability
engineering. These take many forms. There are many systematic and well-researched approaches to:

136 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.2. Context II: Team

 Usability, interaction design [74, 144, 284, 23]

e Visualization [54, 288]

and related topics. All such approaches, however, should be used in the overall Lean Startup/Lean UX
framework of hypothesis generation and testing. If we subscribe to design thinking and take a whole-
systems view, designing for ease of operations is also part of the design process. We will discuss this
further in Section 6.2.3, “Operations Management”. Developing documentation of the product’s
characteristics, from the perspective of those who will run it on a day-to-day basis, is also an aspect of
product delivery.

6.2.1.3.4. Product Discovery versus Design

Some of the most contentious discussions related to IT management and Agile come at the intersection
of software and systems engineering, especially when large investments are at stake. We call this the
“discovery versus design” problem.

Frequent criticisms of Lean Startup and its related digital practices are:

» They are relevant only for non-critical Internet-based products (e.g., Facebook and Netflix)

* Some IT products must fit much tighter specifications and do not have the freedom to “pivot” (e.g.,
control software written for aerospace and defense systems)

There are two very different product development worlds. Some product development ("cogs") is
constrained by the overall system it takes place within. Other product development ("flowers") has
more freedom to grow in different directions — to “discover” the customer.

The cog represents the world of classic systems engineering — a larger objective frames the effort, and
the component occupies a certain defined place within it. And yet, it may still be challenging to design
and build the component, which can be understood as a product in and of itself. Fast feedback is still
required for the design and development process, even when the product is only a small component
with a very specific set of requirements.

The flower represents the market-facing digital product that may “pivot”, grow, and adapt according to
conditions. It also is constrained, by available space and energy, but within certain boundaries has
greater adaptability.

Neither is better than the other, but they do require different approaches. In general, we are coming
from a world that viewed digital systems strictly as cogs. Subsequently, we are moving towards a world
in which digital systems are more flexible, dynamic, and adaptable.

When digital components have very well-understood requirements, usually we purchase them from
specialist providers (increasingly “as a service”). This results in increasing attention to the “flowers” of
digital product design since acquiring the “cogs” is relatively straightforward (more on this in the
section on sourcing).

Digital Practitioner Body of Knowledge™ Standard 137

6.2. Context II: Team Chapter 6. The Body of Knowledge

Evidence of Notability

Product discovery techniques are widely discussed in the product management community and are
frequent topics of presentation at notable industry events such as Agile Alliance conferences.

Limitations

In organizations that are primarily purchasing software and not building it, product discovery
techniques may be less applicable. However, internal "products” understood as business capabilities
may still benefit from a design/discovery approach, even if they are based on (for example) a SaaS
offering.

Related Topics

Digital Value

» Application Delivery

Product Roadmapping
* Product Backlog, Estimation, and Prioritization

* Investment Management

6.2.1.4. Scrum and Other Product Team Practices

Description

A solid foundation of team-level organization and practice is essential as an organization scales up.
Bad habits (like accepting too much work in the system, or tolerating toxic individuals) will be more
and more difficult to overcome as the organization grows.

6.2.1.4.1. The Concept of Collaboration

Team collaboration is one of the key values of Agile. The Agile Alliance states that:

A “team” in the Agile sense is a small group of people, assigned to the same project or effort, nearly all of
them on a full-time basis.

Teams are multi-skilled, share accountability, and individuals on the team may play multiple roles [9]:

Face-to-face interactions, usually enabled by giving the team its own space, are essential for
collaboration. While there are various approaches to Agile, all concur that tight-knit, collaborative
teams deliver the highest value outcomes. However, collaboration does not happen just because people
are fed pizzas and work in a room together. Google has established that the most significant predictor
of team performance is a sense of psychological safety. Research by Anita Woolley and colleagues
suggests that three factors driving team performance are [309]:

* Equal contribution to team discussions (no dominant individuals)

* Emotional awareness — being able to infer other team members' emotional states

138 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.2. Context II: Team

* Teams with a higher proportion of women tend to perform better (the researchers inferred this
was due to women generally having higher emotional awareness)

Other research shows that diverse teams and organizations are more innovative and deliver better
results; such teams may tend to focus more on facts (as opposed to groupthink) [235]. Certainly, a sense
of psychological safety is critical to the success of diverse teams, who may come from different cultures
and backgrounds that don’t inherently trust each other.

The collective problem-solving talent of a diverse group of individuals who are
IMPORTANT given space to self-organize and solve problems creatively is immense, and very
possibly the highest value resource known to the modern organization.

Two current schools of thought with much to say about collaboration are Lean UX and Scrum.

6.2.1.4.2. Lean UX

Lean UX is the practice of bringing the true nature of a product to light faster,
in a collaborative, cross-functional way that reduces the emphasis on thorough
documentation while increasing the focus on building a shared understanding
of the actual product experience being designed.

— Jeff Gothelf, Lean UX

Lean UX is a term coined by author and consultant Jeff Gothelf [114], which draws on three major
influences:

* Design thinking

» Agile software development

* Lean Startup
We briefly discussed Lean Startup in Section 6.1.1, “Digital Fundamentals”, and the history and
motivations for Agile software development in Section 6.1.3, “Application Delivery”. We will look in
more depth at product discovery techniques, and design and design thinking subsequently. However,
Lean UX has much to say about forming the product team, suggesting (among others) the following
principles for forming and sustaining teams:

» Dedicated, cross-functional teams

* Outcome (not deliverable/output) focus

* Cultivating a sense of shared understanding

* Avoiding toxic individuals (so-called “rockstars, gurus, and ninjas”)

e Permission to fail

(Other Lean UX principles such as small batch sizes and visualizing work will be discussed elsewhere;

Digital Practitioner Body of Knowledge™ Standard 139

6.2. Context II: Team Chapter 6. The Body of Knowledge

there is significant overlap between Lean UX and other schools of thought covered in this document).

Lean UX is an influential work among digital firms and summarizes modern development practices
well, especially for small, team-based organizations with minimal external dependencies. It is a broad
and conceptual, principles-based framework open for interpretation in multiple ways. We continue
with more “prescriptive” methods and techniques, such as Scrum.

6.2.1.4.3. Scrum

Scrum is a lightweight framework designed to help small, close-knit teams of
people develop complex products.

— Chris Sims/Hillary L. Johnson, Scrum: A Breathtakingly Brief and Agile Introduction

There Are No Tasks; There Are Only Stories.

— Jeff Sutherland, Scrum: The Art of Doing Twice the Work in Half the Time

One of the first prescriptive Agile methodologies you are likely to encounter as a practitioner is Scrum.
There are many books, classes, and websites where you can learn more about this framework; [260] is
a good brief introduction, and [243] is well suited for more in-depth study.

“Prescriptive” means detailed and precise. A doctor’s prescription is specific as to what
medicine to take, how much, and when. A prescriptive method is similarly specific.
“Agile software development” is not prescriptive, as currently published by the Agile

NOTE Alliance; it is a collection of principles and ideas you may or may not choose to use.

By comparison, Scrum is prescriptive; it states roles and activities specifically, and
trainers and practitioners, in general, seek to follow the method completely and
accurately.

Scrum is appropriate to this Competency Area, as it is product-focused. It calls for the roles of:

e Product owner
¢ Scrum master

¢« Team member
and avoids further elaboration of roles.

The Scrum product owner is responsible for holding the product vision and seeing that the team
executes the highest value work. As such, the potential features of the product are maintained in a
“backlog” that can be re-prioritized as necessary (rather than a large, fixed-scope project). The product
owner also defines acceptance criteria for the backlog items. The Scrum master, on the other hand,
acts as a team coach, “guiding the team to ever-higher levels of cohesiveness, self-organization, and
performance” [260]. To quote Roman Pichler:

140 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.2. Context II: Team

The product owner and Scrum master roles complement each other: The product owner is primarily
responsible for the “what" - creating the right product. The Scrum master is primarily responsible for the
“how" - using Scrum the right way [219 p. 9].

Scrum uses specific practices and artifacts such as sprints, standups, reviews, the above-mentioned
concept of backlog, burndown charts, and so forth. We will discuss some of these further in Section
6.2.2, “Work Management” and Section 6.3.1, “Coordination and Process” along with Kanban, another
popular approach for executing work.

In Scrum, there are three roles:

* The product owner sets the overall direction
e The Scrum master coaches and advocates for the team

* The development team is defined as those who are committed to the development work
There are seven activities:
* The “Sprint” is a defined time period, typically two to four weeks, in which the development team

executes on an agreed scope

* Backlog Grooming is when the product backlog is examined and refined into increments that can
be moved into the sprint backlog

* Sprint Planning is where the scope is agreed
* The Daily Scrum is traditionally held standing up, to maintain focus and ensure brevity
 Sprint Execution is the development activity within the sprint

 Sprint Review is the “public end of the sprint” when the stakeholders are invited to view the
completed work

* The Sprint Retrospective is held to identify lessons learned from the sprint and how to apply them
in future work

There are a number of artifacts:

* The product backlog is the overall “to-do” list for the product
* The sprint backlog is the to-do list for the current sprint

* Potentially Shippable Increment (PSI) is an important concept used to decouple the team’s
development activity from downstream business planning; a PSI is a cohesive unit of functionality
that could be delivered to the customer, but doing so is the decision of the product owner

Scrum is well grounded in various theories (process control, human factors), although Scrum team
members do not need to understand theory to succeed with it. Like Lean UX, Scrum emphasizes high-
bandwidth collaboration, dedicated multi-skilled teams, a product focus, and so forth.

The concept of having an empowered product owner readily available to the team is attractive,
especially for Digital Practitioners who may have worked on teams where the direction was unclear.

Digital Practitioner Body of Knowledge™ Standard 141

6.2. Context II: Team Chapter 6. The Body of Knowledge

Roman Pichler identifies a number of common mistakes, however, that diminish the value of this
approach [219 pp. 17-20]:

* Product owner lacks authority
* Product owner is overworked
* Product ownership is split across individuals

* Product owner is “distant” — not co-located or readily available to team
Scrum and Shu-ha-ri
In the Japanese martial art of aikido, there is the concept of shu-ha-ri, a form of learning progression.

» Shu: the student follows the rules of a given method precisely, without addition or alteration
* Ha: the student learns theory and principle of the technique

* Ri: the student creates own approaches and adapts technique to circumstance

Scrum at its most prescriptive can be seen as a shu-level practice; it gives detailed guidance that has
been shown to work.

See [104] and [65 pp. 17-18]

6.2.1.4.4. More on Product Team Roles

Boundaries are provided by the product owner and often come in the form of
constraints, such as: "I need it by June", "We need to reduce the per-unit cost by
half", "It needs to run at twice the speed", or "It can use only half the memory
of the current version".

— Mike Cohn, Succeeding with Agile Software Development Using Scrum

Marty Cagan suggests that the product team has three primary concerns, requiring three critical roles
[53]:

* Value: Product Owner/Manager
* Feasibility: Engineering

 Usability: User Experience Design

Jeff Patton represents these concepts as a Venn diagram (see Figure 48, “The Three Views of the
Product Team”, similar to [217]).

142 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Valuable
Usable

Desired
Solution

Feasible

Figure 48. The Three Views of the Product Team

Finally, a word on the product manager. Scrum is prescriptive around the product owner role, but
does not identify a role for product manager. This can lead to two people performing product
management: a marketing-aligned “manager” responsible for high-level requirements, with the Scrum
“product owner” attempting to translate them for the team. Marty Cagan warns against this approach,
recommending instead that the product manager and owner be the same person, separate from
marketing [53 pp. 7-8].

In a subsequent section, we will consider the challenge of product discovery — at a product level, what
practices do we follow to generate the creative insights that will result in customer value?

Evidence of Notability

Product team structure and practices are widely debated and discussed in the industry, particularly in
the Agile community. Notable conferences include Agile Alliance and Global Scrum Gathering. Many
books are published on Scrum and related product team organization topics; e.g., [243, 114, 273],

Limitations

Product team structure and practices are only relevant when there is a concept of product. Some
digital work may be framed as projects, where structures are temporary and objectives are more
constrained.

Related Topics

 Digital Value
» Application Delivery
* Product Backlog, Estimation, and Prioritization

* Work Management

Digital Practitioner Body of Knowledge™ Standard 143

6.2. Context II: Team Chapter 6. The Body of Knowledge

* Organization and Culture

6.2.1.5. Product Planning

Description

6.2.1.5.1. Product Roadmapping and Release Planning

Creating effective plans in complex situations is challenging. Planning a new product is one of the most
challenging endeavors, one in which failure is common. The historically failed approach (call it the "
planning fallacy”) is to develop overly detailed (sometimes called “rigorous”) plans and then assume
that achieving them is simply a matter of “correct execution” (see Figure 49, “Planning Fallacy”).

Develop extensive,
detailed plan for
product

“Execute” the plan

Figure 49. Planning Fallacy

Contrast the planning fallacy with Lean Startup approaches, which emphasize ongoing confirmation of
product direction through experimentation. In complex efforts, ongoing validation of assumptions and
direction is essential, which is why overly plan-driven approaches are falling out of favor. However,
some understanding of timeframes and mapping goals against the calendar is still important. Exactly
how much effort to devote to such forecasting remains a controversial topic with DPM professionals,
one we will return to throughout this document.

Minimally, a high-level product roadmap is usually called for: without at least this, it may be difficult to
secure the needed investment to start product work. Roman Pichler recommends the product roadmap
contains:

* Major versions

144 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.2. Context II: Team

* Their projected launch dates
» Target customers and needs
 Top three to five features for each version [219 p. 41]

More detailed understanding is left to the product backlog, which is subject to ongoing “grooming”;
that is, re-evaluation in light of feedback.

6.2.1.5.2. Backlog, Estimation, and Prioritization

The product discovery and roadmapping activity ultimately generates a more detailed view or list of
the work to be done. As we previously mentioned, in Scrum and other Agile methods this is often
termed a backlog. Both Mike Cohn and Roman Pichler use the DEEP acronym to describe backlog
qualities [68 p. 243, 219 p. 48]:

Detailed appropriately
* Estimated

* Emergent (feedback such as new or changed stories are readily accepted)

Prioritized

Product
backlog

Detailed
user stories

!

Priority

Broad epics

Figure 50. Backlog Granularity and Priority
The backlog should receive ongoing “grooming” to support these qualities, which means several things:

* Addition of new items

» Re-prioritization of items

Digital Practitioner Body of Knowledge™ Standard 145

6.2. Context II: Team Chapter 6. The Body of Knowledge

» Elaboration (decomposition, estimation, and refinement)

When “detailed appropriately”, items in the backlog are not all the same scale. Scrum and Agile
thinkers generally agree on the core concept of "story”, but stories vary in size (see Figure 50, “Backlog
Granularity and Priority”, similar to [219]), with the largest stories often termed “epics”. The backlog is
ordered in terms of priority (what will be done next) but, critically, it is also understood that the lower-
priority items, in general, can be larger-grained. In other words, if we visualize the backlog as a stack,
with the highest priority on the top, the size of the stories increases as we go down. (Don Reinertsen
terms this progressive specification; see [229 pp. 176-177] for a detailed discussion.)

Estimating user stories is a standard practice in Scrum and Agile methods more generally. Agile
approaches are wary of false precision and accept the fact that estimation is an uncertain practice at
best. However, without some overall estimate or roadmap for when a product might be ready for use,
it is unlikely that the investment will be made to create it. It is difficult to establish the economic value
of developing a product feature at a particular time if you have no idea of the cost and/or effort
involved to bring it to market.

At a more detailed level, it is common practice for product teams to estimate detailed stories using
“points”. Mike Cohn emphasizes: “Estimate size, derive duration” ([67], p.xxvii). Points are a relative
form of estimation, valid within the boundary of one team. Story point estimating strives to avoid false
precision, often restricting the team’s estimate of the effort to a modified Fibonacci sequence, or even
T-shirt or dog sizes [67 p. 37] as shown in Table 6, “Agile Estimating Scales” (similar to [67 p. 37]).

Mike Cohn emphasizes that estimates are best done by the teams performing the work [67 p. 51]. We
will discuss the mechanics of maintaining backlogs in Section 6.2.2, “Work Management”.

Table 6. Agile Estimating Scales

Story point T-Shirt Dog
XXS Chihauha
2 XS Dachshund
3 S Terrier
5 M Border Collie
8 L Bulldog
13 XL Labrador Retriever
20 XXL Mastiff
40 XXXL Great Dane

Backlogs require prioritization. In order to prioritize, we must have some kind of common
understanding of what we are prioritizing for. Mike Cohn, in Agile Estimating and Planning, proposes
that there are four major factors in understanding product value:

* The financial value of having the features

146 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.2. Context II: Team

» The cost of developing and supporting the features
* The value of the learning created by developing the features
* The amount of risk reduced by developing the features [67 p. 80]

In Section 6.2.2, “Work Management” we will discuss additional tools for managing and prioritizing
work, and we will return to the topic of estimation in Section 6.3.2, “Investment and Portfolio”.

Evidence of Notability

Product roadmaps are one of the first steps towards investment management and strategic planning.
There are robust debates around estimation and planning in the Agile community.

Limitations
Roadmaps are uncertain at best. They are prone to false precision and the planning fallacy.
Related Topics

» Digital Value
* Work Management

e Investment and Portfolio

6.2.2. Work Management

Area Description

When a team or a startup hires its first employees, and increases in size from two people to three or
four, it is confronted with the fundamental issue of how work is tracked. The product team is now
getting feedback from users calling for prioritization, the allocation of resources, and the tracking of
effort and completion. These are the critical day-to-day questions for any business larger than a couple
of co-founders:

e What do we need to do?

e In what order?

* Who is doing it?

* Do they need help?

* Do they need direction?

When will they be done?

What do we mean by done?

People have different responsibilities and specialties, yet there is a common vision for delivering an IT-
based product of some value. How is the work tracked towards this end? Perhaps the team is still
primarily in the same location, but people sometimes are off-site or keeping different hours. Beyond

Digital Practitioner Body of Knowledge™ Standard 147

6.2. Context II: Team Chapter 6. The Body of Knowledge

product strategy, the team is getting support calls that result in fixes and new features. The initial signs
of too much work-in-progress (slow delivery of final results, multi-tasking, and more) may be starting
to appear.

The team has a product owner. They now institute Scrum practices of a managed backlog, daily
standups, and sprints. They may also use Kanban-style task boards or card walls (to be described in
this Competency Area), which are essential for things like support or other interrupt-driven work. The
relationship of these to your Scrum practices is a matter of ongoing debate. In general the team does
not yet need full-blown project management (covered in Context III). The concept of "ticketing” will
likely arise at this point. How this relates to your Scrum/Kanban approach is a question.

Furthermore, while Agile principles and practices were covered in previous Competency Areas, there
was limited discussion of why they work. This Competency Area covers Lean theory of product
management that provides a basis for Agile practices; in particular, the work of Don Reinertsen.

The Competency Area title “Work Management” reflects earlier stages of organizational growth. At this
point, neither formal project management, nor a fully realized process framework is needed, and the
organization may not see a need to distinguish precisely between types of work processes. “It’s all just
work” at this stage.

6.2.2.1. Work Management and Lean

Description

Product development drives a wide variety of work activities. As your product matures, you encounter
both routine and non-routine work. Some of the work depends on other work getting done. Sometimes
you do not realize this immediately. All of this work needs to be tracked.

Work management may start with verbal requests, emails, even postal mail. If you ask your colleague
to do one thing, and she doesn’t have anything else to do, it is likely that the two of you will remember.
If you ask her to do four things over a few days, you might both still remember. But if you are asking
for new things every day, it is likely that some things will get missed. You each might start keeping your
own “to do” list, and this mechanism can handle a dozen or two dozen tasks. Consider an example of
three people, each with their own to do list (see Figure 51, “Work Flowing Across Three To-Do Lists”).

(xxx xxx xx xx i focex xix s ax x) Solve billing problem
XXXX XXX XX XX Solve billing problem i
XX XXX XX XXX (assighed to Joe)
Solve billing problem XX XX XX XXXXXX
(assigned to Aparna) XXXX XXXX XXXXX
X XXXX XXXXX D XxXx XXX XX X _J J
Mary’s to-do list Aparna’s to-do list Joe’s to-do list

Figure 51. Work Flowing Across Three To-Do Lists

148 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.2. Context II: Team

In this situation, each person has their own “mental model” of what needs to be done, and their own
tracking mechanism. We don’t know how the work is being transmitted: emails, phone calls, hallway
conversations. ("Say, Joe, there is an issue with Customer X’s bill, can you please look into it?”)

But what happens when there are three of you? Mary asks Aparna to do something, and in order to
complete it, she needs something from Joe, whom Mary is also asking to complete other tasks. As an
organization scales, this can easily lead to confusion and “dropped balls”.

At some point, you need to formalize your model of the work, how it is described, and how it flows.
This is such a fundamental problem in human society that many different systems, tools, and processes
have been developed over the centuries to address it.

Probably the most important is the shared task reference point. What does this mean? The “task” is
made “real” by associating it with a common, agreed artifact.

For example, a “ticket” may be created, or a "work order”. Or a “story”, written down on a sticky note.
At our current level of understanding, there is little difference between these concepts. The important
thing they have in common is an independent existence. That is, Mary, Aparna, and Joe might all
change jobs, but the artifact persists independently of them. Notice also that the artifact — the ticket,
the post-it note — is not the actual task, which is an intangible, consensus concept. It is a representation
of this intangible “intent to perform”. We will discuss these issues of representation further in Section
6.4.2, “Information Management”.

A complex IT-based system is not needed if you are all in the same room! (Nor for that matter a
complex process framework, such as ITIL or COBIT®. There is a risk in using such frameworks at this
stage of evolution — they add too much overhead for your level of growth.) It is also still too early for
formal project management. The “project team” would be most or all of the organization, so what
would be the point? A shared white board in a public location might be all that is needed (see Figure
52, “Common List”). This gives the team a “shared mental model” of who is doing what.

Task Assigned to

=y

X

vV VY VY
AX XXX X

Solve b.fllmg P

(XXX XX XXXXX XXXXXXXXX

W,

Figure 52. Common List

The design of the task board above has some issues, however. After the team gets tired of erasing and

Digital Practitioner Body of Knowledge™ Standard 149

6.2. Context II: Team Chapter 6. The Body of Knowledge

rewriting the tasks and their current assignments, they might adopt something more like this:

Doing Done

|
Mary Y
! I 74
.

Aparna |
___3

Joe

A L y y

Figure 53. Simple Task Board

-

N

UL

The board itself might be a white board or a cork bulletin board with push pins (see Figure 53, “Simple
Task Board”). The notes could be sticky, or index cards. There are automated solutions as well. The tool
doesn’t really matter. The important thing is that, at a glance, the entire team can see its flow of work
and who is doing what.

This is sometimes called a “Kanban board”, although David Anderson (originator of the Kanban
software method [20]) himself terms the basic technique a "card wall”. It also has been called a "Scrum
Board”. The board at its most basic is not specific to either methodology. The term “Kanban” itself
derives from Lean manufacturing principles; we will cover this in-depth in the next section. The basic
board is widely used because it is a powerful artifact. Behind its deceptive simplicity are considerable
industrial experience and relevant theory from operations management and human factors. However,
it has scalability limitations. What if the team is not all in the same room? We will cover this and
related issues in Context III.

The card wall or Kanban board is the first channel we have for demand management. Demand
management is a term meaning “understanding and planning for required or anticipated services or
work”. Managing day-to-day incoming work is a form of demand management. Capturing and
assessing ideas for next year’s project portfolio (if you use projects) is also demand management at a
larger scale.

6.2.2.1.1. Lean Background

To understand Kanban we should start with Lean. Lean is a term invented by American researchers
who investigated Japanese industrial practices and their success in the 20th century. After the end of
World War II, no-one expected the Japanese economy to recover the way it did. The recovery is

150 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.2. Context II: Team

credited to practices developed and promoted by Taiichi Ohno and Shigeo Shingo at Toyota [212].
These practices included:

* Respect for people

* Limiting work-in-process

Small batch sizes (driving towards “single piece flow”)
* Just-in-time production

* Decreased cycle time

Credit for Lean is also sometimes given to US thinkers such as W. Edwards Deming, Peter Juran, and
the theorists behind the Training Within Industry methodology, each of whom played influential roles
in shaping the industrial practices of post-war Japan.

Kanban is a term originating from Lean and the Toyota Production System. Originally, it signified a
“pull” technique in which materials would only be transferred to a given workstation on a definite
signal that the workstation required the materials. This was in contrast to “push” approaches where
work was allowed to accumulate on the shop floor, on the (now discredited) idea that it was more
“efficient” to operate workstations at maximum capacity.

Factories operating on a “push” model found themselves with massive amounts of inventory (work-in-
process) in their facilities. This tied up operating capital and resulted in long delays in shipment.
Japanese companies did not have the luxury of large amounts of operating capital, so they started
experimenting with "single-piece flow”. This led to a number of related innovations, such as the ability
to re-configure manufacturing machinery much more quickly than US factories were capable of.

David J. Anderson was a product manager at Microsoft who was seeking a more effective approach to
managing software development. In consultation with Don Reinertsen (introduced below) he applied
the original concept of Kanban to his software development activities [20].

Scrum (covered in the previous chapter) is based on a rhythm with its scheduled sprints; for example,
every two weeKks (this is called cadence). In contrast, Kanban is a continuous process with no specified
rhythm. Work is “pulled” from the backlog into active attention as resources are freed from previous
work. This is perhaps the most important aspect of Kanban — the idea that work is not accepted until
there is capacity to perform it.

You may have a white board covered with sticky notes, but if they are stacked on top of each other
with no concern for worker availability, you are not doing Kanban. You are accepting too much work-
in-process, and you are likely to encounter a “high-queue state” in which work becomes slower and
slower to get done. (More on queues below.)

6.2.2.1.2. The Theory of Constraints

Eliyahu Moshe Goldratt was an Israeli physicist and management consultant, best known for his
pioneering work in management theory, including The Goal, which is a best-selling business novel
frequently assigned in MBA programs. It and Goldratt’s other novels have had a tremendous effect on

Digital Practitioner Body of Knowledge™ Standard 151

6.2. Context II: Team Chapter 6. The Body of Knowledge

industrial theory and, now, digital management. One of the best known stories in The Goal centers
around a Boy Scout march. Alex, the protagonist struggling to save his manufacturing plant, takes a
troop of Scouts on a ten-mile hike. The troop has hikers of various speeds, yet the goal is to arrive
simultaneously. As Alex tries to keep the Scouts together, he discovers that the slowest, most
overweight scout (Herbie) also has packed an unusually heavy backpack. The contents of Herbie’s pack
are redistributed, speeding up both Herbie and the troop.

This story summarizes the Goldratt approach: finding the “constraint” to production (his work as a
whole is called the Theory of Constraints). In Goldratt’s view, a system is only as productive as its
constraint. At Alex’s factory, it is found that the “constraint” to the overall productivity issues is the
newest computer-controlled machine tool — one that could (in theory) perform the work of several
older models but was now jeopardizing the entire plant’s survival. The story in this novelization draws
important parallels with actual Lean case studies on the often-negative impact of such capital-intensive
approaches to production.

6.2.2.1.3. The Shared Mental Model of the Work to be Done

Joint activity depends on interpredictability of the participants’ attitudes and
actions. Such interpredictability is based on common ground — pertinent
knowledge, beliefs, and assumptions that are shared among the involved
parties. [167]

— Gary Klein et al., “Common Ground and Coordination in Joint Activity"

The above quote reflects one of the most critical foundations of team collaboration: a common ground,
a base of “knowledge, beliefs, and assumptions” enabling collaboration and coordination. Common
ground is an essential quality of successful teamwork, and we will revisit it throughout the book. There
are many ways in which common ground is important, and we will discuss some of the deeper aspects
in terms of information in Section 6.4.2, “Information Management”. Whether you choose Scrum,
Kanban, or choose not to label your work management at all, the important thing is that you are
creating a shared mental model of the work: its envisioned form and content, and your progress
towards it.

Below, we will discuss:

Visualization of work

* The concept of Andon

The definition of done

* Time and space shifting

Visualization is a good place to introduce the idea of common ground.

152 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.2. Context II: Team

6.2.2.1.4. Visualization

As simple as the white board is, it makes work-in-progress continuously
visible, it enforces work-in-progress constraints, it creates synchronized daily
interaction, and it promotes interactive problem solving. Furthermore, teams
evolve methods of using white boards continuously, and they have high
ownership in their solution. In theory, all this can be replicated by a computer
system. In practice, I have not yet seen an automated system that replicates the
simple elegance and flexibility of a manual system.

— Don Reinertsen, Principles of Product Development Flow

Why are shared visual representations important? Depending on how you measure, between 40% to as
much as 80% of the human cortex is devoted to visual processing. Visual processing dominates mental
activity, consuming more neurons than the other four senses combined [252]. Visual representations
are powerful communication mechanisms, well suited to our cognitive abilities.

This idea of common ground, a shared visual reference point, informing the mental model of the team,
is an essential foundation for coordinating activity. This is why card walls or Kanban boards located in
the same room are so prevalent. They communicate and sustain the shared mental model of a human
team. A shared card wall, with its two dimensions and tasks on cards or sticky notes, is more
informative than a simple to-do list (e.g., in a spreadsheet). The cards occupy two-dimensional space
and are moved over time to signify activity, both powerful cues to the human visual processing system.

Similarly, monitoring tools for systems operation make use of various visual clues. Large monitors may
be displayed prominently on walls so that everyone can understand operational status. Human visual
orientation is also why Enterprise Architecture persists. People will always draw to communicate. (See
also visualization and Enterprise Architecture.)

Card walls and publicly displayed monitors are both examples of information radiators. The
information radiator concept derives from the Japanese concept of Andon, important in Lean thinking.

6.2.2.1.5. Andon, and the Andon Cord

The Andon cord (not to be confused with Andon in the general sense) is another well-known concept in
Lean manufacturing. It originated with Toyota, where line workers were empowered to stop the
production line if any defective materials or assemblies were encountered. Instead of attempting to
work with the defective input, the entire line would shut down, and all concerned would establish
what had happened and how to prevent it. The concept of Andon cord concisely summarizes the Lean
philosophy of employee responsibility for quality at all levels [212]. Where Andon is a general term for
information radiator, the Andon cord implies a dramatic response to the problems of flow — all
progress is stopped, everywhere along the line, and the entire resources of the production line are
marshaled to collaboratively solve the issue so that it does not happen again. As Toyota thought leader
Taiichi Ohno states:

Digital Practitioner Body of Knowledge™ Standard 153

6.2. Context II: Team Chapter 6. The Body of Knowledge

Stopping the machine when there is trouble forces awareness on everyone.
When the problem is clearly understood, improvement is possible. Expanding
this thought, we establish a rule that even in a manually operated production
line, the workers themselves should push the stop button to halt production if
any abnormality appears.

— Taiichi Ohno

Andon and information radiators provide an important stimulus for product teams, informing
priorities and prompting responses. They do not prescribe what is to be done; they simply indicate an
operational status that may require attention.

6.2.2.1.6. Definition of Done

As work flows through the system performing it, understanding its status is key to managing it. One of
the most important mechanisms for doing this is to define what is meant by “done simply”. The Agile
Alliance states:

“The team agrees on, and displays prominently somewhere in the team room, a list of criteria which
must be met before a product increment, often a user story, is considered “done” [9]. Failure to meet
these criteria at the end of a sprint normally implies that the work should not be counted toward that
sprint’s velocity.” There are various patterns for defining “done”; for example, Thoughtworks
recommends that the business analyst and developer both must agree that some task is complete (it is
not up to just one person). Other companies may require peer code reviews [206]. The important point
is that the team must agree on the criteria.

This idea of defining “done” can be extended by the team to other concepts such as “blocked”. The
important thing is that this is all part of the team’s shared mental model, and is best defined by the
team and its customers. (However, governance and consistency concerns may arise if teams are too
diverse in such definitions.)

6.2.2.1.7. Time and Space Shifting

At some point, your team will be faced with the problems of time and/or space shifting. People will be
on different schedules, or in different locations, or both. There are two things we know about such
working relationships. First, they lead to sub-optimal team communications and performance. Second,
they are inevitable.

The need for time and space shifting is one of the major drivers for more formalized IT systems. It is
difficult to effectively use a physical Kanban board if people aren’t in the office. The outcome of the
daily standup needs to be captured for the benefit of those who could not be there.

However, acceptance of time and space shifting may lead to more of it, even when it is not absolutely
required. Constant pressure and questioning are recommended, given the superior bandwidth of face-
to-face communication in the context of team collaboration.

154 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.2. Context II: Team

But not all work requires the same degree of collaboration. While we are still not ready for full-scale
process management, at this point in our evolution, we likely will encounter increasing needs to track
customer or user service interactions, which can become quite numerous even for small, single-team
organizations. Such work is often more individualized and routine, not requiring the full bandwidth of
team collaboration. We will discuss this further with the topic of the help or service desk, later in this
Competency Area.

6.2.2.1.8. Queues and Limiting Work-in-Process

Even at this stage of our evolution, with just one co-located collaborative team, it is important to
consider work-in-process and how to limit it. One topic we will emphasize throughout the rest of this
document is queuing.

A queue, intuitively, is a collection of tasks to be done, being serviced by some worker or resource in
some sequence; for example:

* Feature “stories” being developed by a product team
» Customer requests coming into a service desk

* Requests from a development team to an infrastructure team for services (e.g., network or server
configuration, consultations, etc.)

Queuing theory is an important branch of mathematics used extensively in computing, operations
research, networking, and other fields. It is a topic getting much attention of late in the Agile and
related movements, especially as it relates to digital product team productivity.

The amount of time that any given work item spends in the queue is proportional to how busy the
servicing resource is. The simple formula, known as Little’s Law, is:

Wait time = (% Busy)/(% Idle)

In other words, if you divide the percentage of busy time for the resource by its idle time, you see the
average wait time. So, if a resource is busy 40% of the days, but idle 60% of the days, the average time
you wait for the resource is:

0.4/0.6= 0.67 hours (2/3 of a day)

Conversely, if a resource is busy 95% of the time, the average time you will wait is:

0.95/0.05 = 5.67 (19 days!)

If you use a graphing calculator, you see the results in Figure 54, “Time in Queue Increases
Exponentially with Load”.

Digital Practitioner Body of Knowledge™ Standard 155

6.2. Context II: Team Chapter 6. The Body of Knowledge

100

—B0 B [I IS N W — S— — — I — B IS Y IS (] W— —— | —

-60

Wait time

40

~20

0 20 40 60 80 100

Utilization

Figure 54. Time in Queue Increases Exponentially with Load

Notice how the wait time approaches infinity as the queue utilization approaches 100%. And yet, full
utilization of resources is often sought by managers in the name of “efficiency”. These basic principles
are discussed by Gene Kim et al. in The Phoenix Project [165], Chapter 23, and more rigorously by Don
Reinertsen in The Principles of Product Development Flow [230], Chapter 3. A further complication is
when work must pass through multiple queues; wait times for work easily expand to weeks or months.
Such scenarios are not hypothetical, they are often seen in the real world and are a fundamental cause
of IT organizations getting a bad name for being slow and unresponsive. Fortunately, Digital
Practitioners are gaining insight into these dynamics and matters are improving across the industry.

Understanding queuing behavior is critical to productivity. Reinertsen suggests that poorly managed
queues contribute to:

* Longer cycle time

* Increased risk

* More variability

* More overhead

* Lower quality

¢ Reduced motivation

156 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.2. Context II: Team

These issues were understood by the pioneers of Lean manufacturing, an important movement
throughout the 20th century. One of its central principles is to limit work-in-process. Work-in-process is
obvious on a shop floor because physical raw materials (inventory) are quite visible.

Don Reinertsen developed the insight that product design and development had an invisible inventory
of “work-in-process” that he called design-in-process. Just as managing physical work-in-process on the
factory floor is key to a factory’s success, so correctly understanding and managing design-in-process is
essential to all kinds of R&D organizations — including digital product development; e.g., building
software(!). In fact, because digital systems are largely invisible even when finished, understanding
their work-in-process is even more challenging.

It is easy and tempting for a product development team to accumulate excessive amounts of work-in-
process. And, to some degree, having a rich backlog of ideas is an asset. But, just as some inventory
(e.g., groceries) is perishable, so are design ideas. They have a limited time in which they might be
relevant to a customer or a market. Therefore, accumulating too many of them at any point in time can
be wasteful.

What does this have to do with queuing? Design-in-progress is one form of queue seen in the digital
organization. Other forms include unplanned work (incidents and defects), implementation work, and
many other concepts we will discuss in this chapter.

Regardless of whether it is a “requirement”, a “user story”, an “epic”, “defect”, “issue”, or “service
request”, you should remember it is all just work. It needs to be logged, prioritized, assigned, and
tracked to completion. Queues are the fundamental concept for doing this, and it is critical that digital
management specialists understand this.

6.2.2.1.9. Multi-Tasking

Multi-tasking (in this context) is when a human attempts to work on diverse activities simultaneously;
for example, developing code for a new application while also handling support calls. There is broad
agreement that multi-tasking destroys productivity, and even mental health [57]. Therefore, minimize
multi-tasking. Multi-tasking in part emerges as a natural response when one activity becomes blocked
(e.g., due to needing another team’s contribution). Approaches that enable teams to work without
depending on outside resources are less likely to promote multi-tasking. Queuing and work-in-process
therefore become even more critical topics for management concern as activities scale up.

6.2.2.1.10. Scrum, Kanban, or Both?

So, do you choose Scrum, Kanban, both, or neither? We can see in comparing Scrum and Kanban that
their areas of focus are somewhat different:

* Scrum is widely adopted in industry and has achieved a level of formalization, which is why Scrum
training is widespread and generally consistent in content

* Kanban is more flexible but this comes at the cost of more management overhead; it requires more
interpretation to translate to a given organization’s culture and practices

* As Scrum author Ken Rubin notes: “Scrum is not well suited to highly interrupt-driven work” [

Digital Practitioner Body of Knowledge™ Standard 157

6.2. Context II: Team Chapter 6. The Body of Knowledge

243]; Scrum on the service desk doesn’t work (but if your company is too small, it may be difficult
to separate out interrupt-driven work; we will discuss the issues around interrupt-driven work
further in Section 6.2.3, “Operations Management”)

* Finally, hybrids exist (Ladas' “Scrumban” [172])
Ultimately, instead of talking too much about “Scrum” or “Kanban”, the student is encouraged to look

more deeply into their fundamental differences. We will return to this topic in the section on Lean
Product Development.

6.2.2.1.11. Lean Guidelines

 Finish what you start, if you can, before starting anything else - when you work on three things at
once, the multi-tasking wastes time, and it takes you three times longer to get any one of the things
done (more on multi-tasking in this chapter)

¢ Infinitely long to-do lists (backlog) sap motivation - consider limiting backlog as well as work-in-
process

* Visibility into work-in-process is important for the collective mental model of the team
There are deeper philosophical and cultural qualities to Kanban beyond workflow and queuing.
Anderson and his colleagues continue to evolve Kanban into a more ambitious framework. Mike
Burrows [48] identifies the following key principles:

* Start with what you do now

» Agree to pursue evolutionary change

« Initially, respect current processes, roles, responsibilities, and job titles

* Encourage acts of leadership at every level in your organization — from individual contributor to
senior management

* Visualize

* Limit work-in-progress

* Manage flow

* Make policies explicit

* Implement feedback loops

* Improve collaboratively, evolve experimentally (using models and the scientific method)
Evidence of Notability

Work and task management is a fundamental problem in human organizations. It is the foundation of
workflow and BPM. Lean generally is one of the most significant currents of thought in modern
management [212, 307, 308, 239, 238]. Kanban is widely discussed at Agile and DevOps conferences.
Using a lightweight, generalized task tracking tool, often physical, is seen in digital organizations
worldwide.

158 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Limitations

Kanban’s generalized workflow does not scale to complex processes with many steps and decision
points. This will be covered further in the section on workflow management. Not all activities reduce
well to a list of tasks. Some are more intangible and outcome-focused. As Bjarne Stroustrup, the
inventor of C+, stated: "The idea of software development as an assembly line manned by semi-skilled
interchangeable workers is fundamentally flawed and wasteful" +[271]. It is critical to distinguish Lean
as applied to digital systems development (as a form of applied R&D) versus Lean in its manufacturing
aspects. Reinertsen’s contributions ([229, 230]) are unique and notable in this regard and are discussed
in the next section.

Related Topics

* Product Team Practices

* Lean Product Development
* Operational Response

» Coordination and Process

* Organizational Structure

* Governance Elements

6.2.2.2. Lean Product Development

Description

One of the challenges with applying Lean to IT (as noted previously) is that many IT professionals
(especially software developers) believe that manufacturing is a “deterministic” field, whose lessons
don’t apply to developing technical products. “Creating software is like creating art, not being on an
assembly line”, is one line of argument.

The root cause of this debate is the distinction between product development and production. It is true
that an industrial production line - for example, producing forklifts by the thousands - may be
repetitive. But how did the production line come to be? How was the forklift invented, or developed? It
was created as part of a process of product development. It took mechanical engineering, electrical
engineering, chemistry, materials science, and more. Combining fundamental engineering principles
and techniques into a new, marketable product is not a repetitive process; it is a highly variable,
creative process, and always has been.

One dead end that organizations keep pursuing is the desire to make R&D more “predictable"; that is,
to reduce variation and predictably create innovation. This never works well; game-changing
innovations are usually complex responses to complex market systems dynamics, including customer
psychology, current trends, and many other factors. The process of innovating cannot, by its very
nature, be made repeatable.

Developing innovative products and services drives the enterprise’s growth. The future enterprise’s
performance is largely determined by the quality of product development. Products and services that

Digital Practitioner Body of Knowledge™ Standard 159

6.2. Context II: Team Chapter 6. The Body of Knowledge

fit market needs generate more profitable growth. Designing efficient product delivery processes
determines up to 70% of your run or production costs.

Lean Product and Process Development (or LPPD) is not just applying Lean tools from the
manufacturing floor to the LPPD environment. It is a unique set of principles, methods, and tools that
build on the experience of enterprises such as Toyota, Ford, or Harley-Davidson.

(This section based on [200, 215, 201, 295].)
The key characteristics of LPPD are:

* Clear definition of value from a customer perspective to inform product development from start to
finish

* Chief Engineer system that integrates cross-functional expertise to architect a product that delivers
value to customers and contributes to the economic success of the enterprise

* Front-loading the development process to explore thoroughly alternative solutions while there is
maximum design space

» Set-Based Concurrent Engineering (SBCE) to facilitate the smooth integration of products'
components

* High degree of teamwork facilitated by the Obeya process
* Knowledge and responsibility-based approach with planned learning cycles

* Levelled workload through Cadence, Pull, and Flow

6.2.2.2.1. Define Value from a Customer Perspective

One of the Lean Product Development practices is "Go & See". Instead of relying on secondary
information such as market studies or marketing reports (as also discussed in Product Discovery),
product team members are encouraged to experience first hand customers' needs, problems, and
emotions. For example, one of the Toyota Chief Engineers rented a car in Canada and drove for several
months in the winter time to understand the unique needs of the Canadian driver. Design thinking
possibly combined with anthropological approaches help understand value from a customer’s
perspective.

6.2.2.2.2. The Chief Engineer System

Toyota’s Chief Engineers are not program managers who focus on controlling and reporting
development activities. They are leaders who create and communicate a compelling and feasible
vision. They define a clear and logical architecture for the product and value stream. Their T-shaped
profile gives them enough understanding of the various disciplines at play so they can help solve cross-
disciplinary problems. Chief Engineers are accountable for the economic success of their products.
Last but not the least, their leadership skills help them inspire excellent engineers. The Chief Engineer
does not have formal authority on the teams that develop the product. Team members report to
functional department heads. New Agile at scale organizational models such as the Spotify model are
similar with teams members reporting to chapters or guilds and not squad leaders. The Product Owner

160 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.2. Context II: Team

plays a role comparable to the Chief Engineer’s one at a smaller scale.

6.2.2.2.3. Front Load the Development Process

Poor decisions made early in the development process have negative consequences that increase
exponentially over time because reversing them later in the lifecycle becomes more and more difficult.
Amazon CEO Jeff Bezos classifies decisions into type 1 and type 2 categories [35]. Type 1 decisions are
not reversible, and you have to be very careful making them. Type 2 decisions are like walking through
a door — if you don’t like the decision, you can always go back. Because type 1 decisions are difficult to
reverse, alternatives should be thoroughly explored before the final decision is made. This tendency to
front load the development process could slow the development process.

6.2.2.2.4. Set-Based Concurrent Engineering

Set-Based Concurrent Engineering or SBCE makes front loading compatible with short product
development lead times. Instead of focusing on the rapid completion of individual component designs
in isolation, SBCE looks at how individual designs will interact within a system before the design is
complete. The focus is on system integration before individual design completion. The concurrent
nature of the design process contributes to shortening product development lead time while front
loading combined with the integration focus helps minimize bad design decisions which would at the
end slow the development process and increase "non-quality”. A good metaphor for SBCE is
doodle.com which offers a much better way of scheduling a meeting compared to the old iterative
"point-based" way of finding a time that works for all.

6.2.2.2.5. The Obeya Process

We introduced the concept of Andon previously. Lean Product Development has a similar practice,
Obeya. The Obeya process begins with the entire team posting in a physical room visual artifacts
representing the product’s components. Product component owners are responsible for posting status
information such as timing, issues, key design questions, etc. Because the information is shared in a
transparent manner, useful conversations are elicited. When problems are identified they are
analyzed using problem solving approaches such as PDCA and A3. Collocation greatly intensifies
communication and helps solve problems earlier. One of the advantages of the Obeya process is that it
does not force the enterprise to change its departmental organization or to co-locate hundreds of
engineers. When an Obeya room cannot be set up at the same place, virtual ones can be created using
specialized collaborative software. The Obeya process proved to be a critical element of the Toyota
product development system helping radically reduce lead time.

6.2.2.2.6. Knowledge and Responsibility-Based

Traditional task-based project management is based on tasks completed and not on technical results.
Because project managers do not understand the reality that hides behind the Gantt chart, problems
can remain hidden for a long time. In contrast, the Chief Engineer defines integrating events at fixed
dates. Required results are communicated to responsible engineers who are free to plan and organize
as needed to meet these dates and deliver expected results. Top-down detailed planning and control is
replaced by top-down objectives, the detailed planning and execution being delegated to autonomous

Digital Practitioner Body of Knowledge™ Standard 161

6.2. Context II: Team Chapter 6. The Body of Knowledge

teams. The responsibility style helps develop a learning development organization. Bureaucracy is
eliminated and the creation of useful knowledge encouraged.

6.2.2.2.7. Levelled Workload through Cadence, Pull, and Flow

Unevenness (Mura) and overburden (Muri) are root causes of waste (Muda) in both production and
development value streams. In the context of LPPD work should be released in the organization on a
regular cadence in order to level the workload. Integrating events gives freedom to developers to plan
their work to meet those events. In this way development work is pulled (as covered in the Kanban
discussion) rather than scheduled. Similarly information is pulled by developers based on what they
need to know rather than being pushed according to some centrally planned schedule. Don Reinertsen,
the author of The Principles of Product Development Flow, proposes a method to maximize the
economic benefit of a portfolio of projects. The key idea is that the sequencing of projects should
consider both the cost of delay of each project and the amount of time that the project will block scarce
development resources. This approach is known as a Weighted Shortest Job First (WSJF) queueing
discipline. It has influenced the Agile community; SAFe specifies WSJF to prioritize backlogs.

6.2.2.2.8. Reinertsen’s Product Flow Model

In IT, simply developing software for a new problem (or even new software for an old problem) is an
R&D problem, not a production line problem. It is iterative, uncertain, and risky, just like other forms
of product development. That does not mean it is completely unmanageable, or that its creation is a
mysterious, artistic process. It is just a more variable process with a higher chance of failure, and with
a need to incorporate feedback quickly to reduce the risk of open-loop control failure. These ideas are
well known to the Agile community and its authors. However, there is one thought leader who stands
out in this field: an ex-Naval officer and nuclear engineer named Donald Reinertsen who was
introduced in our previous discussions on beneficial variability in product discovery and queuing.

Reinertsen’s work dates back to 1991, and (originally as a co-author with Preston G. Smith) presaged
important principles of the Agile movement [263], from the general perspective of product
development. Reinertsen’s influence is well documented and notable. He was partnering with David
Anderson when Anderson created the “software Kanban” approach. He wrote the introduction to
Leffingwell’s Agile Software Requirements, the initial statement of SAFe. His influence is pervasive in
the Agile community. His work is deep and based on fundamental mathematical principles such as
queueing theory. His work can be understood as a series of interdependent principles:

* The flow or throughput of product innovation is the primary driver of financial success (notice that
innovation must be accepted by the market — simply producing a new product is not enough)

* Product development is essentially the creation of information

» The creation of information requires fast feedback

» Feedback requires limiting work-in-process

* Limiting work-in-process in product design contexts requires rigorous prioritization capabilities

 Effective, economical prioritization requires understanding the cost of delay for individual product
features

162 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.2. Context II: Team

* Understanding cost of delay requires smaller batch sizes, consisting of cohesive features, not large
projects (this supporting point to Reinertsen’s work was introduced by Josh Arnold [22])

These can be summarized as in Figure 55, “Lean Product Development Hierarchy of Concerns”.

Product value

Throughput
(validated learning)
L A\

Fast
feedback

WIP reduction

Prioritization

/ Cost of Delay

Limiting batch sizes

Figure 55. Lean Product Development Hierarchy of Concerns

If a company wishes to innovate faster than competitors, it requires fast feedback on its experiments
(whether traditionally understood, laboratory-based experiments, or market-facing validation as in
Lean Startup. In order to achieve fast feedback, work-in-process must be reduced in the system,
otherwise high-queue states will slow feedback down.

But how do we reduce work-in-process? We have to prioritize. Do we rely on the HiPPO, or do we try
something more rational? This brings us to the critical concept of cost of delay.

6.2.2.2.9. Cost of Delay

Don Reinertsen is well known for advocating the concept of “cost of delay” in understanding product
economics. The term is intuitive; it represents the loss experienced by delaying the delivery of some
value. For example, if a delayed product misses a key trade show, and therefore its opportunity for a
competitive release, the cost of delay might be the entire addressable market. Understanding cost of
delay is part of a broader economic emphasis that Reinertsen brings to the general question of product
development. He suggests that product developers, in general, do not understand the fundamental

Digital Practitioner Body of Knowledge™ Standard 163

6.2. Context II: Team Chapter 6. The Body of Knowledge

economics of their decisions regarding resources and work-in-process.

In order to understand the cost of delay, it is first necessary to think in terms of a market-facing
product (such as a smartphone application). Any market-facing product can be represented in terms of
its lifecycle revenues and profits (see Table 7, “Product Lifecycle Economics by Year”, Figure 56,
“Product Lifecycle Economics, Charted”).

Table 7. Product Lifecycle Economics by Year

Year Annual Cost Annual Revenue Annual Profit Cumulative Profit

Year 1 100 0 -100 -100

Year 2 40 80 40 -60

Year 3 30 120 90 30

Year 4 25 150 125 155

Year 5 25 90 65 220

Year 6 20 60 40 260
300
250
200
150

m— Annual Cost
100 e ANNUAl Revenue
50 Annual Profit
e = Cumulative profit
0
Year 1 Year 2 Year 3 Year 4 Year 5 Year 6

50
-100
150

Figure 56. Product Lifecycle Economics, Charted

The numbers above represent a product lifecycle, from R&D through production to retirement. The
first year is all cost, as the product is being developed, and net profits are negative. In year 2, a small
net profit is shown, but cumulative profit is still negative, as it remains in year 3. Only into year 3 does
the product break even, ultimately achieving lifecycle net earnings of 175. But what if the product’s
introduction into the market is delayed? The consequences can be severe.

Simply delaying delivery by a year, all things being equal in our example, will reduce lifecycle profits

by 30% (see Table 8, “Product Lifecycle, Simple Delay”, Figure 57, “Product Lifecycle, Simple Delay,
Charted”).

164 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge

Table 8. Product Lifecycle, Simple Delay

Year Annual Cost

Year 1 100

Year 2
Year 3
Year 4
Year 5

Year 6

250
200
150
100

20

40
30
25
25
20

Annual Revenue

0

Year 1 Year 2 Year 3 ar 4
-50
-100
-150

-200

Figure 57. Product Lifecycle, Simple Delay, Charted

0

0
80
120
150
90

= Annual Cost

= Annual Revenue
Annual Profit

= Cumulative profit

Annual Profit

-100
-40
50
95
125
70

6.2. Context II: Team

Cumulative Profit
-100
-140

But all things are not equal. What if, in delaying the product for a year, we allow a competitor to gain a
superior market position? That could depress our sales and increase our per-unit costs — both bad (see
Table 9, “Product Lifecycle, Aggravated Delay”, Figure 58, “Product Lifecycle, Aggravated Delay,

Charted”).

Digital Practitioner Body of Knowledge™ Standard

165

6.2. Context II: Team

Table 9. Product Lifecycle, Aggravated Delay

Chapter 6. The Body of Knowledge

Year Annual Cost Annual Revenue Annual Profit Cumulative Profit
Year 1 100 0 -100 -100
Year 2 40 0 -40 -140
Year 3 35 70 35 -105
Year 4 30 100 70 -35
Year 5 30 120 90 55
Year 6 25 80 55 110
150
100
50
0 = Annual Cost
Year 1 Year 2 Year 3 Year Year 5 Year 6 = Annua Revenue
Annual Profit
0 = CLMUlative profit
-100
-150
200

Figure 58. Product Lifecycle, Aggravated Delay, Charted

The advanced cost of delayed analysis argues that different product lifecycles have different
characteristics. Josh Arnold of Black Swan Farming has visualized these as a set of profiles [22]. See
Figure 59, “Simple Cost of Delay” (similar to [22]) for the simple delay profile.

166

The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Potential
benefits

%
Benefits

Realized
benefits

——————— ‘.
Late Time
entry

Figure 59. Simple Cost of Delay

In this delay curve, while profits and revenues are lost due to late entry, it is assumed that the product
will still enjoy its expected market share. We can think of this as the “iPhone versus Android” profile,
as Android was later but still achieved market parity. The aggravated cost of delay profile, however,
looks like Figure 60, “Aggravated Cost of Delay” (similar to [22]).

Potential
benefits

Delay cost

%
Benefits

Realized
benefits

—
Late ﬂ'me
entry

Figure 60. Aggravated Cost of Delay

In this version, the failure to enter the market in a timely way results in long-term loss of market share.
We can think of this as the “Amazon Kindle™ versus Barnes & Noble Nook” profile, as the Nook has not
achieved parity, and does not appear likely to. There are other delay curves imaginable, such as delay
curves for tightly time-limited products (e.g., such as found in the fashion industry) or cost of delay
that is only incurred after a specific date (such as in complying with a regulation).

Digital Practitioner Body of Knowledge™ Standard 167

6.2. Context II: Team Chapter 6. The Body of Knowledge

Reinertsen observes that product managers may think that they intuitively understand cost of delay,
but when he asks them to estimate the aggregate cost of (for example) delaying their product’s delivery
by a given period of time, the estimates provided by product team participants in a position to delay
delivery may vary by up to 50:1. This is powerful evidence that a more quantitative approach is
essential, as opposed to relying on “gut feel” or the HiPPO.

Finally, Josh Arnold notes that cost of delay is much easier to assess on small batches of work. Large
projects tend to attract many ideas for features, some of which have stronger economic justifications
than others. When all these features are lumped together, it makes understanding the cost of delay a
challenging process, because it then becomes an average across the various features. But since
features, ideally, can be worked on individually, understanding the cost of delay at that level helps with
the prioritization of the work.

The combination of product roadmapping, a high-quality DEEP backlog, and cost of delay is a solid
foundation for digital product development. It is essential to have an economic basis for making the
prioritization decision. Clarifying the economic basis is a critical function of the product roadmap.
Through estimation of story points, we can understand the team’s velocity. Estimating velocity is key to
planning, which we will discuss further in Section 6.3.2, “Investment and Portfolio”. Through
understanding the economics of product availability to the market or internal users, the cost of delay
can drive backlog prioritization.

Evidence of Notability

Lean influences on software development and the management of digital systems are the subject of
conference talks, books, and articles, and much other evidence demonstrating an engaged community
of interest. Notable works include [165, 20, 221, 27, 230].

Limitations

Lean has broad applicability but the nature of the digital work must be understood carefully. Classic
Lean applies well to less-variable operational work in digital systems. Developing new digital systems
requires Lean Product Development principles, and some aspects of classic Lean (e.g., always reducing
variability) are less applicable or may even be harmful. See, for example, [230] for further discussion
(Chapter 4, "The Economics of Product Development Variability").

Related Topics

* Application Delivery
e Product Team Practices

* Lean Management

Coordination and Process

* Organizational Structure

168 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.2. Context II: Team
6.2.2.3. Work Management Capabilities and Approaches

Description

As a digital product starts to gain a user base, and as a company matures and grows, there emerges a
need for human-to-human support. This is typically handled by a help desk or service desk, serving as
the human face of IT when the IT systems are not meeting people’s expectations. We were first briefly
introduced to the concept in our Service Lifecycle (see Figure 11, “The Essential States of the Digital
Product”).

The service desk is an interrupt-driven, task-oriented capability. It serves as the first point of contact
for IT services that require some human support or intervention. As such, its role can become broad
from provisioning access to assisting users in navigation and usage, to serving as an alert channel for
outage reporting. The service desk ideally answers each user’s request immediately, requiring no
follow-up. If follow-up is required, a “ticket” is “issued”.

As a “help desk”, it may be focused on end-user assistance and reporting incidents. As a “service desk”,
it may expand its purview to accepting provisioning or other requests of various types (and referring
and tracking those requests). Note that in some approaches, service request and incident are
considered to be distinct processes.

The term "ticket” dates to paper-based industrial processes, where the “help desk” might actually be a
physical desk, where a user seeking services might be issued a paper ticket. Such “tickets” were also
used in field services.

In IT-centric domains, tickets are virtual; they are records in databases, not paper. The user is given a
ticket “ID” or “number” for tracking (e.g., so they can inquire about the request’s status). The ticket
may be “routed” to someone to handle, but again in a virtual world what really happens is that the
person it is routed to is directed to look at the record in the database. (In paper-based processes, the
ticket might well be moved physically to various parties to perform the needed work.)

A service desk capability needs:

Channels for accepting contacts (e.g., telephone, email, chat)
« Staffing appropriate to the volume and nature of those requests

* Robust workflow capabilities to track their progress

Routing and escalation mechanisms, since clarifying the true nature of contacts and getting them
serviced by the most appropriate means are non-trivial challenges

Work management in practice has divided between development and operations practices and tools.
However, DevOps and Kanban are forcing a reconsideration and consolidation. Historically, here are
some of the major tools and channels through which tasks and work are managed on both sides:

Digital Practitioner Body of Knowledge™ Standard 169

6.2. Context II: Team

Table 10. Dev versus Ops Tooling
Development

User story tracking system
Issue/risk/action item log

Defect tracker

Chapter 6. The Body of Knowledge

Operations
Service or help desk ticketing system
Incident management system

Change management system

All of these systems have common characteristics. All can (or should) be able to:

* Register a new task

* Represent the current status of the work

Describe the work to be done (development or break/fix/remediate)

» Track who is currently accountable for it (individual and/or team)

high/medium/low

More advanced systems may also be able to:

Indicate the priority of the work, at least in terms of a simple categorization such as

* Link one unit of work to another (either as parent/child or peer-to-peer)

e Prioritize and order work

Track the effort spent on the work

Track the referral or escalation trail of the work, if it is routed to various parties

* Link to communication channels such as conference bridges and paging systems

The first automated system (computer-based) you may find yourself acquiring along these lines is a
help desk system. You may be a small company, but when you start to build a large customer base,
keeping them all happy requires more than a manual, paper-based card wall or Kanban board.

6.2.2.4. Towards Process Management

The Kanban board has started to get complicated (see Figure 61, “Medium-Complex Kanban Board”,
loosely based on Image from [171]). We are witnessing an increasing amount of work that needs to
follow a sequence, or checklist, for the sake of consistency.

170

The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Backlog Active
. j . ~ N
Analysis CFO Team Design Code Test Deploy

) e 1
i | il i

RT Don I

G| M
L
BDm D~ M5 | B i

u)
a
J

N
g
o
m
I
:
|
|
O
|
II;I
I
I
o

Bk
M
uy
N

uy
Ny
uy

Figure 61. Medium-Complex Kanban Board

Process management is when we need to start managing:

Multiple

Repeatable

Measurable sequences of activity

Considering their interdependencies

Perhaps using common methods to define them

And even common tooling to support multiple processes

6.2.2.4.1. Process Basics

We have discussed some of the factors leading to the need for process management, but we have not
yet come to grips with what it is. To start, think of a repeatable series of activities, such as when a new
employee joins (see Figure 62, “Simple Process Flow”).

Y
Create :
. . Supply . Authorize
Hire Assigin enterprise
— - laptop and p—pf ENFEP network
employee space cfﬂ pphone d“’""’ff""y aceess
entry

Figure 62. Simple Process Flow

Process management can represent conditional logic (see Figure 63, “Conditionality”).

Digital Practitioner Body of Knowledge™ Standard 171

6.2. Context II: Team Chapter 6. The Body of Knowledge

No [1

Yes
] ; . Supply
Hire Fixed space > Assigin
employee needed? space T fsz'ﬁfhg:f Etc.

Figure 63. Conditionality

Process models can become extremely intricate, and can describe both human and automated activity.
Sometimes, the process simply becomes too complicated for humans to follow. Notice how different the
process models are from the card wall or Kanban board. In Kanban, everything is a work item, and the
overall flow is some simple version of “to do, doing, done”. This can become complex when the flow
gets more elaborate (e.g., various forms of testing, deployment checks, etc.). In a process model, the
activity is explicitly specified on the assumption it will be repeated. The boxes representing steps are
essentially equivalent to the columns on a Kanban board, but since sticky notes are not being used,
process models can become very complex — like a Kanban board with dozens or hundreds of columns!
Process management as a practice is discussed extensively in Context III. However, before we move on,
two simple variations on process management are:

¢ Checklists

* Case Management

6.2.2.4.2. The Checklist Manifesto

The Checklist Manifesto is the name of a notable book by author/surgeon Atul Gawande [109]. The title
can be misleading; the book in no way suggests that all work can be reduced to repeatable checklists.
Instead, it is an in-depth examination of the relationship between standardization and complexity. Like
Case Management, it addresses the problem of complex activities requiring professional judgment.

Unlike Case Management (discussed below), it explores more time-limited and often urgent activities
such as flight operations, large-scale construction, and surgery. These activities, as a whole, cannot be
reduced to one master process; there is too much variation and complexity. However, within the
overall bounds of flight operations, or construction, or surgery, there are critical sequences of events
that must be executed, often in a specific order. Gawande discusses the airline industry as a key
exemplar of this. Instead of one “master checklist” there are specific, clear, brief checklists for a wide
variety of scenarios, such as a cargo hold door becoming unlatched.

There are similarities and differences between core BPM approaches and checklists. Often, BPM is
employed to describe processes that are automated and whose progress is tracked in a database.
Checklists, on the other hand, may be more manual, intended for use in a closely collaborative
environment (such as an aircraft cockpit or operating room), and may represent a briefer period of
time.

Full process management specifies tasks and their flow in precise detail. We have not yet got to that
point with our Kanban board, but when we start adding checklists, we are beginning to differentiate
the various processes at a detailed level. We will revisit Gawande’s work in Context III with the

172 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge

coordination technique of the submittal schedule.

6.2.2.4.3. Case Management

6.2. Context II: Team

Process
management
End
Initiate >
Precisely specified,
repeatable activities
Case
management
- A
Complex activities
Open case » requiving professional —p| Close case
Jjudgement
— S
Figure 64. Process Management versus Case Management
NOTE Do not confuse “Case” here with Computer Assisted Software Engineering.

Case Management is a concept used in medicine, law, and social services. Case Management can be
thought of as a high-level process supporting the skilled knowledge worker applying their professional
expertise. Cases are another way of thinking about the relationship between the Kanban board and
process management (see Figure 64, “Process Management versus Case Management”).

Digital Practitioner Body of Knowledge™ Standard

173

6.2. Context II: Team Chapter 6. The Body of Knowledge

Workflow Management Coalition on Case Management

Business Process Modeling and Case Management are useful for different kinds of business
situations:

» Highly predictable and highly repeatable business situations are best supported with BPM

> For example, signing up for a cell phone service: it happens thousands of times a day, and
the process is essentially fixed

» Unpredictable and unrepeatable business situations are best handled with Case Management

o For example, investigation of a crime will require following up on various clues, down
various paths, which are not predictable beforehand; there are various tests and
procedures to use, but they will be called only when needed

[299], via [94]

IT consultant and author Rob England contrasts “Case Management” with “Standard Process” in his
book Plus! The Standard+Case Approach: See Service Response in a New Light [94]. Some processes are
repeatable and can be precisely standardized, but it is critical for anyone working in complex
environments to understand the limits of a standardized process. Sometimes, a large “case” concept is
sufficient to track the work. The downside may be that there is less visibility into the progress of the
case — the person in charge of it needs to provide a status that can’t be represented as a simple report.
We will see process management again in Section 6.2.3, “Operations Management” in our discussion of
operational process emergence.

Evidence of Notability Workflow management in the basic emergent sense is a key precursor to full
BPM. See, for example, [255].

Limitations Not all work can or should be reduced to a procedural paradigm. Higher-touch, more
variable services and R&D work require different approaches, such as Case Management.

Related Topics

Product Team Practices
* Lean Management
* Lean Product Development

* Operational Response

Coordination and Process
* Organizational Structure

e Governance Elements

174 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.2. Context II: Team
6.2.2.5. Systems Thinking and Feedback

Description

So, what is a system? A system is a set of things - people, cells, molecules, or
whatever - interconnected in such a way that they produce their own pattern
of behavior over time. The system may be buffeted, constricted, triggered, or
driven by outside forces. But the system’s response to these forces is
characteristic of itself, and that response is seldom simple in the real world.

— Donella Meadows, Thinking in Systems

Systems thinking, and systems theory, are broad topics extending far beyond IT and the digital
profession. Meadows defines a system as: “an interconnected set of elements that is coherently
organized in a way that achieves something” [1]. Systems are more than the sum of their parts; each
part contributes something to the greater whole, and often the behavior of the greater whole is not
obvious from examining the parts of the system.

Systems thinking is an important influence on digital management. Digital systems are complex, and
when the computers and software are considered as a combination of the people using them, we have
a sociotechnical system. Digital systems management seeks to create, improve, and sustain these
systems.

A digital management capability is itself a complex system. While the term “Information Systems (IS)”
was widely replaced by “Information Technology (IT)” in the 1990s, do not be fooled. Enterprise IT is a
complex sociotechnical system, that delivers the digital services to support a myriad of other complex
sociotechnical systems.

The Merriam-Webster dictionary defines a system as: “a regularly interacting or interdependent group
of items forming a unified whole". These interactions and relationships quickly take center stage as the
focus moves from individual work to team efforts. Consider that while a two-member team only has
one relationship to worry about, a ten-member team has 45, and a 100-person team has 4,950!

6.2.2.5.1. A Brief Introduction to Feedback
The harder you push, the harder the system pushes back.

— Peter Senge, The Fifth Discipline

As the Senge quote implies, brute force does not scale well within the context of a system. One of the
reasons for systems stability is feedback. Within the bounds of the system, actions lead to outcomes,
which in turn affect future actions. This is a positive thing, as it is required to keep a complex
operation on course.

Feedback is a problematic term. We hear terms like positive feedback and negative feedback and
associate such usage with performance coaching and management discipline. That is not the sense of

Digital Practitioner Body of Knowledge™ Standard 175

6.2. Context II: Team Chapter 6. The Body of Knowledge

feedback in this document. The definition of feedback as used in this document is based on
engineering and control theory.

Figure 65, “Reinforcing Feedback Loop” illustrates the classic illustration of a reinforcing feedback
loop.

Input(s) Output

Pf"ﬂﬁﬂﬁﬁ

Figure 65. Reinforcing Feedback Loop

For example (as in Figure 66, “Reinforcing (Positive?) Feedback, with Rabbits”), “rabbit reproduction”
can be considered as a process with a reinforcing feedback loop.

=~ Output W %"ﬁ %ﬁ mﬁf

Rabbit g} jt:.\{ t_?;:} &5):\?
reproduction W Q:.ij %ﬁ Qufy'
4) Huay

W A\INING

R AR,

Figure 66. Reinforcing (Positive?) Feedback, with Rabbits

The more rabbits, the faster they reproduce, and the more rabbits. This is sometimes called a “positive”
feedback loop, although the local gardener may not agree. This is why feedback experts (e.g., [268])
prefer to call this “reinforcing” feedback because there is not necessarily anything “positive” about it.

We can also consider feedback as the relationship between two processes (see Figure 67, “Feedback
Between Two Processes”).

176 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.2. Context II: Team

r_ N
[——»

Frocess A Frocess E

————
J J

Figure 67. Feedback Between Two Processes

In the example, what if Process B is fox reproduction; that is, the birth rate of foxes (who eat rabbits)
(see Figure 68, “Balancing (Negative?) Feedback, with Rabbits and Foxes)?

§ % + 3
‘ —lb
e Rabbit Fox t‘&/
N7, reproduction reproduction R ,——/J*
-‘———
~ == J

Figure 68. Balancing (Negative?) Feedback, with Rabbits and Foxes

More rabbits equal more foxes (notice the “+” symbol on the line) because there are more rabbits to
eat! But what does this do to the rabbits? It means fewer rabbits (the “--” on the line). Which, ultimately,
means fewer foxes, and at some point, the populations balance. This is classic negative feedback.
However, the local gardeners and foxes don’t see it as negative. That is why feedback experts prefer to
call this “balancing” feedback. Balancing feedback can be an important part of a system’s overall
stability.

6.2.2.5.2. What does Systems Thinking Have to do with IT?

In an engineering sense, positive feedback is often dangerous and a topic of concern. A recent example
of bad positive feedback in engineering is the London Millennium Bridge. On opening, the Millennium
Bridge started to sway alarmingly, due to resonance and feedback which caused pedestrians to walk in
cadence, increasing the resonance issues. The bridge had to be shut down immediately and retro-fitted
with $9 million worth of tuned dampers [75].

As with bridges, at a technical level, reinforcing feedback can be a very bad thing in IT systems. In
general, any process that is self-amplified without any balancing feedback will eventually consume all
available resources, just like rabbits will eat all the food available to them. So, if you create a process
(e.g., write and run a computer program) that recursively spawns itself, it will sooner or later crash the
computer as it devours memory and CPU. See runaway processes.

Balancing feedback, on the other hand, is critical to making sure you are “staying on track”. Engineers
use concepts of control theory; for example, damping, to keep bridges from falling down.

Digital Practitioner Body of Knowledge™ Standard 177

6.2. Context II: Team Chapter 6. The Body of Knowledge

Section 6.1.1, “Digital Fundamentals” covered the user’s value experience, and also how services
evolve over time in a lifecycle. In terms of the dual-axis value chain, there are two primary digital
value experiences:

» The value the user derives from the service (e.g., account lookups, or a flawless navigational
experience)
* The value the investor derives from monetizing the product, or comparable incentives (e.g., non-

profit missions)

Additionally, the product team derives career value. This becomes more of a factor later in the game.
We will discuss this further in Section 6.3.1, “Coordination and Process” — on organization — and
Context IV, on architecture lifecycles and technical debt.

The product team receives feedback from both value experiences. The day-to-day interactions with the
service (e.g., help desk and operations) are understood, and (typically on a more intermittent basis) the
portfolio investor also feeds back the information to the product team (the boss’s boss comes for a
Visit).

Balancing feedback in a business and IT context takes a wide variety of forms:
» The results of a product test in the marketplace; for example, users' preference for a drop down

box versus checkboxes on a form

* The product owner clarifying for developers their user experience vision for the product, based on
a demonstration of developer work-in-process

* The end users calling to tell you the “system is slow” (or down)
* The product owner or portfolio sponsor calling to tell you they are not satisfied with the system’s
value

In short, we see these two basic kinds of feedback:

* Positive/reinforcing, “do more of that”

* Negative/balancing, “stop doing that”, “fix that”
The following should be considered:

* How you are accepting and executing on feedback signals?
» How is the feedback relationship with investors evolving, in terms of your product direction?
* How is the feedback relationship with users evolving, in terms of both operational criteria and

product direction?

One of the most important concepts related to feedback, one we will keep returning to, is that product
value is based on feedback. We have discussed Lean Startup, which represents a feedback loop
intended to discover product value. Don Reinertsen has written extensively on the importance of fast
feedback to the product discovery process.

178 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.2. Context II: Team
6.2.2.5.3. Reinforcing Feedback: The Special Case Investors Want

At a business level, there is a special kind of reinforcing feedback that defines the successful business
(see Figure 69, “The Reinforcing Feedback Businesses Want”).

-+

Weord of

mouth

Sales

A +

Figure 69. The Reinforcing Feedback Businesses Want

This is reinforcing feedback and positive for most people involved: investors, customers, employees. At
some point, if the cycle continues, it will run into balancing feedback:

* Competition

* Market saturation

* Negative externalities (regulation, pollution, etc.)

But those are problems that indicate a level of scale the business wants to have.

6.2.2.5.4. Open versus Closed-Loop Systems

Finally, we should talk briefly about open-loop versus closed-loop systems.

* Open-loop systems have no regulation, no balancing feedback

* Closed-loop systems have some form of balancing feedback

In navigation terminology, the open-loop attempt to stick to a course without external information
(e.g., navigating in the fog, without radar or communications) is known as "dead reckoning", in part
because it can easily get you dead!

A good example of an open-loop system is the children’s game “pin the tail on the donkey” (see Figure
70, “Pin the Tail on the Donkey”™). In “pin the tail on the donkey”, a person has to execute a process
(pinning a paper or cloth “tail” onto a poster of a donkey — no live donkeys are involved!) while
blindfolded, based on their memory of their location (and perhaps after being deliberately disoriented
by spinning in circles). Since they are blindfolded, they have to move across the room and pin the tail
without the ongoing corrective feedback of their eyes. (Perhaps they are getting feedback from their
friends, but perhaps their friends are not reliable.)

Digital Practitioner Body of Knowledge™ Standard 179

6.2. Context II: Team Chapter 6. The Body of Knowledge

Figure 70. Pin the Tail on the Donkey

Without the blindfold, it would be a closed-loop system. The person would rise from their chair and,
through the ongoing feedback of their eyes to their central nervous system, would move towards the
donkey and pin the tail in the correct location. In the context of a children’s game, the challenges of
open-loop may seem obvious, but an important aspect of IT management over the past decades has
been the struggle to overcome open-loop practices. Reliance on open-loop practices is arguably an
indication of a dysfunctional culture. An IT team that is designing and delivering without sufficient
corrective feedback from its stakeholders is an ineffective, open-loop system. Mark Kennaley [164]
applies these principles to software development in much greater depth, and is recommended.

Engineers of complex systems use feedback techniques extensively. Complex systems do not work
without them.

6.2.2.5.5. OODA

After the Korean War, the US Air Force wished to clarify why its pilots had performed in a superior
manner to the opposing pilots who were flying aircraft viewed as more capable. A colonel named John
Boyd was tasked with researching the problem. His conclusions are based on the concept of feedback
cycles, and how fast humans can execute them. Boyd determined that humans go through a defined
process in building their mental model of complex and dynamic situations. This has been formalized
in the concept of the OODA loop (see Figure 71, “OODA Loop”™).

180 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Observe Orient Decide Act
Implicit Implicit
Guidance &u(l:%?lrt]:(ﬁ
Unfolding & Control
Circumstances\/ ‘ /
Obsewanons Feed iy i Decision Feed Action
- Fomfard (Hypothesis) o (Test)
Outside nfarmatian)— .
Information
Unfolding
Unfoldi Interaction
Interactlon Feedback With
With —Feedback Enwrolnment
Environment Feedback
John Boyd's OODA Loop

Figure 71. OODA Loop
OODA stands for:

* Observe

* Orient

* Decide

* Act
Because the US fighters were lighter, more maneuverable, and had better visibility, their pilots were
able to execute the OODA loop more quickly than their opponents, leading to victory. Boyd and others
have extended this concept into various other domains including business strategy. The concept of the

OODA feedback loop is frequently mentioned in presentations on Agile methods. Tightening the OODA
loop accelerates the discovery of product value and is highly desirable.

6.2.2.5.6. The DevOps Consensus as Systems Thinking

We covered continuous delivery and introduced DevOps in Competency Area 3. Systems theory
provides us with powerful tools to understand these topics more deeply.

Figure 72. Change versus Stability

Digital Practitioner Body of Knowledge™ Standard 181

6.2. Context II: Team Chapter 6. The Body of Knowledge

One of the assumptions we encounter throughout digital management is the idea that change and
stability are opposing forces. In systems terms, we might use a diagram like Figure 72, “Change versus
Stability” (see [33] for original exploration]). As a Causal Loop Diagram (CLD), it is saying that change
and stability are opposed — the more we have of one, the less we have of the other. This is true, as far
as it goes — most systems issues occur as a consequence of change; systems that are not changed in
general do not crash as much.

Change
size

Change
backlog

Figure 73. Change Vicious Cycle

The trouble with viewing change and stability as diametrically opposed is that change is inevitable. If
simple delaying tactics are put in, these can have a negative impact on stability, as in Figure 73,
“Change Vicious Cycle”. What is this diagram telling us? If the owner of the system tries to prevent
change, a larger and larger backlog will accumulate. This usually results in larger and larger-scale
attempts to clear the backlog (e.g., large releases or major version updates). These are riskier activities
which increase the likelihood of change failure. When changes fail, the backlog is not cleared and
continues to increase, leading to further temptation for even larger changes.

How do we solve this? Decades of thought and experimentation have resulted in continuous delivery
and DevOps, which can be shown in terms of system thinking in Figure 74, “The DevOps Consensus”.

182 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Change
frequency

Change size

IT Service
Availability

Change
capability

Change Success

Figure 74. The DevOps Consensus
To summarize a complex set of relationships:

» As change occurs more frequently, it enables smaller change sizes

» Smaller change sizes are more likely to succeed (as change size goes up, change success likelihood
goes down; hence, it is a balancing relationship)

* As change occurs more frequently, organizational learning happens (change capability); this
enables more frequent change to occur, as the organization learns

o This has been summarized as: “if it hurts, do it more” (Martin Fowler in [92]).

* The improved change capability, coupled with the smaller perturbations of smaller changes,
together result in improved change success rates

* Improved change success, in turn, results in improved system stability and availability, even with
frequent changes; evidence supporting this de facto theory is emerging across the industry and can
be seen in cases presented at the DevOps Enterprise Summit and discussed in The DevOps
Handbook [166]

Notice the reinforcing feedback loop (the “R” in the looped arrow) between change frequency and
change capability. Like all diagrams, this one is incomplete. Just making changes more frequently will
not necessarily improve the change capability; a commitment to improving practices such as
monitoring, automation, and so on is required, as the organization seeking to release more quickly will
discover.

Evidence of Notability

Discussions of systems thinking, feedback, and OODA occur repeatedly throughout IT and digital
management literature; e.g., ITIL’s Service Strategy volume [282] and The DevOps Handbook [166].

Digital Practitioner Body of Knowledge™ Standard 183

6.2. Context II: Team Chapter 6. The Body of Knowledge
Limitations

Systems thinking is an advanced and somewhat theoretical topic, and discussions of it should carefully
consider the audience.

Related Topics

* Lean Management

* Lean Product Development
* Operational Response

» Coordination and Process

¢ Governance

6.2.3. Operations Management

Although this Competency Area is titled “operations management” it also brings in
NOTE infrastructure engineering at a higher level, assuming that the product is continuing to
scale up. This is consistent with industry usage.

Area Description

As the digital product gains more use, running it becomes a distinct concern from building it. For all
their logic, computers are still surprisingly unreliable. Servers running well-tested software may
remain “up” for weeks, and then all of a sudden hang and have to be rebooted. Sometimes it is clear
why (for example, a log file filled up that no-one expected) and in other cases, there just is no
explanation.

Engineering and operating complex IT-based distributed systems is a significant challenge. Even with
Infrastructure as Code and automated continuous delivery pipelines, operations as a class of work is
distinct from software development per se. The work is relatively more interrupt-driven, as compared
to the “heads-down” focus on developing new features. Questions about scalability, performance,
caching, load balancing, and so forth usually become apparent first through feedback from the
operations perspective — whether or not there is a formal operations “team”.

The assumption here is still just one team with one product, but with this last Competency Area of
Context II, the assumption is that there is considerable use of the product. With today’s technology,
correctly deployed and operated, even a small team can support large workloads. This does not come
easily, however. Systems must be designed for scale and ease of operations. They need to be monitored
and managed for performance and capacity. The topic of configuration management will be covered
further at a more advanced level.

The evolution of infrastructure was covered in Digital Infrastructure and applications development in
Section 6.1.3, “Application Delivery”, and the DPBoK Standard will continue to build on those
foundations. The practices of change, incident, and problem management have been employed in the
industry for decades and are important foundations for thinking about operations. Finally, the concept

184 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.2. Context II: Team

of SRE is an important new discipline emerging from the practices of companies such as Google and
Facebook.

6.2.3.1. Defining Operations Management

6.2.3.1.1. Defining Operations

Description

Operations management is a broad topic in management theory, with whole programs dedicated to it
in both business and engineering schools. Companies frequently hire Chief Operations Officers to run
the organization. We started to cover operations management in Section 6.2.2, “Work Management”, as
we examined the topic of “work management” — in traditional operations management, the question
of work and who is doing it is critical. For the Digital Practitioner, “operations” tends to have a more
technical meaning than the classic business definition, being focused on the immediate questions of
systems integrity, availability and performance, and feedback from the user community (i.e., the
service or help desk). We see such a definition from Limoncelli et al.:

. operations is the work done to keep a system running in a way that meets or exceeds operating
parameters specified by a Service-Level Agreement (SLA). Operations includes all aspects of a service’s
lifecycle: from initial launch to the final decommissioning and everything in between [178 p. 147].

Operations often can mean “everything but development” in a digital context. In the classic model,
developers built systems and “threw them over the wall” to operations. Each side had specialized
processes and technology supporting their particular concerns. However, recall our discussion of
design thinking — the entire experience is part of the product. This applies to both those consuming it
as well as running it. Companies undergoing Digital Transformation are experimenting with many
different models; as we will see in Context III, up to and including the complete merging of
Development and Operations-oriented skills under common product management.

IMPORTANT In a digitally transformed enterprise, operations is part of the product.

)

User
Experienc

Product Lifecycle
/"

Operatiot

Figure 75. Operations Supports the Digital Moment of Truth

Digital Practitioner Body of Knowledge™ Standard 185

6.2. Context II: Team Chapter 6. The Body of Knowledge

Since this document has a somewhat broader point of view covering all of digital management, it uses
the following definition of operations:

Operations is the direct facilitation and support of the digital value experience. It tends to be less variable,
more repeatable, yet more interrupt-driven than product development work. It is more about restoring a
system to a known state, and less about creating new functionality.

What do we mean by this? In terms of our dual-axis value chain, operations supports the day-to-day
delivery of the digital “moment of truth” (see Figure 75, “Operations Supports the Digital Moment of
Truth”).

The following are examples of “operations” in an IT context. Some are relevant to a “two pizza product
team” scenario; some might be more applicable to larger environments:

« Systems operators are sitting in 24x7 operations centers, monitoring system status and responding
to alerts

* Help desk representatives answering phone calls from users requiring support

- They may be calling because a system or service they need is malfunctioning. They may also be
calling because they do not understand how to use the system for the value experience they
have been led to expect from it. Again, this is part of their product experience.

* Developers and engineers serving “on call” on a rotating basis to respond to systems outages
referred to them by the operations center

» Data center staff performing routine work, such as installing hardware, granting access, or running
or testing backups; such routine work may be scheduled, or it may be on request (e.g., ticketed)

* Field technicians physically dispatched to a campus or remote site to evaluate and if necessary
update or fix IT hardware and/or software - install a new PC, fix a printer, service a cell tower
antenna

* Security personnel ensuring security protocols are followed; e.g., access controls

As above, the primary thing that operations does not do is develop new systems functionality.
Operations is process-driven and systematic and tends to be interrupt-driven, whereas R&D fails the
“systematic” part of the definition (review the definitions in process, product, and project
management). However, new functionality usually has operational impacts. In manufacturing and
other traditional industries, product development was a minority of work, while operations was where
the bulk of work happened. Yet when an operational task involving information becomes well defined
and repetitive, it can be automated with a computer.

This continuous cycle of innovation and commoditization has driven closer and closer ties between
“development” and “operations”. This cycle has also driven confusion around exactly what is meant by
“operations”. In many organizations there is an “Infrastructure and Operations” (I&0) function. Pay
close attention to the naming. A matrix may help because we have two dimensions to consider here
(see Table 11, “Application, Infrastructure, Development, Operations”).

Table 11. Application, Infrastructure, Development, Operations

186 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Development Phase Operations Phase
Application Layer Application developers. Handle Help desk. Application support
demand, proactive and reactive, and maintenance (provisioning,
from product and operations. fixes not requiring software
Never under I&O. development). Often under I&O.
Infrastructure Layer Engineering team. Infrastructure Operations center. Operational
platform engineering and support, including monitoring

development (design and build system status. May monitor both
typically of externally sourced infrastructure and application
products). Often under 1&O. layers. Often under I&O.

Notice that we distinguish carefully between the application and infrastructure layers. This document
using the following pragmatic definitions:

» Applications are consumed by people who are not primarily concerned with IT

* Infrastructure is consumed by people who are primarily concerned with IT
Infrastructure services and/or products, as discussed in Digital Infrastructure, need to be designed and
developed before they are operated, just like applications. This may all seem obvious, but there is an

industry tendency to lump three of the four cells in the table into the I&O function when, in fact, each
represents a distinct set of concerns.

6.2.3.1.2. The Concept of “Service Level”

Either a digital system is available and providing a service, or it isn’t. The concept of "service level” was
mentioned above by Limoncelli. A level of service is typically defined in terms of criteria such as:

* What percentage of the time will the service be available?

* If the service suffers an outage, how long until it will be restored?

* How fast will the service respond to requests?
A Service-Level Agreement, or SLA, is a form of contract between the service consumer and service
provider, stating the above criteria in terms of a business agreement. When a service’s performance
does not meet the agreement, this is sometimes called a “breach” and the service provider may have to

pay a penalty (e.g., the customer gets a 5% discount on that month’s services). If the service provider
exceeds the SLA, perhaps a credit will be issued.

SLAs drive much operational behavior. They help prioritize incidents and problems, and the risk of
proposed changes are understood in terms of the SLAs.

6.2.3.1.3. State and Configuration

In all of IT (whether “infrastructure” or “applications”) there is a particular concern with managing
state. IT systems are remarkably fragile. One incorrect bit of information — a “0” instead of a “1” —
can completely alter a system’s behavior, to the detriment of business operations depending on it.

Digital Practitioner Body of Knowledge™ Standard 187

6.2. Context II: Team Chapter 6. The Body of Knowledge

Therefore, any development of IT — starting with the initial definition of the computing platform —
depends on the robust management state.

The following are examples of state:

* The name of a particular server
e The network address of that server

» The software installed on that server, in terms of the exact version and bits that comprise it
State also has more transient connotations:

* The current processes listed in the process table
* The memory allocated to each process

* The current users logged into the system

Finally, we saw in the previous section some server/application/business mappings. These are also a
form of state.

It is therefore not possible to make blanket statements like “we need to manage state”. Computing
devices go through myriads of state changes with every cycle of their internal clock. (Analog and
quantum computing are out of scope for this document.)

The primary question in managing state is “what matters”? What aspects of the system need to persist,
in a reliable and reproducible manner? Policy-aware tools are used extensively to ensure that the
system maintains its configuration, and that new functionality is constructed (to the greatest degree
possible) using consistent configurations throughout the digital pipeline.

6.2.3.1.4. Environments

“Production” is a term that new IT recruits rapidly learn has forbidding connotations. To be “in
production” means that the broader enterprise value stream is directly dependent on that asset. How
do things get to be “in production”? What do we mean by that?

Consider the fundamental principle that there is an IT system delivering some “moment of truth” to
someone. This system can be of any scale, but as above we are able to conceive of it having a “state”.
When we want to change the behavior of this system, we are cautious. We reproduce the system at
varying levels of fidelity (building “lower” environments with Infrastructure as Code techniques) and
experiment with potential state changes. This is called development. When we start to gain confidence
in our experiments, we increase the fidelity and also start to communicate more widely that we are
contemplating a change to the state of the system. We may increase the fidelity along a set of
traditional names (see Figure 76, “Example Environment Pipeline”):

* Development
* Build & Test

* Quality Assurance (QA)

188 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.2. Context II: Team

» Performance (or load) testing
* Integration

* Patch

* Production

The final state, where value is realized, is “production”. Moving functionality in smaller and smaller
batches, with increasing degrees of automation, is called continuous delivery.

—

Performance

’

Development Build & Test QA Integration Production

Patch

Figure 76. Example Environment Pipeline

The fundamental idea that new system functionality sequentially moves (“promotes”) through a series
of states to gain confidence before finally changing the state of the production system is historically
well established. You will see many variations, especially at scale, on the environments listed above.
However, the production state is notoriously difficult to reproduce fully, especially in highly
distributed environments. While Infrastructure as Code has simplified the problem, lower
environments simply can’t match production completely in all its complexity, especially interfaced
interactions with other systems or when large, expensive pools of capacity are involved. Therefore
there is always risk in changing the state of the production system. Mitigating strategies include:

* Extensive automated test harnesses that can quickly determine if system behavior has been
unfavorably altered

* Ensuring that changes to the production system can be easily and automatically reversed; for
example, code may be deployed but not enabled until a "feature toggle” is set - this allows quick
shutdown of that code if issues are seen

* Increasing the fidelity of lower environments with strategies such as service virtualization to make
them behave more like production

* Hardening services against their own failure in production, or the failure of services on which they
depend

* Reducing the size (and therefore complexity and risk) of changes to production (a key DevOps/
continuous delivery strategy); variations here include:

o Small functional changes (“one line of code”)

Digital Practitioner Body of Knowledge™ Standard 189

6.2. Context II: Team Chapter 6. The Body of Knowledge

- Small operational changes (deploying a change to just one node out of 100, and watching it,
before deploying to the other 99 nodes)

» Using policy-aware infrastructure management tools

Another important development in environmental approaches is A/B testing or canary deployments. In
this approach, the “production” environment is segregated into two or more discrete states, with
different features or behaviors exposed to users in order to assess their reactions. Netflix uses this as a
key tool for product discovery, testing the user reaction to different user interface techniques, for
example. Canary deployments are when a change is deployed to a small fraction of the user base, as a
pilot.

6.2.3.1.5. Environments as Virtual Concepts

The concept of “environment” can reinforce functional silos and waterfall thinking, and potentially the
waste of fixed assets. Performance environments (that can emulate production at scale) are
particularly in question.

Instead, in a digital infrastructure environment (private or public), the kind of test you want to
perform is defined and that capacity is provisioned on-demand.

6.2.3.1.6. “Development is Production”

It used to be that the concept of “testing in production” was frowned upon. Now, with these mitigating
strategies, and the recognition that complex systems cannot ever be fully reproduced, there is more
tolerance for the idea. But with older systems that may lack automated testing, incremental
deployment, or easy rollback, it is strongly recommended to retain existing promotion strategies, as
these are battle-tested and known to reduce risk. Often, their cycle time can be decreased.

On the other hand, development systems must never be treated casually.

The development pipeline itself represents a significant operational commitment

The failure of a source code repository, if not backed up, could wipe out a company (see [188])

* The failure of a build server or package repository could be almost as bad

In the digital economy, dozens or hundreds of developers out of work represents a severe
operational and financial setback, even if the “production” systems continue to function

It is, therefore, important to treat “development” platforms with the same care as production systems.
This requires nuanced approaches: with Infrastructure as Code, particular virtual machines or
containers may represent experiments, expected to fail often and be quickly rebuilt. No need for
burdensome change processes when virtual machine base images and containers are being set up and
torn down hundreds of times each day! However, the platforms supporting the instantiation and
teardown of those virtual machines are production platforms, supporting the business of new systems
development.

190 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Evidence of Notability

Operations management is a broad topic in management and industrial theory, with dedicated courses
of study and postgraduate degrees. The intersection of operations management and digital systems has
been a topic of concern since the first computers were developed and put into use for military,
scientific, and business applications.

Limitations

Operations is repeatable, interrupt-driven, and concerned with maintaining a given state of
performance. It is usually rigorously distinguished from R&D.

Related Topics

* Digital Value

* Digital Stack
 Digital Lifecycle

* Digital Infrastructure
* Work Management

* Coordination

* Governance
6.2.3.2. Monitoring and Telemetry
Description

Computers run in large data centers, where physical access to them is tightly controlled. Therefore, we
need telemetry to manage them. The practice of collecting and initiating responses to telemetry is
called monitoring.

6.2.3.2.1. Monitoring Techniques

Limoncelli et al. define monitoring as follows:

Monitoring is the primary way we gain visibility into the systems we run. It is the process of observing
information about the state of things for use in both short-term and long-term decision-making. [178].

Digital Practitioner Body of Knowledge™ Standard 191

6.2. Context II: Team

=¥

User

LTY

S

e

S
e Are you
. alive?

Application
Server
_J\y ©

Figure 77. Simple Monitoring

=

Operations

Monitoring
Server

\

Chapter 6. The Body of Knowledge

But how do we “observe” computing infrastructure? Monitoring tools are the software that watches

the software (and systems more broadly).

A variety of techniques are used to monitor computing infrastructure. Typically these involve
communication over a network with the device being managed. Often, the network traffic is on the
same network carrying the primary traffic of the computers. Sometimes, however, there is a distinct
“out-of-band” network for management traffic. A simple monitoring tool will interact on a regular
basis with a computing node, perhaps by “pinging” it periodically, and will raise an alert if the node
does not respond within an expected timeframe (see Figure 77, “Simple Monitoring”).

192

The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.2. Context II: Team

=g =

User Operations

Services

-

. Send .
Application) ;: i ;’:r (" Monitoring
Server —CaPacity, and alert___ Server
data
Log
monitoring
Ok here it is
_J y

Figure 78. Extended Monitoring

More broadly, these tools provide a variety of mechanisms for monitoring and controlling operational
IT systems; they may monitor:

Computing processes and their return codes

Performance metrics (e.g., memory and CPU utilization)

Events raised through various channels

Network availability

Log file contents (searching the files for messages indicating problems)

A given component’s interactions with other elements in the IT infrastructure; this is the domain of
application performance monitoring tools, which may use highly sophisticated techniques to trace
transactions across components of distributed infrastructure - see also the OpenTracing standard

And more (see Figure 78, “Extended Monitoring”)

Digital Practitioner Body of Knowledge™ Standard 193

6.2. Context II: Team Chapter 6. The Body of Knowledge

g Monitoring

Server

User

I’'m going
to act
like a

user, too

~\

Application
Server

_J

Figure 79. User Experience Monitoring

Some monitoring covers low-level system indicators not usually of direct interest to the end user.
Other simulates end-user experience; SLAs are often defined in terms of the response time as
experienced by the end user (see Figure 79, “User Experience Monitoring”). See [178], Chapters 16-17.

All of this data may then be forwarded to a central console and be integrated, with the objective of
supporting the organization’s SLAs in priority order. Enterprise monitoring tools are notorious for
requiring agents (small, continuously running programs) on servers; while some things can be
detected without such agents, having software running on a given computer still provides the richest
data. Since licensing is often agent-based, this gets expensive.

Monitoring systems are similar to source control systems in that they are a critical

NOTE . . .
point at which metadata diverges from the actual system under management.

194 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Configuration Y Monitoring
Management

e General purpose, only configure |® General purpose, only monitor
e May report configuration
exceptions to monitoring

(" Element Managers)

e Both configure and monitor
e Often product or vendor specific
o May feed general purpose monitoring

tools (aggregators)
e

Figure 80. Configuration, Monitoring, and Element Managers

Related to monitoring tools is the concept of an element manager (see Figure 80, “Configuration,
Monitoring, and Element Managers”). Element managers are low-level tools for managing various
classes of digital or IT infrastructure. For example, Cisco provides software for managing network
infrastructure, and EMC provides software for managing its storage arrays. Microsoft provides a
variety of tools for managing various Windows components. Notice that such tools often play a dual
role, in that they can both change the infrastructure configuration as well as report on its status. Many,
however, are reliant on graphical user interfaces, which are falling out of favor as a basis for
configuring infrastructure.

6.2.3.2.2. Specialized Monitoring

Monitoring tools, out of the box, can provide ongoing visibility to well-understood aspects of the digital
product: the performance of infrastructure, the capacity utilized, and well-understood, common
failure modes (such as a network link being down). However, the digital product or application also
needs to provide its own specific telemetry in various ways (see Figure 81, “Custom Software Requires
Custom Monitoring”). This can be done through logging to output files, or in some cases through
raising alerts via the network.

Digital Practitioner Body of Knowledge™ Standard 195

6.2. Context II: Team Chapter 6. The Body of Knowledge

r Application w i Monitoring
Server Server

T
Custom software [~ Custom
| _monitoring

Operating system [~ Standard_‘\

|_monitoring
_ v l J

Figure 81. Custom Software Requires Custom Monitoring

A typical way to enable custom monitoring is to first use a standard logging library as part of the
software development process. The logging library provides a consistent interface for the developer to
create informational and error messages. Often, multiple “levels” of logging are seen, some more
verbose than others. If an application is being troublesome, a more verbose level of monitoring may be
turned on. The monitoring tool is configured to scan the logs for certain information. For example, if
the application writes:

APP-ERR-SEV1-946: Unresolvable database consistency issues detected, terminating application.

Into the log, the monitoring tool can be configured to recognize the severity of the message and
immediately raise an alert.

Finally, as the quote at the beginning of this section suggests, it is critical that the monitoring discipline
is based on continuous improvement. (More to come on continuous improvement in Section 6.3.1,
“Coordination and Process”.) Keeping monitoring techniques current with your operational challenges
is a never-ending task. Approaches that worked well yesterday, today generate too many false
positives, and your operations team is now overloaded with all the noise. Ongoing questioning and
improvement of your approaches are essential to keeping your monitoring system optimized for
managing business impact as efficiently and effectively as possible.

196 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.2. Context II: Team

6.2.3.2.3. Aggregation and Operations Centers

Operator

Combined
view

r
Aggregator
{)|
E)g;erf;a/ Internal
od distributed
provider |
]]
[)
Network Storage
Internal
cloud

Figure 82. Aggregated Monitoring

It is not possible for a 24x7 operations team to access and understand the myriads of element
managers and specialized monitoring tools present in the large IT environment. Instead, these teams
rely on aggregators of various kinds to provide an integrated view of the complexity (see Figure 82,
“Aggregated Monitoring”). These aggregators may focus on status events, or specifically on
performance aspects related either to the elements or to logical transactions flowing across them. They
may incorporate dependencies from configuration management to provide a true “business view” into
the event streams. This is directly analogous to the concept of Andon board from Lean practices or the
idea of “information radiator” from Agile principles.

Digital Practitioner Body of Knowledge™ Standard 197

6.2. Context II: Team Chapter 6. The Body of Knowledge
NOTE 24x7 operations means operations conducted 24 hours a day, 7 days a week.

A monitoring console may present a rich and detailed set of information to an operator. Too detailed,
in fact, as systems become large. Raw event streams must be filtered for specific events or patterns of
concern. Event de-duplication starts to become an essential capability, which leads to distinguishing
the monitoring system from the event management system. Also, for this reason, monitoring tools are
often linked directly to ticketing systems; on certain conditions, a ticket (e.g., an incident) is created
and assigned to a team or individual.

Enabling a monitoring console to auto-create tickets, however, needs to be carefully considered and
designed. A notorious scenario is the “ticket storm”, where a monitoring system creates multiple
(perhaps thousands) of tickets, all essentially in response to the same condition.

6.2.3.2.4. Understanding Business Impact

At the intersection of event aggregation and operations centers is the need to understand business
impact. It is not, for example, always obvious what a server is being used for. This may be surprising to
new students, and perhaps those with experience in smaller organizations. However, in many large
“traditional” IT environments, where the operations team is distant from the development
organization, it is not necessarily easy to determine what a given hardware or software resource is
doing or why it is there. Clearly, this is unacceptable in terms of security, value management, and any
number of other concerns. However, from the start of distributed computing, the question “what is on
that server?” has been all too frequent in large IT shops.

In mature organizations, this may be documented in a Configuration Management Database or System
(CMDB/CMS). Such a system might start by simply listing the servers and their applications:

Table 12. Applications and Servers

Application Server
Quadrex SRV0001
PL-Q SRV0002
Quadrex DBSRV001
TimeTrak SRV0003
HR-Portal SRV0003
etc. etc.

(Imagine the above list, 25,000 rows long.)

This is a start, but still doesn’t tell us enough. A more elaborate mapping might include business unit
and contact:

198 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Table 13. Business Units, Contacts, Applications, Servers

BU Contact Application Server
Logistics Mary Smith Quadrex SRV0001
Finance Aparna Chaudry PL-Q SRV0002
Logistics Mary Smith Quadrex DBSRV001
Human Resources William Jones TimeTrak SRV0003
Human Resources William Jones HR-Portal SRV0003
etc. etc. etc. etc.

The above lists are very simple examples of what can be extensive record-keeping. But the key user
story is implied: if we can’t ping SRV0001, we know that the Quadrex application supporting Logistics
is at risk, and we should contact Mary Smith ASAP if she hasn’t already contacted us. (Sometimes, the
user community calls right away; in other cases, they may not, and proactively contacting them is a
positive and important step.)

The above approach is relevant to older models still reliant on servers (whether physical or virtual) as
primary units of processing. The trend to more dynamic forms of computing such as containers and
serverless computing is challenging these traditional practices, and what will replace them is currently
unclear.

6.2.3.2.5. Capacity and Performance Management

Capacity and performance management are closely related, but not identical terms encountered as IT
systems scale up and encounter significant load.

A capacity management system may include large quantities of data harvested from monitoring and
event management systems, stored for long periods of time so that history of the system utilization is
understood and some degree of prediction can be ventured for upcoming utilization.

The classic example of significant capacity utilization is the Black Friday/Cyber Monday experience of
retailers. Both physical store and online e-commerce systems are placed under great strain annually
around this time, with the year’s profits potentially on the line.

Performance management focuses on the responsiveness (e.g., speed) of the systems being used.
Responsiveness may be related to capacity utilization, but some capacity issues don’t immediately
affect responsiveness. For example, a disk drive may be approaching full. When it fills, the system will
immediately crash, and performance is severely affected. But until then, the system performs fine. The
disk needs to be replaced on the basis of capacity reporting, not performance trending. On the other
hand, some performance issues are not related to capacity. A misconfigured router might badly affect a
website’s performance, but the configuration simply needs to be fixed — there is no need to handle as
a capacity-related issue.

At a simpler level, capacity and performance management may consist of monitoring CPU, memory,
and storage utilization across a given set of nodes, and raising alerts if certain thresholds are

Digital Practitioner Body of Knowledge™ Standard 199

6.2. Context II: Team Chapter 6. The Body of Knowledge

approached. For example, if a critical server is frequently approaching 50% CPU utilization (leaving
50% “headroom”), engineers might identify that another server should be added. Abbot and Fisher
suggest: “As a general rule ... we like to start at 50% as the ideal usage percentage and work up from
there as the arguments dictate” [4 p. 204].

So, what do we do when a capacity alert is raised, either through an automated system or through the
manual efforts of a capacity analyst? There are a number of responses that may follow:

* Acquire more capacity

 Seek to use existing capacity more efficiently

» Throttle demand somehow
Capacity analytics at its most advanced (i.e., across hundreds or thousands of servers and services) is a
true Big Data problem domain and starts to overlap with IT asset management, capital planning, and
budgeting in significant ways. As your organization scales up and you find yourself responding more
frequently to the kinds of operational issues described in this section, you might start asking yourself
whether you can be more proactive. What steps can you take when developing or enhancing your

systems, so that operational issues are minimized? You want systems that are stable, easily upgraded,
and that can scale quickly on-demand.

Evidence of Notability

Monitoring production systems is the subject of extensive discussion and literature in digital and IT
management. See, for example, [14, 178, 34].

Limitations

Monitoring provides immediate insight via automated management of telemetry. It cannot tell
responders what to do, in general.

Related Topics

 Digital Stack

Digital Lifecycle

Digital Infrastructure
* Operations
* Operational Response

* Security

6.2.3.3. Operational Response
Description
Monitoring communicates the state of the digital systems to the professionals in charge of them. Acting

on that telemetry involves additional tools and practices, some of which we will review in this section.

200 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.2. Context II: Team
6.2.3.3.1. Communication Channels

When signals emerge from the lower levels of the digital infrastructure, they pass through a variety of
layers and cause assorted, related behavior among the responsible Digital Practitioners. The
accompanying illustration shows a typical hierarchy, brought into action as an event becomes
apparently more significant (see Figure 83, “Layered Communications Channels”).

Conference Email
(} bridges !
Ticketing

e__f

Chat and messaging

Monitoring

Event - Incident

Digital components

Figure 83. Layered Communications Channels

The digital components send events to the monitoring layer, which filters them for significant
concerns; for example, a serious application failure. The monitoring tool might automatically create a
ticket, or perhaps it first provides an alert to the system’s operators, who might instant message each
other, or perhaps join a chatroom.

If the issue can’t be resolved operationally before it starts to impact users, an Incident ticket might be
created, which has several effects:
* First, the situation is now a matter of record, and management may start to pay attention

* Accountability for managing the incident is defined, and expectations are that responsible parties
will start to resolve it

 If assistance is needed, the incident provides a common point of reference (it is a common
reference point), in terms of work management

Depending on the seriousness of the incident, further communications by instant messaging, chat, cell
phone, email, and/or conference bridge may continue. Severe incidents in regulated industries may
require recording of conference bridges.

ChatOps is the tight integration of instant communications with operational execution. In a chatroom,

Digital Practitioner Body of Knowledge™ Standard 201

6.2. Context II: Team Chapter 6. The Body of Knowledge

a virtual agent or "bot" is enabled and monitors the human-to-human interactions. The human beings
can issue certain commands to the bot, such as code deployments, team notifications, server restarts,
or more [256].

Properly configured ChatOps provides a low-friction collaborative environment, enabling a powerful
and immediate collective mental model of the situation and what is being done. It also provides a rich
audit trail of who did what, when, and who else was involved. Fundamental governance objectives of
accountability can be considered fulfilled in this way, on a par with paper or digital forms routed for
approval (and without their corresponding delays).

6.2.3.3.2. Operational Process Emergence

Process is what makes it possible for teams to do the right thing, again and
again.

— Limoncelli/Chalup/Hogan

Limoncelli, Chalup, and Hogan, in their excellent Cloud Systems Administration, emphasize the role of
the “oncall” and “onduty” staff in the service of operations [178]. Oncall staff have a primary
responsibility of emergency response, and the term oncall refers to their continuous availability, even
if they are not otherwise working (e.g., they are expected to pick up phone calls and alerts at home and
dial into emergency communications channels). Onduty staff are responsible for responding to non-
critical incidents and maintaining current operations.

What is an emergency? It’s all a matter of expectations. If a system (by its SLA) is supposed to be
available 24 hours a day, 7 days a week, an outage at 3 AM Saturday morning is an emergency. If it is
only supposed to be available from Monday through Friday, the outage may not be as critical (although
it still needs to be fixed in short order, otherwise there will soon be an SLA breach!).

IT systems have always been fragile and prone to malfunction. “Emergency” management is
documented as a practice in “data processing” as early as 1971 [87 pp. 188-189]. In Competency Area 5,
we discussed how simple task management starts to develop into process management. Certainly,
there is a concern for predictability when the objective is to keep a system running, and so process
management gains strength as a vehicle for structuring work. By the 1990s, a process terminology was
increasingly formalized, by vendors such as IBM (in their “Yellow Book” series), the UK’s IT
Infrastructure Library (ITIL), and other guidance such as the Harris Kern library (popular in the US
before ITIL gained dominance). These processes include:

* Request management
* Incident management
* Problem management
* Change management

Even as a single-product team, these processes are a useful framework to keep in mind as operational
work increases. See Table 14, “Basic Operational Processes” for definitions of the core processes

202 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.2. Context II: Team

usually first implemented.

Table 14. Basic Operational Processes
Process Definition

Request management Respond to routine requests such as providing
systems access.

Incident management Identify service outages and situations that could
potentially lead to them, and restore service
and/or mitigate immediate risk.

Problem management Identify the causes of one or more incidents and
remedy them (on a longer-term basis).

Change management Record and track proposed alterations to critical
IT components. Notify potentially affected parties
and assess changes for risk; ensure key
stakeholders exercise approval rights.

These processes have a rough sequence to them:

* Give the user access to the system

* If the system is not functioning as expected, identify the issue and restore service by any means
necessary - don’t worry about why it happened yet

* Once service is restored, investigate why the issue happened (sometimes called a post-mortem) and
propose longer-term solutions

* Inform affected parties of the proposed changes, collect their feedback and approvals, and track
the progress of the proposed change through successful completion

At the end of the day, we need to remember that operational work is just one form of work. In a single-
team organization, these processes might still be handled through basic task management (although
user provisioning would need to be automated if the system is scaling significantly). It might be that
the simple task management is supplemented with checklists since repeatable aspects of the work
become more obvious. We will continue on the assumption of basic task management for the
remainder of this Competency Area, and go deeper into the idea of defined, repeatable processes as we
scale to a “team of teams” in Context IIL.

6.2.3.3.3. Post-Mortems, Blamelessness, and Operational Demand

We briefly mentioned problem management as a common operational process. After an incident is
resolved and services are restored, further investigation (sometimes called “root cause analysis”) is
undertaken as to the causes and long-term solutions to the problem. This kind of investigation can be
stressful for the individuals concerned and human factors become critical.

Digital Practitioner Body of Knowledge™ Standard 203

6.2. Context II: Team Chapter 6. The Body of Knowledge

The term "root cause analysis” is viewed by some as misleading, as complex system
NOTE failures often have multiple causes. Other terms are post-mortems or simply causal
analysis.

We have discussed psychological safety previously. Psychological safety takes on an additional and
even more serious aspect when we consider major system outages, many of which are caused by
human error. There has been a long history of management seeking individuals to “hold accountable”
when complex systems fail. This is an unfortunate approach, as complex systems are always prone to
failure. Cultures that seek to blame do not promote a sense of psychological safety.

The definition of "counterfactual” is important. A “counterfactual” is seen in statements of the form “if
only Joe had not re-indexed the database, then the outage would not have happened”. It may be true
that if Joe had not done so, the outcome would have been different. But there might be other such
counterfactuals. They are not helpful in developing a continual improvement response. The primary
concern in assessing such a failure is "how was Joe put in a position to fail?". Put differently, how is it
that the system was designed to be vulnerable to such behavior on Joe’s part? How could it be designed
differently, and in a less sensitive way?

This is, in fact, how aviation has become so safe. Investigators with the unhappy job of examining
large-scale airplane crashes have developed a systematic, clinical, and rational approach for doing so.
They learned that if the people they were questioning perceived a desire on their part to blame, the
information they provided was less reliable. (This, of course, is obvious to any parent of a four-year
old.)

John Allspaw, CTO of Etsy, has pioneered the application of modern safety and incident investigation
practices in digital contexts and notably has been an evangelist for the work of human factors expert
and psychologist Sidney Dekker. Dekker summarizes attitudes towards human error as falling into
either the old or new views. He summarizes the old view as the Bad Apple theory:

» Complex systems would be fine, were it not for the erratic behavior of some unreliable people (Bad
Apples) in it

* Human errors cause accidents: humans are the dominant contributor to more than two thirds of
them

e Failures come as unpleasant surprises; they are unexpected and do not belong in the system - failures
are introduced to the system only through the inherent unreliability of people

Dekker contrasts this with the new view:

* Human error is not a cause of failure - human error is the effect, or symptom, of deeper trouble

* Human error is not random - it is systematically connected to features of people’s tools, tasks, and
operating environment

* Human error is not the conclusion of an investigation; it is the starting point [83]

Dekker’s principles are an excellent starting point for developing a culture that supports blameless

204 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.2. Context II: Team

investigations into incidents. We will talk more systematically of culture in Section 6.3.1, “Coordination
and Process”.

Finally, once a post-mortem or problem analysis has been conducted, what is to be done? If work is
required to fix the situation (and when is it not?), this work will compete with other priorities in the
organization. Product teams typically like to develop new features, not solve operational issues that
may call for reworking existing features. Yet serving both forms of work is essential from a holistic,
design thinking point of view.

In terms of queuing, operational demand is too often subject to the equivalent of queue starvation —
which as Wikipedia notes is usually the result of “naive scheduling algorithms”. If we always and only
work on what we believe to be the “highest priority” problems, operational issues may never get
attention. One result of this is the concept of technical debt, which we discuss in Context IV.

6.2.3.3.4. Drills, Game Days, and Chaos Engineering

As noted above, it is difficult to fully reproduce complex production infrastructures as “lower”
environments. Therefore, it is difficult to have confidence in any given change until it has been run in
production.

The need to emulate “real-world” conditions is well understood in the military, which relies heavily on
drill and exercises to ensure peak operational readiness. Analogous practices are emerging in digital
organizations, such as the concept of “Game Days” — defined periods when operational disruptions
are simulated and the responses assessed. A related set of tools is the Netflix Simian Army, a collection
of resiliency tools developed by the online video-streaming service Netflix. It represents a significant
advancement in digital risk management, as previous control approaches were too often limited by
poor scalability or human failure (e.g., forgetfulness or negligence in following manual process steps).

Chaos Monkey is one of a number of tools developed to continually “harden” the Netflix system,
including:
* Latency Monkey — introduces arbitrary network delays

* Conformity Monkey — checks for consistency with architectural standards, and shuts down non-
conforming instances

* Doctor Monkey — checks for longer-term evidence of instance degradation

Janitor Monkey — checks for and destroys unused running capacity

Security Monkey — an extension of Conformity Monkey, checks for correct security configuration

10-18 Monkey — checks internationalization

* Finally, Chaos Gorilla simulates the outage of an entire Amazon availability zone

On the whole, the Simian Army behaves much as antibodies do in an organic system. One notable
characteristic is that the monkeys as described do not generate a report (a secondary artifact) for
manual follow-up. They simply shut down the offending resources.

Digital Practitioner Body of Knowledge™ Standard 205

6.2. Context II: Team Chapter 6. The Body of Knowledge

Such direct action may not be possible in many environments but represents an ideal to work toward.
It keeps the security and risk work “front and center” within the mainstream of the digital pipeline,
rather than relegating it to the bothersome “additional work” it can so easily be seen as.

A new field of chaos engineering is starting to emerge centered on these concepts.

6.2.3.3.5. Site Reliability Engineering

Site Reliability Engineering (SRE) is a new term for operations-centric work, originating from Google
and other large digital organizations. It is clearly an operational discipline; the SRE team is responsible
for the “availability, latency, performance, efficiency, change management, monitoring, emergency
response, and capacity planning of their service” [34 p. 7].

Google site reliability engineers have strong technical backgrounds, frequently computer science,
which is atypical for operations staff in the traditional IT industry. SREs are strongly incented to
automate as much as possible, avoiding “toil” (i.e., repetitive, non-value-add tasks). In other words, as
Benjamin Sloss says: “we want systems that are automatic, not just automated” [34].

Google has pioneered a number of innovative practices with its SRE team, including:

* A 50% cap on aggregate “ops” work — the other 50% is supposed to be spent on development

* The concept of an “error budget” as a control mechanism — teams are incented not for “zero
downtime” but rather to take the risk and spend the error budget

» “Release Engineer” as a specific job title for those focused on building and maintaining the delivery
pipeline

Evidence of Notability

Identifying the need for and marshaling operational response is an essential capability in managing
digital systems.

Limitations

Operational response is typically urgent and time-bound. It is not reflective nor, in general, creative or
innovative (except out of necessity).

Related Topics

Digital Stack

Digital Lifecycle

* Digital Infrastructure
* Operations

* Monitoring

* Process Management

206 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.2. Context II: Team

* Security

6.2.3.4. Operations-Driven Product Demand

Description

Designing complex systems that can scale effectively and be operated efficiently is a challenging topic.
Many insights have been developed by the large-scale public-facing Internet sites, such as Google,
Facebook, Netflix, and others.

A reasonable person might question why systems design questions are appearing here in this
Competency Area on operations. We have discussed certain essential factors for system scalability
previously: cloud, Infrastructure as Code, version control, and continuous delivery. These are all
necessary, but not sufficient to scaling digital systems. Once a system starts to encounter real load,
further attention must go to how it runs, as opposed to what it does. It is not easy to know when to
focus on scalability. If product discovery is not on target, the system will never get the level of use that
requires scalability. Insisting that the digital product has a state-of-the-art and scalable design might be
wasteful if the team is still searching for an MVP (in Lean Startup terms). Of course, if you are doing
systems engineering and building a “cog”, not growing a “flower", you may need to be thinking about
scalability earlier.

Eventually, scale matters. Cloud computing abstracts many concerns, but as your IT service’s usage
increases, you will inevitably find that technical details such as storage and network architecture
increasingly matter. What often happens is that the system goes through various prototypes until
something with market value is found and, at that point, as use starts to scale up, the team scrambles
for a more robust approach. The implementation decisions made by the Digital Practitioner and their
service providers may become inefficient for the particular “workload” the product represents. The
brief technical writeup, Latency Numbers Every Programmer Should Know is recommended.

There are dozens of books and articles discussing many aspects of how to scale systems. In this section,
we will discuss two important principles: the CAP principle and the AKF scaling cube. If you are
interested in this topic in depth, consult the references in this Competency Area.

Digital Practitioner Body of Knowledge™ Standard 207

6.2. Context II: Team Chapter 6. The Body of Knowledge

6.2.3.4.1. The CAP Principle

Consistency

CAP:Choose any two

Figure 84. CAP Principle

Scaling digital systems used to imply acquiring faster and more powerful hardware and software. If a
4-core server with 8 gigabytes of RAM isn’t enough, get a 32-core server with 256 gigabytes of RAM
(and upgrade your database software accordingly, for millions of dollars more). This kind of scaling is
termed “vertical” scaling. However, web-scale companies such as Facebook and Google determined
that this would not work indefinitely. Vertical scaling in an infinite capacity is not physically (or
financially) possible. Instead, these companies began to experiment aggressively with using large
numbers of inexpensive commodity computers.

The advantage to vertical scaling is that all your data can reside on one server, with fast and reliable
access. As soon as you start to split your data across servers, you run into the practical implications of
the CAP principle (see Figure 84, “CAP Principle”).

CAP stands for:

» Consistency
* Availability
e Partition-tolerance

and the CAP principle (or theorem) states that it is not possible to build a distributed system that
guarantees all three [106]. What does this mean? First, let’s define our terms.

Consistency means that all the servers (or “nodes”) in the system see the same data at the same time.
If an update is being processed, no node will see it before any other. This is often termed a
transactional guarantee, and it is the sort of processing relational databases excel at.

For example, if you change your flight, and your seat opens up, a consistent reservation application
will show the free seat simultaneously to anyone who inquires, even if the reservation information is
replicated across two or more geographically distant nodes. If the seat is reserved, no node will show it

208 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.2. Context II: Team

available, even if it takes some time for the information to replicate across the nodes. The system will
simply not show anyone any data until it can show everyone the correct data.

Availability means what it implies: that the system is available to provide data on request. If we have
many nodes with the same data on them, this can improve availability, since if one is down, the user
can still reach others.

Partition-tolerance is the ability of the distributed system to handle communications outages. If we
have two nodes, both expected to have the same data, and the network stops communicating between
them, they will not be able to send updates to each other. In that case, there are two choices: either
stop providing services to all users of the system (failure of availability) or accept that the data may not
be the same across the nodes (failure of consistency).

In the earlier years of computing, the preference was for strong consistency, and vendors such as
Oracle® profited greatly by building database software that could guarantee it when properly
configured. Such systems could be consistent and available, but could not tolerate network outages —
if the network was down, the system, or at least a portion of it, would also be down.

Companies such as Google and Facebook took the alternative approach. They said: “We will accept
inconsistency in the data so that our systems are always available”. Clearly, for a social media site such
as Facebook, a posting does not need to be everywhere at once before it can be shown at all. To verify
this, simply post to a social media site using your computer. Do you see the post on your phone, or your
friend’s, as soon as you submit it on your computer? No, although it is fast, you can see some delay.
This shows that the site is not strictly consistent; a strictly consistent system would always show the
same data across all the accessing devices.

The challenge with accepting inconsistency is how to do so. Eventually, the system needs to become
consistent, and if conflicting updates are made they need to be resolved. Scalable systems in general
favor availability and partition-tolerance as principles, and therefore must take explicit steps to restore
consistency when it fails. The approach taken to partitioning the system into replicas is critical to
managing eventual consistency, which brings us to the AKF scaling cube.

For further discussion, see [178], Section 1.5.

Digital Practitioner Body of Knowledge™ Standard 209

6.2. Context II: Team Chapter 6. The Body of Knowledge

6.2.3.4.2. The AKF Scaling Cube

I
I
|
I
I
I
I
I

-~ 00
o -~ ,0(\\

-~ ofb

Functional partitioning

Horizontal duplication
Figure 85. AKF Scaling Cube

Another powerful tool for thinking about scaling systems is the AKF Scaling Cube (see Figure 85, “AKF
Scaling Cube”, similar to [4 p. 376]). AKF stands for Abbott, Keeven, and Fisher, authors of The Art of
Scalability [4]. The AKF cube is a visual representation of the three basic options for scaling a system:

* Replicate the complete system (x-axis)
 Split the system functionally into smaller layers or components (y-axis)

 Split the system’s data (z-axis)

A complete system replica is similar to the Point of Sale (POS) terminals in a retailer. Each is a self-
contained system with all the data it needs to handle typical transactions. POS terminals do not depend
on each other; therefore you can keep increasing the capacity of your store’s checkout lines by simply
adding more of them.

Functional splitting is when you separate out different features or components. To continue the retail
analogy, this is like a department store; you view and buy electronics, or clothes, in those specific
departments. The store “scales” by adding departments, which are self-contained in general; however,
in order to get a complete outfit, you may need to visit several departments. In terms of systems,
separating web and database servers is commonly seen — this is a component separation. E-commerce
sites often separate “show” (product search and display) from “buy” (shopping cart and online
checkout); this is a feature separation. Complex distributed systems may have large numbers of
features and components, which are all orchestrated together into one common web or smartphone
app experience.

Data splitting (sometimes termed "sharding”) is the concept of “partitioning” from the CAP
discussion, above. For example, consider a conference with check-in stations divided by alphabet
range; for example:

210 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.2. Context II: Team

* A-H register here
* [-Q register here

* R-Z register here

This is a good example of splitting by data. In terms of digital systems, we might split data by region;
customers in Minnesota might go to the Kansas City data center, while customers in New Jersey might
go to a North Carolina data center. Obviously, the system needs to handle situations where people are
traveling or move.

There are many ways to implement and combine the three axes of the AKF scaling cube to meet the
CAP constraints (Consistency, Availability, and Partition-tolerance). With further study of scalability,
you will encounter discussions of:

Load balancing architectures and algorithms
* Caching

* Reverse proxies

* Hardware redundancy

* Designing systems for continuous availability during upgrades
and much more. For further information, see [4, 178].
Evidence of Notability

Operational insights result in requirements for products to be changed. This is an important feedback
loop from the operations to the development phase, and a major theme in IT operations management
literature. See, for example, [178], "Part I Design: Building It".

Limitations

Operational demand focuses on how the system runs, not what it does. Both, however, are valid
concerns for product management.

Related Topics

 Digital Stack

Digital Lifecycle

Digital Infrastructure
» Application Basics
* DevOps

* Operations

Digital Practitioner Body of Knowledge™ Standard 211

6.2. Context II: Team Chapter 6. The Body of Knowledge
6.2.4. Context Il Conclusion

Context II covered the basic elements necessary for a collaborative product team to achieve success
while still at a manageable human scale.

The IT-centric team needed capabilities for evolving its product, managing its work, and operating its
product. In some cases, time and space shifting might drive the team to automate basic capabilities
such as work management and ticketing. However, the overall assumption was that, for the most part,
people are co-located and still can communicate with minimal friction.

Context II leads logically to Context III. There is a high-functioning team. But a single team cannot scale
indefinitely. The Digital Practitioner now has no choice but to organize as a team of teams.

6.2.4.1. Context Il Architectural View

ITQIT Copyright © 2017 The Open Group

This diagram was developed/published by the IT4IT™ Forum, a Forum of The Open Group®

Strategy to . .
ay Requirement to Deploy Request to Fulfill Detect to Correct
Portfolio
: 5 1
Arimteergtrll.:: | Added in Added in prior Not used in ;
i Key this context contexts this context |
"2 Component ' H
Archi- Defect e et
tecture
Policy Offer Consumption Component Problem Incident
Component Component Component
Policy frting _‘ P.ESZ,'&? Ietant
rror
Proposal Offer Request Chargeback/ Service Level Event
Component Management Rationalization Showback Component Component

Component Component Component

Scope
Agree-

Source

ment

Portfolio Project Catalog Diagnostics &
Demand Component Composition Remediation
Component Component

Build
Package

Run Service
Monitor

Service Service Release Fulfil- Change
Portfolio Design Composition ment Control
Component Component Component Redoss

Actual
Service

cgr;?.u;l g 2l Desired
Service Service 2 Service

Figure 86. Architectural View

Further automation is required at the team context, as product management is formalized and
operational work such as provisioning and monitoring emerges. Suggested functional components are:
* Requirement component
* Test component
* Defect component
* Fulfillment Execution component

* Service Monitoring component

One area that the IT4IT approach does not address is a simple “work management” component. In

212 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

collaborative team environments, Kanban-based tools are often used to manage the human work in an
undifferentiated flow (testing, defects, requirements, issues detected from monitoring).

Fulfillment Execution is included here to generically represent the digital product’s provisioning
capability. For a single digital product, provisioning may or may not be distinct from the product
architecture itself. At scale, it does become distinct and requires a more elaborate architecture.

Context II "Architectural View" Learning Objectives
¢ Identify the IT4IT components suitable for Context II

Related Topics

Digital Lifecycle
* Documenting System Intent
» Test Automation

* Monitoring and Telemetry

6.3. Context lll: Team of Teams

Team of Teams

Team of Teams: New Rules of Engagement for a Complex World is the name of a 2015
book by General Stanley McChrystal, describing his experiences as the commander of
Joint Special Operations Command in the Iraq conflict. It describes how the US military
was being beaten by a foe with inferior resources, and its need to shift from a focus on
mechanical efficiency to more adaptable approaches. The title is appropriate for this
context, as moving from “team” to “team of teams” is one of the most challenging
transitions any organization can make.

NOTE

Context Description

Context II, Section 6.2.3, “Operations Management” introduced the AKF scaling cube, and this context is
in part based on a related thought experiment. As the team-based company grew, it reached a crisis
point in scaling the digital product. One team could no longer cope as a single unit with the increasing
complexity and operational demands. In AKF scaling cube terms, the team is scaling along the y-axis,
the hardest but in some ways the most important dimension to know how to scale along.

The organization is now a “team of teams”, at a size where face-to-face communication is increasingly
supplemented by other forms of communication and coordination. Teams may get results but in
different ways. The organization needs some level of coordination, and not everyone is readily
accessible for immediate communication; people are no longer co-located, and there may be different
schedules involved.

Furthermore, the organization now has multiple products. As it scales up, it must now split its products
into features and components (the y-axis of the AKF scaling cube). Then as the organization moves

Digital Practitioner Body of Knowledge™ Standard 213

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

from your first product to adding more, further organizational evolution is required. The organization
may try to keep its products from developing unmanageable interdependencies, but this is an ongoing
challenge. Tensions between various teams are starting to emerge. Specialization in your organization
is increasing, along with the tendency of specialists to identify more with their field than with the
needs of customers. There is an increasing desire among stakeholders and executives for control and
predictability. Resources are limited and always in contention. Advisors and consultants suggest
various frameworks for managing the organization. As the organization scales, however, its leaders
need to remember that the highest value is found in fast-moving, committed, multi-skilled teams.
Losing sight of that value is a common problem for growing organizations.

As the individual becomes a manager of managers, their concerns again shift. In Context II, the leader
had to delegate product management (are they building the right thing?) and take concern for basic
work management and digital operations. Now, in this context, the leader is primarily a manager of
managers, concerned with providing the conditions for your people to excel:

* Defining how work is executed, in terms of decision rights, priorities, and conflicts

« Setting the organizational mission and goals that provide the framework for making investments in
products and projects

* Instituting labor, financial, supply chain, and customer management processes and systems
* Providing facilities and equipment to support digital delivery

* Resolving issues and decisions escalated from lower levels in the organization

New employees are bringing in their perspectives, and the more experienced ones seem to assume that
the company will use “projects” and “processes” to get work done. There is no shortage of contractors
and consultants who advocate various flavors of the process and project management; while some
advocate older approaches and “frameworks”, others propose newer Agile and Lean perspectives.
However, the ideas of process and project management are occasionally called into question by both
employees and various “thought leaders”. In short, it’s all very confusing.

Welcome to the coordination problem. This overall context will cover where these ideas came from,
how they relate to each other, and how they are evolving in a digitally transforming world.

Note on Learning Progression

The structure of Context III may be counter-intuitive. Usually, we think in terms of “plan, then
execute”. However, this can lead to waterfall and deterministic assumptions. Starting the
discussion with execution reflects the fact that a scaling company does not have time to “stop
and plan”. Rather, planning emerges on top of the ongoing execution of the firm, in the interest
of controlling and directing that execution across broader timeframes and larger scopes of work.

Digital Practitioners use a number of approaches to defining and managing work at various scales. Our
initial progression from the product, to work, to operations management, can be seen as one
dimension. We consider a couple of other dimensions as a basis for ordering Context III.

214 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams
Here is an overview of Context III’s structure:
Competency Area: Coordination and Process

Going from one to multiple teams is hard. No matter how things are structured, there are
dependencies requiring coordination. How to ensure that broader goals are met when teams must act
jointly? Some suggest project management, while others argue that you don’t need it any more — it’s
all about continuous flow through loosely-coupled product organizations. But the most ambitious ideas
require some kind of choreography and products and projects need certain resources and services
delivered predictably. When is work repeatable? When is it unique? Understanding the difference is
essential to the organization’s success. Is variability in the work always bad? These are questions that
have preoccupied management thinkers for a long time.

Competency Area: Investment and Portfolio

Each team also represents an investment decision. There is now a portfolio of features, and/or
products. The organization needs a strategy for choosing among options and planning — at least at a
high level — in terms of costs and benefits. Some may be using project management to help manage
investments. Vendor relationships continue to expand; they are another form of strategic investment,
and the practitioner needs to deepen their understanding of matters like cloud contracts and software
licensing.

In terms of classic project methodology, Section 6.3.2, “Investment and Portfolio”
includes project initiating and planning. Execution, monitoring, and control of day-to-
day work are covered in Section 6.3.1, “Coordination and Process”. The seemingly
backwards order is deliberate, in keeping with the scaling model.

NOTE

Competency Area: Organization and Culture

The organization is getting big. In order to keep growing, it has had to divide into increasingly complex
structures. How is it formally structured? How are people grouped, and to whom do they report, with
what kind of expectations? Finally, what is the approach to bringing new people into the organization?
What are the unspoken assumptions that underlie the daily work — in other words, what is the
culture? Does the culture support high performance, or the opposite? How can such a thing be
measured and known?

Context III "Team of Teams" High-Level Dimensions

Identify key drivers for the transition from a unitary team to a "team of teams"

Identify basics of the coordination problem and how to solve it, including the pros and cons of
traditional process management

Identify the investment and portfolio consequences of a multi-team structure

* Identify the basic product/function spectrum of organizational forms

Identify important cultural factors and concepts of measuring and changing culture

Digital Practitioner Body of Knowledge™ Standard 215

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

6.3.1. Coordination and Process

Area Description

The digital team been executing its objectives since its earliest existence. Execution is whenever we
meet demand with supply. An idea for a new feature, to deliver some digital value, is demand. The
time spent implementing the feature is supply. The two combined is execution. Sometimes it goes well;
sometimes it doesn’t. Maintaining a tight feedback loop to continually assess execution is essential.

As the organization grows into multiple teams and multiple products, it has more complex execution
problems, requiring coordination. The fundamental problem is the “D-word": dependency.
Dependencies are why the organization must coordinate (work with no dependencies can scale nicely
along the AKF x-axis). But when there are dependencies (and there are various kinds) the organization
needs a wider range of techniques. One Kanban board is not sufficient to the task.

The practitioner must consider the delivery models, as well (the “3 Ps": product, project, process, and
now we have added program management). Decades of industry practice mean that people will tend to
think in terms of these models and unless there is clarity about the nature of our work the
organization can easily get pulled into non-value-adding arguments. To help understanding, this
Competency Area will take a deeper look at process management, continuous improvement, and their
challenges.

6.3.1.1. Coordination Principles and Techniques

Description

As an organization scales, there is an increasing span in its time horizon and the scope of work it
considers and executes. Evolving from the immediate, “hand-to-mouth” days of a startup, it now must
concern itself with longer and longer timeframes: contracts, regulations, and the company’s strategy as
it grows all demand this.

Granularity

The terminology used to describe work also becomes more diverse, reflecting in some ways the
broader time horizons the organization is concerned with. Requests, changes, incidents, work orders,
releases, stories, features, problems, major incidents, epics, refreshes, products, programs, strategies;
there is a continuum of terminology from small to large. Mostly, the range of work seems tied to how
much planning time is available, but there are exceptions: disasters take a lot of work, but don’t
provide much advance warning! So the size of work is independent of the planning horizon.

This is significantly evolved since the earlier discussion of work management. By the time the
organization started to formalize operations, work was tending to differentiate. Still, regardless of the
label put on a given activity, it represents some set of tasks or objectives that real people are going to
take the time to perform, and expect to be compensated for. It is all demand, requiring management.
Remembering this is essential to digital management.

And, as organizations scale, dependencies proliferate: the central topic of this Competency Area.

216 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

6.3.1.1.1. Example: Scaling One Product

Good team structure can go a long way toward reducing dependencies but will
not eliminate them.

— Mike Cohn, Succeeding with Agile

What’s typically underestimated is the complexity and indivisibility of many
large-scale coordination tasks.

— Gary Hamel, Preface to the Open Organization: Igniting Passion and Performance

Digital startup (7 product)

OB :F;fe ‘ Sales l }:ﬂ’larketing]

r Scaling product

—

_/

/

-

woa3 24n3024
| z
wpa3 2un3pa4

Platform
team

Figure 87. Multiple Feature Teams, One Product

J

With the move to team of teams, the organization is now executing in a more complex environment; it
has started to scale along the AKF scaling cube y-axis, and has either multiple teams working on one
product and/or multiple products. Execution becomes more than just “pull another story off the
Kanban board”. As multiple teams are formed (see Figure 87, “Multiple Feature Teams, One Product”),
dependencies arise, and we need coordination. The term "architecture” is likely emerging through
these discussions. (We will discuss organizational structure directly in Section 6.3.3.1, “Structuring the
Organization: Product and Function”, and architecture in Section 6.4.3, “Architecture”).

As noted in the discussion of Amazon’s product strategy, some needs for coordination may be
mitigated through the design of the product itself. This is why APIs and microservices are popular
architecture styles. If the features and components have well-defined protocols for their interaction
and clear contracts for matters like performance, development on each team can move forward with
some autonomy.

Digital Practitioner Body of Knowledge™ Standard 217

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

But at scale, complexity is inevitable. What happens when a given business objective requires a
coordinated effort across multiple teams? For example, an online e-commerce site might find itself
overwhelmed by business success. Upgrading the site to accommodate the new demand might require
distinct development work to be performed by multiple teams (see Figure 88, “Coordinated Initiative
Across Timeframes”).

As the quote from Gary Hamel above indicates, a central point of coordination and accountability is
advisable. Otherwise, the objective is at risk. (It becomes “someone else’s problem”.) We will return to
the investment and organizational aspects of multi-team and multi-product scaling in Section 6.3.2,
“Investment and Portfolio” and Section 6.3.3, “Organization and Culture”. For now, we will focus on
dependencies and operational coordination.

Digital startup (7 product)

C?B:f?fe { l Sales ’ Marketfng\

Scaling product W

Performance
enhancement
initiative

)
wpay aunapad
c
wvaz aunzpa4

Platform
team
=

Figure 88. Coordinated Initiative Across Timeframes

6.3.1.1.2. A Deeper Look at Dependencies

Coordination can be seen as the process of managing dependencies among
activities.

— Malone and Crowston

What is a "dependency"? We need to think carefully about this. According to the definition above (from
[187]), without dependencies, we do not need coordination. (We will look at other definitions of
coordination in the next two Competency Areas.) Diane Strode and her associates [269] have described
a comprehensive framework for thinking about dependencies and coordination, including a
dependency taxonomy, an inventory of coordination strategies, and an examination of coordination
effectiveness criteria.

To understand dependencies, Strode et al. [270] propose the framework shown in Table 15,
“Dependency Taxonomy (from Strode)” (adapted from [270]).

218 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge

Table 15. Dependency Taxonomy (from Strode)

Type

Knowledge. A knowledge
dependency occurs when a form
of information is required in
order for progress.

Task. A task dependency occurs
when a task must be completed
before another task can proceed.

Resource. A resource
dependency occurs when an
object is required for progress.

Dependency

Requirement

Expertise

Task allocation

Historical

Activity

Business process

Entity

Technical

6.3. Context III: Team of Teams

Description

Domain knowledge or a
requirement is not known and
must be located or identified.

Technical or task information is
known only by a particular
person or group.

Who is doing what, and when, is
not known.

Knowledge about past decisions
is needed.

An activity cannot proceed until
another activity is complete.

An existing business process
causes activities to be carried out
in a certain order.

A resource (person, place or
thing) is not available.

A technical aspect of
development affects progress,
such as when one software
component must interact with
another software component.

We can see examples of these dependencies throughout digital products. In the next section, we will

talk about coordination techniques for managing dependencies.

6.3.1.1.3. Organizational Tools and Techniques

Our previous discussion of work management was a simple, idealized flow of uniform demand (new
product functionality, issues, etc.). Tasks, in general, did not have dependencies, or dependencies were
handled through ad hoc coordination within the team. We also assumed that resources (people) were
available to perform the tasks; resource contention, while it certainly may have come up, was again
handled through ad hoc means. However, as we scale, simple Kanban and visual Andon are no longer
sufficient, given the nature of the coordination we now require. We need a more diverse and

comprehensive set of techniques.

Digital Practitioner Body of Knowledge™ Standard

219

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

The discussion of particular techniques is always hazardous. People will tend to
latch on to a promising approach without full understanding. As noted by Craig
Larman, the risk is one of cargo cult thinking in your process adoption [175

IMPORTANT p. 44]. In Section 6.3.3, “Organization and Culture” we will discuss the Mike
Rother book Toyota Kata. Toyota does not implement any procedural change
without fully understanding the “target operating condition” — the nature of
the work and the desired changes to it.

Sidebar: Cargo cult thinking

Processes and practices are always at risk of being used without full understanding. This is
sometimes called cargo cult thinking. What is a cargo cult?

During World War II, South Pacific native peoples had been exposed abruptly to modern
technological society with the Japanese and US occupations of their islands. Occupying forces
would often provide food, tobacco, and luxuries to the natives to ease relations. After the war,
various tribes were observed creating simulated airports and airplanes, and engaging in various
rituals that superficially looked like air traffic signaling and other operations associated with a
military air base.

On further investigation, it became clear that the natives were seeking more “cargo” and had
developed a magical understanding of how goods would be delivered. By imitating the form of
what they had seen, they hoped to recreate it.

In 1974, the noted physicist Richard Feynman gave a speech at Caltech in which he coined the
phrase “cargo cult science” [97]. His intent was to caution against activities which appear to
follow the external form of science, but lack the essential understanding at its core. Similar
analogies are seen in business and IT management, as organizations adopt tools and techniques
because they have seen others do so, without having fundamental clarity about the problems
they are trying to solve and how a given technique might specifically help.

As with many stories of this kind, there are questions about the accuracy of the original
anthropological accounts and Western interpretations and mythmaking around what was seen.
However, there is no question that “cargo cult thinking” is a useful cautionary metaphor, and
one often encountered in discussions of digital management practices.

As we scale up, we see that dependencies and resource management have become defining concerns.
However, we retain our Lean Product Development concerns for fast feedback and adaptability, as
well as a critical approach to the idea that complex initiatives can be precisely defined and simply
executed through open-loop approaches. In this section, we will discuss some of the organizational
responses (techniques and tools) that have emerged as proven responses to these emergent issues.

220 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

The table Table 16, “Coordination Taxonomy (from Strode)” uses the concept of artifact,
which we introduced in Section 6.2.2, “Work Management”. For our purposes here, an

NOTE artifact is a representation of some idea, activity, status, task, request, or system.
Artifacts can represent or describe other artifacts. Artifacts are frequently used as the
basis of communication.

Strode et al. also provide a useful framework for understanding coordination mechanisms, excerpted
and summarized into Table 16, “Coordination Taxonomy (from Strode)” (adapted from [269]).

Table 16. Coordination Taxonomy (from Strode)
Strategy Component Definition

Structure Proximity Physical closeness of individual
team members.

Availability Team members are continually
present and able to respond to
requests for assistance or
information.

Substitutability Team members are able to
perform the work of another to
maintain time schedules.

Synchronization Synchronization activity Activities performed by all team
members simultaneously that
promote a common
understanding of the task,
process, and/or expertise of
other team members.

Synchronization artifact An artifact generated during
synchronization activities.

Digital Practitioner Body of Knowledge™ Standard 221

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

Strategy Component Definition

Boundary spanning Boundary spanning activity Activities (team or individual)
performed to elicit assistance or
information from some unit or
organization external to the
project.

Boundary spanning artifact An artifact produced to enable
coordination beyond the team
and project boundaries.

Coordinator role A role taken by a project team
member specifically to support
interaction with people who are
not part of the project team but
who provide resources or
information to the project.

The following sections expand the three strategies (structure, synchronization, boundary spanning)
with examples.

Structure

Don Reinertsen proposes “The Principle of Colocation” which asserts that “Colocation improves almost
all aspects of communication” [230 p. 230]. In order to scale this beyond one team, we logically need
what Mike Cohn calls “The Big Room” [68 p. 346].

In terms of communications, this has significant organizational advantages. Communications are as
simple as walking over to another person’s desk or just shouting out over the room. It is also easy to
synchronize the entire room, through calling for everyone’s attention. However, there are limits to
scaling the “Big Room” approach:

* Contention for key individuals' attention

» “All hands” calls for attention that actually interests only a subset of the room

* Increasing ambient noise in the room

* Distracting individuals from intellectually demanding work requiring concentration, driving multi-
tasking and context-switching, and ultimately interfering with their personal sense of flow — a
destructive outcome (see [77] for more on flow as a valuable psychological state)

The tension between team coordination and individual focus will likely continue. It is an ongoing topic
in facilities design.

Synchronization

If the team cannot work all the time in one room, perhaps they can at least be gathered periodically.
There is a broad spectrum of synchronization approaches:

222 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

* Ad hoc chats (in person or virtual)
* Daily standups (e.g., from Scrum)
* Weekly status meetings

* Coordination meetings (e.g., Scrum of Scrums, see below)

Release kickoffs
* Quarterly “all-hands” meetings
* Cross-organizational advisory and review boards
* Open Space inspired “unmeetings” and “unconferences”
All of them are essentially similar in approach and assumption: build a shared understanding of the

work, objectives, or mission among smaller or larger sections of the organization, through limited-time
face-to-face interaction, often on a defined time interval.

Cadenced Approaches

When a synchronization activity occurs on a timed interval, this can be called a cadence. Sometimes,
cadences are layered; for example, a daily standup, a weekly review, and a monthly Scrum of Scrums.
Reinertsen calls this harmonic cadencing [230 pp. 190-191]. Harmonic cadencing (monthly, quarterly,
and annual financial reporting) has been used in financial management for a long time.

Boundary Spanning

Examples of boundary-spanning liaison and coordination structures include:

» Shared team members

* Integration teams

* Coordination roles

* Communities of practice
* Scrum of Scrums

e Submittal schedules

API standards

RACI/ECI decision rights

Shared team members are suggested when two teams have a persistent interface requiring focus and
ownership. When a product has multiple interfaces that emerge as a problem requiring focus, an
integration team may be called for. Coordination roles can include project and program managers,
release train conductors, and the like. Communities of practice will be introduced in Section 6.3.3,
“Organization and Culture” when we discuss the Spotify model. Considered here, they may also play a
coordination role as well as a practice development/maturity role.

Finally, the idea of a Scrum of Scrums is essentially a representative or delegated model, in which

Digital Practitioner Body of Knowledge™ Standard 223

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

each Scrum team sends one individual to a periodic coordination meeting where matters of cross-team
concern can be discussed and decisions made [68], Chapter 17.

Cohn cautions: “A Scrum of Scrums meeting will feel nothing like a daily Scrum despite the similarities
in names. The daily Scrum is a synchronization meeting: individual team members come together to
communicate about their work and synchronize their efforts. The Scrum of Scrums, on the other hand,
is a problem-solving meeting and will not have the same quick, get-in-get-out tone of a daily Scrum [68
p. 342].”

Another technique mentioned in The Checklist Manifesto [109] is the submittal schedule. Some work,
while detailed, can be planned to a high degree of detail (i.e., the “checklists” of the title). However,
emergent complexity requires a different approach — no checklist can anticipate all eventualities. In
order to handle all the emergent complexity, the coordination focus must shift to structuring the right
communications. In examining modern construction industry techniques, Gawande noted the concept
of the “submittal schedule”, which “didn’t specify construction tasks; it specified communication tasks”
(p-65, emphasis supplied). With the submittal schedule, the project manager tracks that the right
people are talking to each other to resolve problems — a key change in focus from activity-centric
approaches.

We have previously discussed APIs in terms of Amazon's product strategy. They are also important as a
product scales into multiple components and features; API standards can be seen as a boundary-
spanning mechanism.

The above discussion is by no means exhaustive. A wealth of additional techniques relevant for Digital
Practitioners is to be found in [175, 68]. New techniques are continually emerging from the front lines
of the digital profession; the interested student should consider attending industry conferences such as
those offered by the Agile Alliance.

In general, the above approaches imply synchronized meetings and face-to-face interactions. When the
boundary-spanning approach is based on artifacts (often a requirement for larger, decentralized
enterprises), we move into the realms of process and project management. Approaches based on
routing artifacts into queues often receive criticism for introducing too much latency into the product
development process. When artifacts such as work orders and tickets are routed for action by
independent teams, prioritization may be arbitrary (not based on business value; e.g., cost of delay).
Sometimes the work must flow through multiple queues in an uncoordinated way. Such approaches
can add dangerous latency to high-value processes, as we warned in Section 6.2.2, “Work
Management”. We will look in more detail at process management in a later section.

6.3.1.1.4. Coordination Effectiveness

Diane Strode and her colleagues propose that coordination effectiveness can be understood as the
following taxonomy:

* Implicit
o Knowing why (shared goal)

- Know what is going on and when

224 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

> Know what to do and when

o Know who is doing what

> Know who knows what

» Explicit

o Right place

o Right thing

o Right time
Coordinated execution means that teams have a solid common ground of what they are doing and why,
who is doing it, when to do it, and where to go for information. They also have the material outcomes
of the right people being in the right place doing the right thing at the right time. These coordination

objectives must be achieved with a minimum of waste, and with a speed supporting an OODA loop
tighter than the competition’s. Indeed, this is a tall order!

Evidence of Notability

The emergence of coordination concerns in response to organizational scaling is a common topic in the
Agile literature. See, for example, [175, 68].

Limitations

Coordination introduces overhead. Beyond a certain point, it becomes infeasible to coordinate across
all dependencies.

Related Topics

* Product Team

* Work Management

* Operations Basics

* Operational Response
* Coordination Models

* Process Management

* Organizational Structure
6.3.1.2. Coordination, Execution, and the Delivery Models
Description

If we take the strategies proposed by Strode et al. and think of them as three, orthogonal dimensions,
we can derive another useful three-dimensional figure (see Figure 89, “Cube Derived from Strode”):

* Projects often are used to create and deploy processes; a large system implementation (e.g., of an

Digital Practitioner Body of Knowledge™ Standard 225

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

Enterprise Resource Planning (ERP) module such as Human Resources Management) will often be
responsible for process implementation including training

* As environments mature, product, and/or project teams require process support

Far

I
I
I
I
I
I
I
I
-—

Location
(Structure)

~ 58
-~ we®
§ ~ 7)
i~ :
ﬂ‘ ¢ o\e. # nn\nq
Immediate Delayed {e 6 PrAY
AG"")
Synchronization oW
(®

Figure 89. Cube Derived from Strode

* At the origin point, we have practices like face-to-face meetings at various scales

* Geographically distant, immediate coordination is achieved with messaging and other forms of
telecommunications

Co-located but asynchronous coordination is achieved through shared artifacts like Kanban boards

Distant and asynchronous coordination again requires some kind of telecommunications

The Z-axis is particularly challenging, as it represents scaling from a single to multiple and increasingly
organizationally distant teams. Where a single team may be able to maintain a good sense of common
ground even when geographically distant, or working asynchronously, adding the third dimension of
organizational boundaries is where things get hard. Larger-scale coordination strategies include:
* Operational digital processes (Section 6.2.3, “Operations Management”)
o Change management
> Incident management
o Request management
o Problem management
o Release management
 Specified decision rights
* Projects and project managers (Section 6.3.2, “Investment and Portfolio”)

» Shared services and expertise (Section 6.3.2, “Investment and Portfolio”)

226 The Open Group Standard (2020-01-06)

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

* Organization structures (Section 6.3.3, “Organization and Culture”)
* Cultural norms (Section 6.3.3, “Organization and Culture”)

* Architecture standards (Section 6.4.2, “Information Management” and Section 6.4.3, “Architecture”)

All of these coping mechanisms risk compromising to some degree the effectiveness of co-located,
cross-functional teams. Remember that the high-performing product team is likely the highest-value
resource known to the modern organization. Protecting the value of this resource is critical as the
organization scales up. The challenge is that models for coordinating and sustaining complex digital
services are not well understood. IT organizations have tended to fall back on older supply-chain
thinking, with waterfall-derived ideas that work can be sequenced and routed between teams of
specialists. (More on this to come in Section 6.3.3, “Organization and Culture”.)

We recommend you review the definitions of the “3 Ps": product, project, and process
management.

NOTE

6.3.1.2.1. Product Management Release Trains

Where project and process management are explicitly coordination-oriented, product management is
broader and focused on outcomes. As noted previously, it might use either project or a process
management to achieve its outcomes, or it might not.

Release management was introduced in Context I, and has remained a key concept we will return to
now. Release management is a common coordination mechanism in product management, even in
environments that don’t otherwise emphasize processes or projects. At scale, the concept of a “release
train” is seen. SAFe considers it the “primary value delivery construct” [245].

The train is a cadenced synchronization strategy. It “departs the station” on a reliable schedule. As with
Scrum, date and quality are fixed, while the scope is variable. SAFe emphasizes that “being on the
train” in general is a full-time responsibility, so the train is also a temporary organizational or
programmatic concept. The release train “engineer” or similar role is an example of the coordinator
role seen in the Strode coordination tools and techniques matrix.

The release train is a useful concept for coordinating large, multi-team efforts, and is applicable in
environments that have not fully adopted Agile approaches. As author Joanna Rothman notes: “You
can de-scope features from a particular train, but you can never allow a train to be late. That helps the
project team focus on delivering value and helps your customer become accustomed to taking the
product on a more frequent basis” [240].

Digital Practitioner Body of Knowledge™ Standard 227

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

6.3.1.2.2. Project Management as Coordination

We will talk about project management as an investment strategy in a future section. In
this Competency Area, we look at it as a coordination strategy. Project management

NOTE adds concerns of task ordering and resource management, for efforts typically
executed on a one-time basis. Project management groups together a number of
helpful coordination tools which is why it is widely used. These tools include:

* Sequencing tasks

* Managing task dependencies

* Managing resource dependencies of tasks
* Managing overall risk of interrelated tasks

* Planning complex activity flows to complete at a given time
However, project management also has a number of issues:

* Projects are by definition temporary, while products may last as long as there is market demand

* Project management methodology, with its emphasis on predictability, scope management, and
change control, often conflicts with the product management objective of discovering information
(see the discussion of Lean Product Development)

(But not all large management activities involve the creation of new information! Consider the
previous example of upgrading the RAM in 80,000 POS terminals in 2,000 stores.)

The project paradigm has a benefit in its explicit limitation of time and money, and the sense of
urgency this creates. In general, scope, execution, limited resources, deadlines, and dependencies exist
throughout the digital business. A product manager with no understanding of these issues, or tools to
deal with them, will likely fail. Product managers should, therefore, be familiar with the basic concepts
of project management. However, the way in which project management is implemented, the degree of
formality, will vary according to need.

A project manager may still be required, to facilitate discussions, record decisions, and keep the team
on track to its stated direction and commitments. Regardless of whether the team considers itself
“Agile”, people are sometimes bad at taking notes or being consistent in their usage of tools such as
Kanban boards and standups.

It is also useful to have a third party who is knowledgeable about the product and its development, yet
has some emotional distance from its success. This can be a difficult balance to strike, but the existence
of the role of Scrum coach is indicative of its importance.

We will take another look at project management, as an investment management approach, in Section
6.3.2, “Investment and Portfolio”.

228 The Open G