

Digital Practitioner
Body of Knowledge™ Standard
A Standard of The Open Group

®

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

[This page intentionally blank]

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Table of Contents

Digital Practitioner Body of Knowledge™ Standard. 1

Preface . 3

The Open Group . 3

This Document . 3

Background and Intended Value of this Work . 4

Sources of Material . 5

Relationship to Prior Publications . 6

Curation Approach . 6

Relationship of this Document to Other Bodies of Knowledge. 6

Interpretive Aspects . 6

Evidence of Notability . 6

Trademarks . 8

Acknowledgments . 10

Referenced Documents . 12

Normative References . 12

Informative References . 12

1. Introduction . 27

1.1. Objective. 27

1.2. Overview . 27

1.3. Conformance . 27

1.4. Terminology. 27

1.5. Future Directions . 28

2. Definitions . 29

3. Digital Transformation . 30

3.1. Example Scenario. 30

3.2. Digital Transformation as Strategy . 30

3.3. What is Digital?. 31

3.4. Seven Levers of Change . 32

4. Principles of the DPBoK Standard . 33

4.1. Guiding Concepts . 33

4.2. Comprehensiveness . 33

4.3. Currency . 34

4.4. Capability-Based . 34

4.5. Verifiability . 35

4.6. Fine-Grained and Clinical Terminology . 35

4.7. Compatibility with Other Frameworks . 35

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

4.8. Compatibility with Agile Principles . 36

4.9. Compatibility with Enterprise Architecture . 36

4.10. A Learning Artifact . 37

4.11. Developed as a Digital Product . 37

4.12. Competency-Based Content . 38

4.13. Scaling Model as Learning Progression . 40

5. Structure of the Body of Knowledge . 41

5.1. Models for Learning Progression . 41

5.2. Four Contexts. 45

5.3. Context Summaries . 46

6. The Body of Knowledge . 49

6.1. Context I: Individual/Founder . 49

6.1.1. Digital Fundamentals. 49

6.1.1.1. Digital Context . 50

6.1.1.2. Digital Value Methods . 54

6.1.1.3. The Digital Stack . 59

6.1.1.4. The Digital Lifecycle . 62

6.1.2. Digital Infrastructure. 65

6.1.2.1. Computing and Information Principles. 65

6.1.2.2. Virtualization . 68

6.1.2.3. Cloud Services . 73

6.1.2.4. Configuration Management and Infrastructure as Code . 76

6.1.2.5. Securing Infrastructure . 85

6.1.3. Application Delivery . 88

6.1.3.1. Application Basics. 90

6.1.3.2. Agile Software Development . 93

6.1.3.3. DevOps Technical Practices . 100

6.1.3.4. APIs, Microservices, and Cloud-Native . 111

6.1.3.5. Securing Applications and Digital Products . 119

6.1.4. Context I Conclusion . 120

6.1.4.1. Architectural View . 121

6.2. Context II: Team . 122

6.2.1. Product Management . 123

6.2.1.1. Product Management Basics . 123

6.2.1.2. Product Discovery. 129

6.2.1.3. Product Design. 135

6.2.1.4. Scrum and Other Product Team Practices . 138

6.2.1.5. Product Planning . 144

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.2.2. Work Management. 147

6.2.2.1. Work Management and Lean. 148

6.2.2.2. Lean Product Development . 159

6.2.2.3. Work Management Capabilities and Approaches. 169

6.2.2.4. Towards Process Management . 170

6.2.2.5. Systems Thinking and Feedback . 175

6.2.3. Operations Management . 184

6.2.3.1. Defining Operations Management . 185

6.2.3.2. Monitoring and Telemetry . 191

6.2.3.3. Operational Response . 200

6.2.3.4. Operations-Driven Product Demand . 207

6.2.4. Context II Conclusion. 212

6.2.4.1. Context II Architectural View . 212

6.3. Context III: Team of Teams . 213

6.3.1. Coordination and Process. 216

6.3.1.1. Coordination Principles and Techniques . 216

6.3.1.2. Coordination, Execution, and the Delivery Models . 225

6.3.1.3. Process Management . 232

6.3.1.4. Process Control and Continuous Improvement . 240

6.3.2. Investment and Portfolio . 246

6.3.2.1. Financial Management of Digital and IT. 248

6.3.2.2. Digital Sourcing and Contracts . 260

6.3.2.3. Portfolio Management . 268

6.3.2.4. The Digital Product or Service Catalog . 275

6.3.2.5. Project Management . 285

6.3.3. Organization and Culture. 297

6.3.3.1. Structuring the Organization: Product and Function . 297

6.3.3.2. IT Human Resources Management . 310

6.3.3.3. Why Culture Matters . 316

6.3.3.4. Industry Frameworks . 321

6.3.4. Context III Conclusion . 327

6.3.4.1. Context III Architectural View. 327

6.4. Context IV: Enduring Enterprise . 328

6.4.1. Governance, Risk, Security, and Compliance. 330

6.4.1.1. Governance . 331

6.4.1.2. Implementing Governance. 342

6.4.1.3. Risk and Compliance Management . 350

6.4.1.4. Assurance and Audit . 358

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.4.1.5. Security . 373

6.4.1.6. Digital Governance. 384

6.4.2. Information Management . 396

6.4.2.1. Information and Value . 398

6.4.2.2. Enterprise Information Management . 403

6.4.2.3. Analytics . 419

6.4.2.4. Agile Information Management . 424

6.4.2.5. Information Management Topics . 431

6.4.3. Architecture . 435

6.4.3.1. Why Architecture? . 436

6.4.3.2. Architecture Practices . 449

6.4.3.3. Architecture Domains . 468

6.4.3.4. Agile and Architecture. 477

6.4.3.5. Architecture, Digital Strategy, and Portfolio. 486

6.4.4. Context IV and DPBoK Conclusion . 489

6.4.4.1. Context IV Architectural View . 490

Appendices . 492

Appendix A: Abbreviations . 492

Index . 501

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Digital Practitioner
Body of Knowledge™ Standard
A Standard of The Open Group

Digital Practitioner Body of Knowledge™ Standard 1

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Copyright © 2019-2020, The Open Group

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form

or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior

permission of the copyright owners.

Any use of this publication for commercial purposes is subject to the terms of the Annual Commercial

License relating to it. For further information, see www.opengroup.org/legal/licensing.

The Open Group Standard

Digital Practitioner Body of Knowledge™ Standard

Document Number: C196

ISBN: 1-947754-33-1

Published by The Open Group, January 2020.

Comments relating to the material contained in this document may be submitted to:

 The Open Group, Apex Plaza, Forbury Road, Reading, Berkshire, RG1 1AX, United Kingdom

or by electronic mail to:

 ogspecs@opengroup.org

Built with asciidoctor, version 2.0.10. Backend: pdf Build date: 2020-01-06 15:59:18 UTC

2 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Preface

The Open Group

The Open Group is a global consortium that enables the achievement of business objectives through

technology standards. Our diverse membership of more than 700 organizations includes customers,

systems and solutions suppliers, tools vendors, integrators, academics, and consultants across multiple

industries.

The mission of The Open Group is to drive the creation of Boundaryless Information Flow™ achieved

by:

• Working with customers to capture, understand, and address current and emerging requirements,

establish policies, and share best practices

• Working with suppliers, consortia, and standards bodies to develop consensus and facilitate

interoperability, to evolve and integrate specifications and open source technologies

• Offering a comprehensive set of services to enhance the operational efficiency of consortia

• Developing and operating the industry’s premier certification service and encouraging

procurement of certified products

Further information on The Open Group is available at www.opengroup.org.

The Open Group publishes a wide range of technical documentation, most of which is focused on

development of Standards and Guides, but which also includes white papers, technical studies,

certification and testing documentation, and business titles. Full details and a catalog are available at

www.opengroup.org/library.

This Document

This document is the Digital Practitioner Body of Knowledge™ Standard, a standard of The Open

Group, also known as the DPBoK™ Standard. It has been developed and approved by The Open Group.

The high-level structure of the document is summarized as follows:

• Chapter 1, Introduction includes the objectives and overview, conformance requirements, and

terminology definitions

• Chapter 2, Definitions includes the terms and definitions for this document

• Chapter 3, Digital Transformation describes the key concept of Digital Transformation

• Chapter 4, Principles of the DPBoK Standard describes the principles by which the document will

evolve and be maintained, and how Digital Practitioner competencies will be defined

• Chapter 5, Structure of the Body of Knowledge describes how the Body of Knowledge is structured

• Chapter 6, The Body of Knowledge contains the Body of Knowledge, divided into four stages, called

Preface The Open Group

Digital Practitioner Body of Knowledge™ Standard 3

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Contexts, which correspond to the stages of evolution of a digital practice. These stages are

explained in the section on Context Summaries, and summarized as follows:

Context I: Individual/Founder

Foundational drivers of, and technical capabilities for, delivering digital value

Context II: Team

The critical product management, collaboration, and operational skills necessary for producing

digital value

Context III: Team of Teams

Key capabilities for partitioning investments and ensuring coherence, alignment, and joint

execution across multiple teams

Context IV: Enduring Enterprise

Steering, managing risk, and assuring performance at scale and over increasing time horizons and

increasingly complex ecosystems

• Appendices contains the list of abbreviations used in this document

Background and Intended Value of this Work

Applied computing, now popularly termed "digital technology", is transforming economies and

societies worldwide. Digital investments are critical for modern organizations. Participating in their

delivery (i.e., working to create and manage them for value) can provide prosperity for both

individuals and communities. Computing programs worldwide are under pressure to produce an

increasing number of qualified professionals to meet voracious workforce demand. And skill

requirements have undergone a seismic shift over the past 20 years. Digital Practitioners require a

wide variety of skills and competencies, including cloud architecture and operations, continuous

delivery and deployment, collaboration, Agile and Lean methods, product management, and more.

Industry guidance has over the years become fragmented into many overlapping and sometimes

conflicting bodies of knowledge, frameworks, and industry standards. The emergence of Agile [8] and

DevOps [165] as dominant delivery forms has thrown this already fractured ecosystem of industry

guidance into chaos. Organizations with longstanding commitments to existing bodies of knowledge

are re-assessing those commitments. Changes in digital delivery are happening too fast for

generational turnover to suffice.

Mid-career IT professionals, who still anticipate many more years in the workforce, are especially at

risk. Learning the new "digital" approaches is not optional for them. But how to reconcile these new

practices with the legacy "best practices" that characterized these workers' initial professional

education? Now is the time to re-assess and synthesize new guidance reflecting the developing

industry consensus on how digital and IT professionals should approach their responsibilities. Modern

Background and Intended Value of this Work Preface

4 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

higher education is not keeping pace in these topics either. There has been too much of a gap between

academic theory and classroom instruction versus the day-to-day practices of managing digital

products.

The Digital Practitioner in today’s work environment thus encounters a confusing and diverse array of

opinions and diverging viewpoints. This document aims to provide a foundational set of concepts for

the practitioner to make sense of the landscape they find in any organization attempting to deliver

digital products. It strives to put both old and new in a common context, with well-supported analysis

of professional practice. Practically, it should be of value for both academic and industry training

purposes.

In conclusion: this document is intended broadly for the development of the Digital Practitioner or

professional. It seeks to provide guidance for both new entrants into the digital workforce as well as

experienced practitioners seeking to update their understanding on how all the various themes and

components of digital and IT management fit together in the new world.

Sources of Material

While this document draws from a wide variety of industry sources, there are two primary sources of

material of this work.

The Forums of The Open Group

The Open Group has a number of different related programs of work that contributed substantially to

the content of, and interest in, the DPBoK Standard (this document). The initial groundwork was laid

by the Digital Business Customer Experience (DBCX) Work Group, which was the predecessor to the

Digital Practitioners Work Group, the current maintainers of this document. In addition, this document

is informed by and makes reference to other Forums of The Open Group, including:

• The Architecture Forum

• The Open Platform 3.0™ Forum

• The IT4IT™ Forum

The University of St. Thomas

This work is in part derived from material developed by Charles Betz between 2014 and 2017 for use in

teaching in the Graduate Programs in Software Engineering at the University of St. Thomas in St. Paul,

Minnesota, USA, for SEIS 660 (IT Infrastructure Management), later replaced by SEIS 664 (Information

Technology Delivery). Graduate Programs in Software at University of St. Thomas offers Masters'

degrees in Software Engineering, Data Science, Information Technology, and Software Management. It

is the largest program of its kind in the US and emphasizes rigorous, realistic preparation of

practitioners. No suitable collegiate texts were available providing comprehensive survey coverage of

the Digital/Lean/Agile transition and its impacts on IT management generally, so this material was

developed collaboratively, incrementally, and iteratively via an open Github project over the course of

three years.

Preface Sources of Material

Digital Practitioner Body of Knowledge™ Standard 5

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Relationship to Prior Publications

The resulting textbook, Managing Digital: Concepts and Practices, was contributed by the author and

published by The Open Group Press to serve as an experiment in collaborative, open source document

development, and also to support worldwide distribution on a low/no-cost basis. That material is

separate and distinct from this document, but the agreement allows for the "harvesting" of material

from that text. Such harvesting will not be cited, as it is expected to be substantial. The reader of both

documents will, therefore, notice deliberate similarities and identical passages. However, the textbook

also includes extensive quotations, sidebars, anecdotes, cases, tangential elements, personal

observations, exercises, and so forth that will not be found in this document. In general, this document

is briefer, drier, and written with a normative should/shall/may/must framing (see IETF RFC 2119, [

40]). Eventually, the textbook may be the basis for a "Guide", supporting this document in the same

way that (for example) the IT4IT Management Guide [12] supports the IT4IT Standard. See definitions

of Standard versus Guide in The Open Group Standards Process [280].

Curation Approach

Relationship of this Document to Other Bodies of Knowledge

This document may source knowledge from other bodies of knowledge. One of the reasons for the

existence of this document is that a constellation of new best practices and approaches based on cloud,

Agile, Lean, and DevOps is overtaking older approaches based on physical infrastructure, project

management, process management, and functional specialization. The Phoenix Project [165] is a useful

introduction to the new approaches; evidence of their effectiveness can be seen in the publicly

available videos of practitioner case studies presented at the DevOps Enterprise Summit.

Interpretive Aspects

This document should not merely be an assemblage of other sources, however. It may include well-

grounded synthesis and interpretation of the curated source material. See the DPBoK principles for

further information.

Evidence of Notability

In the current fast-paced digital economy, curating notable and rigorous work by individuals on a fair-

use basis into the standard seems advisable.

This will require an ongoing discussion and debate as to relevance and notability of the material.

DevOps, design thinking, Agile methods, Site Reliability Engineering (SRE), and many other concepts

have emerged of late. How do we know that they are notable and relevant? That they have staying

power and merit inclusion? A proposed set of heuristics follows:

• Existence of an organized community – is there evidence for a concept’s interest in terms of

practitioners self-identifying under its banner and choosing to spend their resources attending

local, national, or international events?

Relationship to Prior Publications Preface

6 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• Notable publications – are books in print on the topic from reputable publishers; e.g., O’Reilly or

Addison-Wesley? Are these books garnering reviews on Amazon or Goodreads?

• Media and analyst coverage – there is an active community of professional commentary and

analysis; its attention to a given topic is also evidence of notability – social media attention is an

important, but not conclusive, subset of this class of evidence (it can be too easily manipulated)

The use of a given body of knowledge or other guidance as broadly used audit criteria (e.g., cloud

provider compliance) shall be construed as evidence of notability.

Preface Curation Approach

Digital Practitioner Body of Knowledge™ Standard 7

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Trademarks

ArchiMate®, DirecNet®, Making Standards Work®, Open O® logo, Open O and Check® Certification

logo, OpenPegasus®, Platform 3.0®, The Open Group®, TOGAF®, UNIX®, UNIXWARE®, and the Open

Brand X® logo are registered trademarks and Boundaryless Information Flow™, Build with Integrity

Buy with Confidence™, Dependability Through Assuredness™, Digital Practitioner Body of

Knowledge™, DPBoK™, EMMM™, FACE™, the FACE™ logo, IT4IT™, the IT4IT™ logo, O-DEF™, O-HERA™,

O-PAS™, Open FAIR™, Open Platform 3.0™, Open Process Automation™, Open Subsurface Data

Universe™, Open Trusted Technology Provider™, O-SDU™, Sensor Integration Simplified™, SOSA™, and

the SOSA™ logo are trademarks of The Open Group.

Airbnb™ is a trademark of Airbnb, Inc.

Amazon Web Services® is a registered trademark and Amazon™, AWS™, and Kindle™ are trademarks

of Amazon.com, Inc. or its affiliates.

Android™ is a trademark of Google LLC.

Apache®, Apache Mesos®, and CouchDB® are registered trademarks of the Apache Software

Foundation (ASF).

Apple®, iPhone®, and MacBook Air® are registered trademarks of Apple Inc.

BABOK® and Business Analysis Body of Knowledge® are registered trademarks owned by

International Institute of Business Analysis.

CISSP® is a registered certification mark of the International Information Systems Security

Certification Consortium, Inc.

COBIT® is a registered trademark of ISACA.

Debian® is a registered trademark owned by Software in the Public Interest, Inc.

DMBOK® is a registered trademark of DAMA International.

Etsy® is a registered trademark of Etsy, Inc., in the US and/or other countries.

Facebook® is a registered trademark of Facebook, Inc.

Flickr® and Yahoo® are registered trademarks of Yahoo, Inc.

Google® is a registered trademark and Google Compute Engine™ is a trademark of Google LLC.

IBM® is a registered trademark of International Business Machines Corporation in the United States,

other countries, or both.

ITIL® and PRINCE2® are registered trademarks of AXELOS Limited.

Trademarks

8 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

LinkedIn® is a registered trademarks of LinkedIn Corporation and its affiliates in the United States

and/or other countries.

Linux® is a registered trademark of Linus Torvalds in the US and other countries.

Lyft™ is a trademark of Lyft, Inc.

Microsoft® is a registered trademark and Azure™, PowerPoint™, and Visio™ are trademarks of

Microsoft Corporation in the United States and/or other countries.

Netflix® is a registered trademark of Netflix, Inc.

NGINX™ is trademark of NGINX, Inc.

OmniGraffle™ is a trademark of The Omni Group.

Oracle® and Java® are registered trademarks and JavaScript™ is a trademark of Oracle and/or its

affiliates.

PMBOK®, Project Management Body of Knowledge®, and Project Management Institute® are

registered trademarks of the Project Management Institute, Inc.

RabbitMQ® is a registered trademark of Pivotal Software, Inc. in the US and other countries.

SABSA® is a registered trademark of The SABSA Institute.

Scaled Agile Framework® and SAFe® are registered trademarks of Scaled Agile, Inc.

Spotify™ is a trademark of Spotify AB.

UML® is a registered trademark and BPMN™, Business Process Modeling Notation ™, and Unified

Modeling Language™ are trademarks of Object Management Group, Inc. in the United States and/or

other countries.

Zachman® is a registered trademark of Zachman International, Inc.

All other brands, company, and product names are used for identification purposes only and may be

trademarks that are the sole property of their respective owners.

Trademarks

Digital Practitioner Body of Knowledge™ Standard 9

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Acknowledgments

The Open Group gratefully acknowledges the contribution of the following people in the development

of this document:

• Charles Betz

• Georg Bock

• James Doss

• Michael Fulton

• Jim Hietala

• Mohan Hiremath

• Dave Hornford

• Frédéric Le

• Antoine Lonjon

• Dave Lounsbury

• Robert Martin

• Sriram Sabesan

• Mark Smalley

Many assisted with and/or contributed to this work before its transition to The Open Group:

• Glen Alleman

• Brad Appleton

• David Bahn

• Jason Baker

• Richard Barton

• Jabe Bloom

• Terry Brown

• Kate Campise

• Murray Cantor

• Rob England

• Nicole Forsgren

• Stephen Fralippolippi

• Svetlana Gluhova

• Will Goddard

Acknowledgments

10 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• Lorin Hochstein

• Jez Humble

• Majid Iqbal

• Mark Kennaley

• Firasat Khan

• Gene Kim

• Dmitry and Alina Kirsanov

• Mary Lebens

• Evan Leybourn

• Tom Limoncelli

• Chris Little

• Mary Mosman

• Mark Mzyk

• Sriram Narayam

• Amos Olagunju

• Justin Opatrny

• Pat Paulson and his students

• Francisco Piniero

• Ben Rockwood

• Mark Smalley

• John Spangler

• Grant Spencer

• Jeff Sussna

• Halbana Tarmizi

• Roger K. Williams

Acknowledgments

Digital Practitioner Body of Knowledge™ Standard 11

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Referenced Documents

Normative References

This document does not contain any normative references at the time of publication. These may be

added in a future release.

Informative References

1. Thinking in Systems: A Primer by Donella Meadows. White River Junction, VT: Chelsea Green

Publishing Company, 2008.

2. Agile Hiring by Sean Landis. Walnut Creek, California: Artima, Inc, 2011.

3. “The Secret to Amazon’s Success ‒ Internal APIs, by Kin Lane,” The API Evangelist. 2012.

4. M. L. Abbott and M. T. Fisher, The Art of Scalability: Scalable Web Architecture, Processes, and

Organizations for the Modern Enterprise (2nd Edition). Old Tappan, NJ: Pearson Education, Inc.,

2015.

5. D. M. Abrashoff, It’s Your Ship: Management Techniques from the Best Damn Ship in the Navy, 10Th

Anniv. Grand Central Publishing, 2012.

6. Accounting Coach, “What is cost accounting?” 2016.

7. G. Adzic, Impact Mapping: Making a big impact with software products and projects. Gojko Adzic,

2012.

8. Agile Alliance, “Agile Manifesto and Principles,” no. 4/13/2011. 2001.

9. Agile Alliance, “Team Definition,” Glossary. 2015.

10. Agile Alliance, “Subway Map to Agile Practices.” 2016.

11. A. Akera, “Edmund Berkeley and the Origins of the ACM,” Communications of the ACM, vol. 50, no.

5, pp. 31–35, 2007.

12. R. Akershoek, “IT4IT™ for Managing the Business of IT.” 2016.

13. J. Allspaw and P. Hammond, “10 deploys per day: Dev & ops cooperation at Flickr,” Velocity 2009.

O’Relly Publications, San Jose, CA, 2009.

14. J. Allspaw and J. Robbins, Web operations, 1st ed. Beijing China ; Sebastopol, CA: O’Reilly, 2010, pp.

xvii, 315 p.

15. A. C. Alonzo and A. W. Gotwals, Learning Progressions in Science. Rotterdam: Sense Publishers,

2012.

16. S. Ambler, “Agile Outsourcing,” Dr. Dobb’s Journal, Mar. 2005.

17. S. Ambler, “Agility@Scale: Strategies for Scaling Agile Software Development.” 2015.

18. S. W. Ambler and M. Lines, Disciplined Agile Delivery: A Practitioner’s Guide to Agile Software

Delivery in the Enterprise. 2012, pp. 1–2.

Normative References Referenced Documents

12 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

19. S. W. Ambler and P. J. Sadalage, Refactoring databases : evolutionary database design. Harlow, U.K.:

Addison-Wesley, 2006, pp. xxvii, 350 p.

20. D. J. Anderson, Kanban: Successful Evolutionary Change for your Technology Business. Sequim, WA:

Blue Hole Press, 2010.

21. T. Arbogast, B. Vodde, and C. Larman, “Agile Contracts Primer.” 2012.

22. J. Arnold, “Tilt the playing field: discover, nurture, and speed up the delivery of value.” Liberio,

2013.

23. C. Bank and J. Cao, The Guide to Usability Testing. uxpin.com, 2016.

24. K. Beck, extreme programming eXplained : embrace change. Reading, MA: Addison-Wesley, 2000, pp.

xxi, 190 p.

25. S. Beer, “What is cybernetics?,” Kybernetes, vol. 31, no. 2, pp. 209–219, 2002.

26. S. Bell et al., Run grow transform : integrating business and lean IT. Boca Raton, FL: CRC Press, 2013,

pp. xlii, 336 p.

27. S. C. Bell and M. A. Orzen, Lean IT: Enabling and Sustaining Your Lean Transformation. Boca Raton,

Florida: CRC Press, 2010.

28. S. Bente, U. Bombosch, and S. Langade, Collaborative Enterprise Architecture: Enriching EA with

Lean, Agile, and Enterprise 2.0 Practices. Waltham, MA: Morgan Kaufman - Elsevier, 2012.

29. S. Bernard, An Introduction to Enterprise Architecture. AuthorHouse, 2012.

30. C. Betz, “Release management integration pattern - seeking devops comments,” Lean4IT: The

architecture of IT value, vol. 2014. 2011.

31. C. Betz, “The CMDB is not a data warehouse,” Integrated IT Management. Enterprise Management

Associates, 2011.

32. C. T. Betz, Architecture and Patterns for IT: Service and Portfolio Management and Governance

(Making Shoes for the Cobbler’s Children), 2nd Edition. Amsterdam: Elsevier/Morgan Kaufman, 2011.

33. C. T. Betz, “A DevOps Causal Loop Diagram parts 1 and 2,” Lean4IT: The architecture of IT value.

2013.

34. B. Beyer, C. Jones, J. Petoff, and N. R. Murphy, Site Reliability Engineering: How Google Runs

Production Systems. Sebastopol, CA: O’Reilly Media, Inc., 2016.

35. J. Bezos, “Jeff Bezos’ 2016 Letter to Amazon Shareholders.” 2016.

36. S. Blank, The Four Steps to the Epiphany: Successful Strategies for Products That Win, 2nd ed. Steve

Blank, 2013.

37. J. Bloomberg, “Agile Enterprise Architecture Finally Crosses the Chasm,” Forbes. Jul-2014.

38. B. Boehm, “A Spiral Model of Software Development and Enhancement,” IEEE Computer, vol. 21,

no. 5, pp. 61–72, 1988.

39. L. Bossavit, “The Leprechauns of Software Engineering: How folklore turns into fact and what to do

about it.” 2015.

Referenced Documents Informative References

Digital Practitioner Body of Knowledge™ Standard 13

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

40. S. Bradner, “IETF RFC 2119.” 1997.

41. D. Breston, “DevOps and SIAM: The Happy Nexus,” ITSMTools.com blog. 2017.

42. F. P. Brooks, The mythical man-month : essays on software engineering. Reading, Mass.: Addison-

Wesley Pub. Co., 1975, pp. xi, 195 p.

43. F. P. Brooks, The mythical man-month : essays on software engineering, Anniversar. Reading, Mass.:

Addison-Wesley Pub. Co., 1995, pp. xiii, 322 p.

44. A. Brown, N. Forsgren, J. Humble, N. Kersten, and G. Kim, “2016 State of DevOps report,” Puppet

Labs, 2016.

45. J. Brustein, “Microsoft Kills Its Hated Stack Rankings. Does Anyone Do Employee Reviews Right?,”

Bloomberg Business Week. 2013.

46. M. Buckingham and A. Goodall, “Reinventing performance management,” Harvard Business

Review, vol. 93, no. 4, pp. 40–50, 2015.

47. M. Burgess, “When and where order matters,” homepage mark burgess. .

48. M. Burrows, Kanban from the Inside: Understand the Kanban Method, connect it to what you already

know, introduce it with impact (Kindle ed.), Kindle. Sequim, Washington: Blue Hole Press, 2015.

49. M. G. I. Burrows, “The Chubby lock service for loosely-coupled distributed systems,” in _ 7th

symposium on Operating systems design and implementation (OSDI ’06)_, 2006, pp. Pages 335–350 .

50. Business Architecture Guild, A Guide to the Business Architecture Body of Knowledge (BIZBOK

Guide). Business Architecture Guild, 2016.

51. B. Butler, “Free cloud storage service MegaCloud goes dark,” Network World. 2013.

52. B. Butler, “Cloud’s worst-case scenario: What to do if your provider goes belly up,” Network World.

2014.

53. M. Cagan, Inspired: How to Create Products Customers Love. SVPG Press, 2008.

54. S. K. Card, J. D. Mackinlay, and B. Shneiderman, Readings in Information Visualization: Using Vision

to Think. San Diego: Academic Press, 1999.

55. J. Carlzon, Moments of Truth. Ballinger Pub Co, 1987.

56. N. Carr, “IT Doesn’t Matter,” Harvard Business Review, pp. 5–12, 2003.

57. K. Cherry, “Multitasking: Bad for Your Productivity and Brain Health,” verywell.com. 2016.

58. M. Cherubini, G. Venolia, R. Deline, and A. J. Ko, “Let ’ s Go to the Whiteboard: How and Why

Software Developers Use Drawings,” CHI 2007 Proceedings, pp. 557–566, 2007.

59. J. Choi, “The Science Behind Why Jeff Bezos’s Two-Pizza Team Rule Works.” Jan-2014.

60. C. Christensen, S. Cook, and T. Hall, “What Customers Want from Your Products,” Working

Knowledge (Harvard Business School). 2006.

61. Clayton Christensen Institute, “Jobs to be Done,” http://www.christenseninstitute.org/. 2015.

62. Cloud Native Computing Foundation, “CNCF Cloud Native Definition v1.0,” CNCF TOC repository.

2018.

Informative References Referenced Documents

14 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

63. R. Coase, “The nature of the firm,” Economica, vol. 4, pp. 386–405, 1937.

64. A. Cockburn, “Walking skeleton,” http://alistair.cockburn.us/. 1996.

65. A. Cockburn, Agile Software Development: The Cooperative Game, 2nd ed. Boston, MA: Pearson

Education, Inc., 2007.

66. A. Cockburn, “Why Agile Works,” Slideshare.net. 2012.

67. M. Cohn, “Agile estimating and planning,” in VTT Symposium (Valtion Teknillinen Tutkimuskeskus),

2006, no. 241, pp. 37–39.

68. M. Cohn, Succeeding with Agile: Software Development Using Scrum. Upper Saddle River, New

Jersey: Addison-Wesley, 2010.

69. S. Comella-Dorda, L. Santiago, and G. Speksnijder, “An operating model for company-wide agile

development,” McKinsey & Company. 2016.

70. Committee on the Financial Aspects of Corporate Governance, “Report of the Committee on the

Financial Aspects of Corporate Governance (aka Cadbury Report),” Gee and Co, Ltd., London, 1992.

71. Computer History Museum, “Memory & Storage,” Timeline of Computer History. 2019.

72. W. Contributors, “Technology Business Management Council,” Wikipedia, The Free Encyclopedia.

2019.

73. D. M. E. Conway, “How Do Committees Invent?” 1968.

74. A. Cooper, R. Reimann, and D. Cronin, “About Face 3: The Essentials of Interaction Design.” 2009.

75. Cornell University, “Explaining Why the Millenium Bridge Wobbled,” Science Daily. 2005.

76. COSO Commission, “Internal Control — Integrated Framework (2013).” 2013.

77. M. Csikszentmihalyi, Flow : the psychology of optimal experience, 1st ed. New York: Harper & Row,

1990, pp. xii, 303 p.

78. W. Cunningham, “Experience Report: The WyCash Portfolio Management System,” OOPSLA ’92, vol.

4, no. 2. pp. 29–30, Mar-1992.

79. W. Cunningham, “Do The Simplest Thing That Could Possibly Work,” wiki.c2.com. 2014.

80. T. Data Management Association, The DAMA Guide to The Data Management Body of Knowledge

(DAMA-DMBOK Guide). Bradley Beach, NJ: Technics Publications, LLC, 2009.

81. Dave Hornford, Sriram Sabesan, Vidhya Sriram, and Ken Street, “The Seven Levers of Digital

Transformation,” The Open Group, 2017.

82. A. De Nicola and M. Missikoff, “A Lightweight Methodology for Rapid Ontology Engineering,”

Communications of the ACM2, vol. 59, no. 3, pp. 79–86, 2016.

83. S. Dekker, The Field Guide to Understanding ’Human Error.’ Burlington, VT: Ashgate Publishing

Company, 2006.

84. J. DeLuccia, IT COMPLIANCE AND CONTROLS: Best Practices for Implementation. Hoboken, N.J.:

John Wiley & Sons, Inc., 2008.

85. J. DeLuccia, J. Gallimore, G. Kim, B. Miller, and J. D. L. & J. G. & G. K. & B. Miller, “DevOps Audit

Referenced Documents Informative References

Digital Practitioner Body of Knowledge™ Standard 15

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Defense Toolkit,” IT Revolution, 2015.

86. DHS, “Report No. 2006-03, The Use of Commercial Data,” DHS Data Privacy and Integrity Advisory

Committee, 2006.

87. A. E. Ditri, J. C. Shaw, and W. Atkins, Managing the EDP function. N.Y.: McGraw-Hill, 1971.

88. D. Drogseth, “The Enterprise Service Catalog - Unifying IT Services for the Digital Age,” APM Digest.

2016.

89. P. F. Drucker, Post-capitalist society, 1st ed. New York, NY: HarperBusiness, 1993, pp. 232 p.

90. D. du Preez, “A CIO’s worst nightmare: When your cloud provider goes bankrupt,” diginomica.

2015.

91. R. Dunbar, How Many Friends Does One Person Need? Dunbar’s Number and Other Evolutionary

Quirks. Harvard University Press, 2010.

92. P. M. Duvall, S. Matyas, and A. Glover, Continuous integration : improving software quality and

reducing risk. Upper Saddle River, NJ: Addison-Wesley, 2007, pp. xxxiii, 283 p.

93. K. M. Eisenhardt, “Agency Theory: An Assessment and Review,” Source: The Academy of

Management Review Academy of Management Review, vol. 14, no. 1, pp. 57–74, 1989.

94. R. England, Plus! The Standard+Case Approach: See Service Response in a New Light. Mana, New

Zealand: Two Hills Ltd., 2013.

95. R. England, “Service catalogue and request catalogue,” IT Skeptic Blog. 2016.

96. E. Evans, Domain-driven design : tackling complexity in the heart of software. Boston ; London:

Addison-Wesley, 2004, pp. xxx, 528 p.

97. R. P. Feynman, “Cargo Cult Science,” Engineering and Science, vol. 33, pp. 10–13, 1974.

98. N. Forsgren, “Continuous Delivery + DevOps = Awesome.” 2016.

99. N. Forsgren, J. Humble, and G. Kim, Accelerate: Building and Scaling High Performing Technology

Organizations. Portland, OR: IT Revolution Press, 2018.

100. N. Forsgren, G. Kim, N. Kersten, and J. Humble, “2014 State of DevOps Report,” Puppet Labs, 2014.

101. M. Fowler, Patterns of enterprise application architecture. Boston: Addison-Wesley, 2003, pp. xxiv,

533.

102. M. Fowler, “Is Design Dead?,” martinfowler.com. 2004.

103. M. Fowler, “bliki: StranglerApplication.” 2004.

104. M. Fowler, “Shu-Ha-Ri,” Martin Fowler’s Bliki. 2006.

105. M. Fowler, “BoundedContext,” Martin Fowler’s Bliki2. 2014.

106. A. Fox, E. A. Brewer, and A. Fox, “Harvest, Yield and Scalable Tolerant Systems,” 7th Workshop Hot

Topics in Operating Systems (HotOS 99). IEEE CS, 1999.

107. J. Gall, The Systems Bible: The beginner’s guide to systems large and small. General Systemantics

Pr/Liberty, 2012.

108. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns : elements of reusable object-

Informative References Referenced Documents

16 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

oriented software. Reading, Mass.: Addison-Wesley, 1995, pp. xv, 395.

109. A. Gawande, The Checklist Manifesto. New York, N.Y: Picador, 2010.

110. R. Gillett, “Productivity Hack Of The Week: The Two Pizza Approach To Productive Teamwork |

Fast Company | Business + Innovation,” fastcompany.com. 2014.

111. R. L. Glass, Software runaways. Upper Saddle River, NJ: Prentice Hall PTR, 1998, pp. xvi, 259.

112. E. M. Goldratt, Critical chain. Great Barrington, Ma.: North River, 1997, pp. 246 p.

113. B. Goodwin, “How CIOs can raise their ’IT clock speed’ as pressure to innovate grows,”

ComputerWeekly.com. 2015.

114. J. Gothelf and J. S. Seiden, Lean UX: Applying Lean Principles to Improve User Experience.

Sebastopol, CA: O’Reilly Media, Inc., 2013.

115. Great Schools Partnership, “Learning Progression,” Glossary of Education Reform. 2013.

116. M. Griffin, How To Write a Policy Manual. www.templatezone.com, 2016.

117. T. Griffin, “Two Powerful Mental Models: Network Effects and Critical Mass – Andreessen

Horowitz,” Andreessen Horowitz. .

118. G. Gruver, M. Young, and P. Fulghum, A Practical Approach to Large-Scale Agile Development: How

HP Transformed Laserjet Futuresmart Firmware. Upper Saddle River, N.J.: Pearson Education, Inc.,

2013, pp. xxiv, 183 pages.

119. E. Hallikainen, “Service Catalog and Configuration Management Database as the Foundation of

SIAM,” PhD thesis, 2015.

120. P. Hammant, “Legacy Application Strangulation : Case Studies,” Paul Hammant’s Blog. 2013.

121. M. Hammer and J. Champy, Reengineering the corporation. London: Nicholas Brealey, 1993, pp.

vi,223p.

122. V. Harnish, Scaling Up: How a Few Companies Make It…and Why the Rest Don’t. Gazelles, Inc., 2014.

123. P. Harpring, Introduction to Controlled Vocabularies: Terminology for Art, Architecture and other

Cultural Works. Los Angeles, CA: Getty Publications, 2010.

124. S. Harris, CISSP Exam Guide, 6th ed. New York: McGraw-Hill Education, 2013.

125. L. Hassi and M. Laakso, “Design thinking in the management discourse: Defining the elements of

the concept,” in 18th international product development conference, Delft, 2011.

126. R. Hastings, “Netflix Culture: Freedom & Responsibility,” Slideshare.net. 2009.

127. D. C. Hay, Data model patterns : conventions of thought. New York: Dorset House ; Chichester : Wiley

[distributor], 1996, pp. xix,268p.

128. M. Heller, “GE’s Jim Fowler on the CIO role in the digital industrial economy,” CIO Magazine Online.

2016.

129. G. Hohpe and B. Woolf, Enterprise integration patterns : designing, building, and deploying

messaging solutions. Boston ; London: Addison-Wesley, 2003, pp. . cm.

130. J. H. Holland, “Studying Complex Adaptive Systems,” Journal of Systems Science and Complexity, vol.

Referenced Documents Informative References

Digital Practitioner Body of Knowledge™ Standard 17

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

19, no. 1, pp. 1–8, Mar. 2006.

131. J. Hope and R. Fraser, “Beyond Budgeting Questions and Answers,” Beyond Budgeting Round Table,

2001.

132. M. Housman and D. Minor, “Toxic Workers,” Harvard Business School, 2015.

133. D. W. Hubbard, The Failure of Risk Management. Hoboken, New Jersey: John Wiley & Sons, Inc.,

2009.

134. D. W. Hubbard, How to measure anything : finding the value of "intangibles" in business, 2nd ed.

Hoboken, N.J.: Wiley, 2010, pp. xv, 304 p.

135. J. Humble, “The Flaw at the Heart of Bimodal IT,” Continuousdelivery.com. 2016.

136. J. Humble and J. Molesky, “Why Enterprises Must Adopt Devops to Enable Continuous Delivery,”

Cutter IT Journal, vol. 24, no. 8, 2011.

137. J. Humble, J. Molesky, and B. O’Reilly, Lean enterprise, First edit. 2013, pp. xxi, 317 pages.

138. J. Humble, J. Molesky, and B. O’Reilly, Lean Enterprise: Adopting Continuous Delivery, DevOps, and

Lean Startup at Scale. 2014.

139. J. R. Huntzinger, Lean Cost Management: Accounting for Lean by Establishing Flow. Fort Lauderdale,

Fl.: J. Ross Publishing, 2007.

140. IEEE, “Software Engineering Body of Knowledge, version 3,” IEEE, 2014.

141. W. H. Inmon, Building the Data Warehouse. Wiley, 1992.

142. International Auditing and Assurance Standards Board (IAASB), “ISAE 3000 (Revised), Assurance

Engagements Other than Audits or Reviews of Historical Financial Information,” International

Federation of Accountants, 2013.

143. International Institute of Business Analysis (IIBA), BABOK v3: A Guide to the Business Analysis Body

of Knowledge. Toronto, Canada: International Intitute of Business Analysis, 2015.

144. E. Isaacs and A. Walendowski, Designing from both sides of the screen: How Designers and Engineers

Can Collaborate to Build Cooperative Technology. Indianapolis, Indiana: New Riders Publishing,

2002.

145. ISACA, COBIT 5: Enabling Processes. 2012, pp. 1–230.

146. ISACA, COBIT 5 for Information Security. Rolling Meadows, IL: ISACA, 2012.

147. ISACA, “COBIT 5,” 2012.

148. ISACA, COBIT 5 for Assurance. Rolling Meadows, IL: ISACA, 2013.

149. ISACA, “COBIT 5 Enabling Information,” ISACA, 2013.

150. ISACA, COBIT 5 for Risk. Rolling Meadows, IL, 2013.

151. ISACA, ITAF: A Professional Practices Framework for IS Audit/ Assurance, 3rd Edition. Rolling

Meadows, IL: ISACA, 2014.

152. ISACA, “COBIT 2019 Framework: Introduction and Methodology,” ISACA, Schaumberg, IL, 2018.

153. ISACA, “IT Control Objectives for Sarbanes-Oxley Using COBIT 5, 3rd Edition.,” ISACA, 2019.

Informative References Referenced Documents

18 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

154. ISO/IEC, “ISO/IEC 7498-1: Open Systems Interconnection – Basic Reference Model: The Basic Model,”

International Organization for Standardization, 1994.

155. ISO/IEC, “ISO/IEC 38500 - Corporate governance of information technology.” 2008.

156. ISO/IEC, “ISO 31000:2009 - Risk Management,” 2009.

157. ISO/IEC/IEEE, “ISO/IEC/IEEE 42010:2011 - Systems and software engineering – Architecture

description,” March, 2011.

158. IT Governance Institute, “IT Controls Objectives for Sarbanes-Oxley,” IT Governance Institute,

Rolling Meadows, IL, 2006.

159. F. Ivancsich, R. Kruse, and D. Sharrock, “Why ‘Real Options’ is the biggest fail of the Agile

Community so far,” www.agile42.com. 2013.

160. S. H. Kan, Metrics and models in software quality engineering. Reading, Mass.: Addison-Wesley, 1995,

pp. xvii, 344.

161. C. Kaner, J. L. Falk, and H. Q. Nguyen, Testing computer software, 2nd ed. New York: Wiley, 1999, pp.

xv, 480.

162. R. M. Kanter, The change masters : innovations for productivity in the American corporation. New

York: Simon and Schuster, 1983, pp. 432 p.

163. R. S. Kaplan and D. P. Norton, “The balanced scorecard - measure that drive performance.,”

Harvard Business Review, no. January-February, pp. 71–79, 1992.

164. M. Kennaley, Sdlc 3.0: Beyond a Tacit Understanding of Agile: Towards the Next Generation of

Software Engineering. Fourth Medium Consulting, 2010.

165. G. Kim, K. Behr, and G. Spafford, The Phoenix Project: A Novel About IT, DevOps, and Helping Your

Business Win. IT Revolution Press, 2013.

166. G. Kim, J. Humble, P. Debois, and J. Willis, The DevOps Handbook. Portland, OR: IT Revolution Press,

2016.

167. G. Klein, P. J. Feltovich, and D. D. Woods, “Common Ground and Coordination in Joint Activity,” in

Organizational simulation, Hoboken, New Jersey: John Wiley & Sons, Inc., 2005.

168. M. Knez and D. Simester, “Making Across-the-Board Incentives Work,” Harvard Business Review, no.

Feb 2002, 2002.

169. H. Kniberg and A. Ivarsson, “Scaling Agile @ Spotify with Tribes, Squads, Chapters & Guilds,” Jan.

2012.

170. R. Kohavi, T. Crook, and R. Longbotham, “Online Experimentation At Microsoft.” 2009.

171. B. Kos, “Kanban – Visualize your workflow - AgileLeanLife,” agileleanlife.com. 2016.

172. C. Ladas, Scrumban. Modus Cooperandi Press (January 12, 2009), 2009.

173. D. Laney, “3D Data Management: Controlling Data Volume, Velocity, and Variety,” Meta Group (now

Gartner), 2001.

174. C. Larman and V. R. Basili, “Iterative and incremental development: A brief history,” Computer, vol.

36, no. 6. pp. 47–56, 2003.

Referenced Documents Informative References

Digital Practitioner Body of Knowledge™ Standard 19

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

175. C. Larman and B. Vodde, Scaling lean & agile development : thinking and organizational tools for

large-scale Scrum. Upper Saddle River, NJ: Addison-Wesley, 2009, pp. xiv, 348 p.

176. G. Lawton, “Forging an IT service catalog management plan to drive business goals.” 2018.

177. D. Leffingwell, A. Yakyma, D. Jemilo, R. Knaster, A. Shalloway, and I. Oren, “Scaled Agile

Framework,” no. 10 October 2015. 2014.

178. T. A. Limoncelli, S. R. Chalup, and C. J. Hogan, The Practice of Cloud System Administration:

Designing and Operating Large Distributed Systems, Volume 2, vol. 2. Addison-Wesley Professional,

2014.

179. G. Linden, “Early Amazon: Shopping cart recommendations,” Geeking with Greg. 2006.

180. S. Lins, P. Grochol, S. Schneider, and A. Sunyaev, “Dynamic Certification of Cloud Services: Trust,

but Verify!,” IEEE Security & Privacy, vol. 14, no. 2, pp. 66–71, Mar. 2016.

181. J. Loeliger, Version control with Git, 1st ed. Beijing ; Sebastopol, CA: O’Reilly, 2009, pp. xv, 310 p.

182. J. Loftus, “Open source IP case puts spotlight on patents,” techtarget.com. 2006.

183. R. J. Madachy, Software process dynamics. Hoboken, Piscataway, NJ: Wiley IEEE Press, 2008, pp.

xxiii, 601 p.

184. A. A. Maestro, “Turn IT into a Service Catalog,” DevOps.com blog. 2015.

185. B. Maizlish and R. Handler, IT Portfolio Management Step-By-Step: Unlocking the Business Value of

Technology. Hoboken, New Jersey: John Wiley & Sons, 2005.

186. R. Malan and D. Bredemeyer, “The Art of Change: Fractal and Emergent,” Cutter Consortium

Enterprise Architecture Advisory Service Executive Report, vol. 13, no. 5, 2010.

187. T. W. Malone and K. Crowston, “The Interdisciplinary Study of Coordination, by Malone, Thomas W

and Crowston, Kevin,” ACM Computing Surveys, vol. 26, no. 1, 1994.

188. H. Marks, “Code Spaces: A Lesson In Cloud Backup,” Network Computing. 2014.

189. D. L. Marquet, Turn the Ship Around!: A True Story of Turning Followers into Leaders: L. David

Marquet, Stephen R. Covey: 8601411904479: Amazon.com: Books. Portfolio, 2013.

190. C. Matts and O. Maassen, “‘Real Options’ Underlie Agile Practices,” InfoQ. 2007.

191. J. McAdam, “Information Technology Measurements,” in Chargeback and IT Cost Accounting, T. A.

Quinlan, Ed. Santa Barbara, CA: IT Financial Management Association, 2003, pp. 90–91.

192. S. McChrystal, T. Collins, D. Silverman, and C. Fussell, Team of Teams: New Rules of Engagement for a

Complex World. New York, New York: Portfolio/Penguin (Random House), 2015.

193. D. McCrory, “Data Gravity – in the Clouds,” McCrory’s Blog. 2010.

194. P. Mell and T. Grance, “The NIST Definition of Cloud Computing (Technical report), Special

publication 800-145,” National Institute of Standards and Technology: U.S. Department of

Commerce., 2011.

195. N. D. Meyer, Internal Market Economics: practical resource-governance processes based on principles

we all believe in. Dansbury, CT: NDMA Publishing, 2013.

Informative References Referenced Documents

20 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

196. C. Millard, Ed., Cloud Computing Law. Oxford, UK: Oxford University Press, 2013.

197. C. Millotat, “Understanding the Prussian-German General Staff System,” Strategic Studies Institute

(US MIlitary), Carlisle Barracks, PA, 1992.

198. R. R. Moeller, Executive’s Guide to IT Governance: Improving Systems Processes with Service

Management, COBIT, and ITIL. Hoboken, New Jersey: John Wiley & Sons, Inc., 2013.

199. D. Moody, “The ‘Physics’ of Notations: Towards a Scientific Basis for Constructing Visual Notations

in Software Engineering,” IEEE Transactions on Software Engineering, vol. 35, no. 5, pp. 756–778,

2009.

200. J. M. Morgan and J. K. Liker, Designing the future: how Ford, Toyota, and other world-class

organizations use lean product development to drive innovation and transform their business.

McGraw-Hill Education.

201. J. M. Morgan and J. K. Liker, The Toyota product development system: Integrating People, Process,

and Technology. Productivity Press, 2006.

202. J. P. Morgenthal, “A Reality Check on ‘Everyone’s Moving Everything To The Cloud’ | The Tech

Evangelist.” 2016.

203. K. Morris, Infrastructure as Code: Managing Servers in the Cloud. Sebastopol, CA: O’Reilly Media,

Inc., 2016.

204. C. Moskowitz, “Mind’s Limit Found: 4 Things at Once,” http://www.livescience.com. 2008.

205. R. Munroe, “FedEx Bandwidth,” What If? 2013.

206. S. Narayam, “Scaling Agile: Problems and Solutions | ThoughtWorks,” Thoughtworks Blogs. 2015.

207. S. Narayam, Agile IT organization design: for digital transformation and continuous delivery. Pearson

Education Inc. , 2015.

208. S. Newman, Building microservices : designing fine-grained systems. Sebastopol, CA: O’Reilly Media,

Inc., 2015.

209. NIST, “NIST SP 800-145, The NIST Definition of Cloud Computing,” 2011.

210. R. L. Nolan, Managing the data resource function, 1St ed. West, 1974, p. 394p.

211. Office of Government Commerce, Service strategy. Norwich: The Stationery Office, 2007, pp. xi, 261

p.

212. T. Ohno, Toyota production system : beyond large-scale production. Cambridge, Mass.: Productivity

Press, 1988.

213. E. Olson, “Microsoft, GE, and the futility of ranking employees,” Fortune, no. November 18, 2013,

2013.

214. A. Opelt, B. Gloger, W. Pfarl, and R. Mittermayr, Agile contracts : creating and managing successful

projects with Scrum. Hoboken, N.J.: John Wiley & Sons Inc., 2013, pp. xiv, 282 pages.

215. A. Osterwalder and Y. Pigneur, “Business Model Generation,” Wiley, p. 280, 2010.

216. A. Osterwalder, Y. Pigneur, G. Bernarda, and A. Smith, Value Proposition Design. Hoboken, N.J.: John

Wiley & Sons, Inc., 2014.

Referenced Documents Informative References

Digital Practitioner Body of Knowledge™ Standard 21

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

217. J. Patton, User Story Mapping. Discover the Whole Story, Build the Right Product, First edit. 2014, p.

324.

218. PCAOBUS, “Auditing Standard No.5,” PCAOBUS, 2019.

219. R. Pichler, Agile Product Management with Scrum: Creating Products that Customers Love. Boston,

MA: Addison-Wesley - Pearson Education, 2010, p. 160.

220. M. Poppendieck and T. D. Poppendieck, Lean Software Development: An Agile Toolkit. Boston:

Addison Wesley, 2003.

221. M. Poppendieck and T. D. Poppendieck, Implementing lean software development : from concept to

cash. London: Addison-Wesley, 2007, pp. xxv, 276 p.

222. S. Portny, Project Management for Dummies. Hoboken, New Jersey: John Wiley & Sons, 2013.

223. Project Management Institute and Project Management Institute., A guide to the project

management body of knowledge (PMBOK guide), 3rd ed. Newtown Square, Pa.: Project Management

Institute Inc., 2013, pp. xxi, 589 pages.

224. Puppet Labs, “2015 State of DevOps Report,” Puppet Labs, 2015.

225. T. A. Quinlan, Chargeback and IT Cost Accounting. Santa Barbara, CA: IT Financial Management

Association, 2003.

226. B. Raczynski and B. Curtis, “Software Data Violate SPC’s Underlying Assumptions,” IEEE Software,

vol. 25, no. 3, pp. 49–51, 2008.

227. Rational Software, Rational Software Corporation, and R. Software, “Rational Unified Process: Best

Practices for Software Development Teams,” IBM, 2011.

228. D. J. Reifer, Making the software business case : improvement by the numbers. Boston: Addison

Wesley, 2002, pp. xviii, 300.

229. D. G. Reinertsen, Managing the design factory: a product developer’s toolkit. New York ; London:

Free Press, 1997, pp. xi,269p.

230. D. G. Reinertsen, The principles of product development flow: second generation lean product

development. Redondo Beach, Calif.: Celeritas, 2009, pp. ix, 294 p.

231. G. L. Richardson, Project Management Theory and Practice. Boca Raton: Auerbach Publications,

Taylor & Francis Group, 2010.

232. E. Ries, The lean startup : how today’s entrepreneurs use continuous innovation to create radically

successful businesses, 1st ed. New York: Crown Business, 2011, pp. 320 p.

233. D. K. Rigby, J. Sutherland, and A. Noble, “Agile At Scale: How To Go From A Few Teams To

Hundreds,” Harvard Business Review, 2018.

234. D. K. Rigby, J. Sutherland, and H. Takeuchi, “Embracing Agile,” Harvard Business Review, no. May,

2016.

235. H. Rock, David; Grant, “Why Diverse Teams Are Smarter,” Harvard Business Review. 2016.

236. E. Rogers, Diffusion of Innovations, 5th ed. New York, N.Y.: Free Press - Simon & Schuster, Inc., 2003.

237. J. W. Ross, P. Weill, and D. Robertson, Enterprise architecture as strategy : creating a foundation for

Informative References Referenced Documents

22 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

business execution. Boston, Mass.: Harvard Business School Press, 2006, pp. xviii, 234 p.

238. M. Rother, Toyota kata : managing people for improvement, adaptiveness, and superior results. New

York: McGraw Hill, 2010, pp. xx, 306 p.

239. M. Rother and J. Shook, “Learning to See: Value Stream Mapping to Add Value and Eliminate MUDA

[Spiral-bound],” Lean Enterprise Institute. p. 102, 2003.

240. J. Rothman, “Not Ready for Agile? Start Your Journey with Release Trains,” Stickyminds.com. 2011.

241. W. Royce, “Managing the Development of Large Software Systems,” in Proc. IEEE WESCON, Los

Angeles, 1970, pp. 1–9.

242. J. Rozovsky, “The five keys to a successful Google team,” re:Work, Mar. 2015.

243. K. S. Rubin, Essential Scrum : a practical guide to the most popular agile process. Upper Saddle River,

NJ: Addison-Wesley, 2012, pp. xliii, 452 p.

244. G. A. Rummler and A. P. Brache, Improving performance: how to manage the white space on the

organization chart, 2nd ed. San Francisco, CA: Jossey-Bass, 1995, pp. xxv, 226.

245. SAFe, “Agile Release Train – Scaled Agile Framework,” http://www.scaledagileframework.com/. 2016.

246. Scaled Agile Framework, “Guidance – Features and Components – Scaled Agile Framework.” 2016.

247. S. Schlarman, “Developing Effective Policy, Procedure, and Standards,” www.disaster-resource.com.

2008.

248. W. E. Schneider, The reengineering alternative : a plan for making your current culture work.

McGraw-Hill, 1999, p. 173.

249. K. Schwaber, The Enterprise and Scrum. Redmond, Wash: Microsoft Press, 2007.

250. K. Schwaber and M. I. Beedle, Agile Software Development with Scrum. Upper Saddle River, N.J.:

Prentice Hall, 2002.

251. C. Schwartz and J. Schauer, “The Dojo – Implementing an Immersive Learning Environment for

Teams | Agile Alliance,” in Agile 2016, Atlanta, GA, 2016.

252. S. B. ; F. Sells Richard S. and S. B. ; F. Sells, “Evaluation of Research on Effects of Visual Training on

Visual Functions,” Am J Ophthal, vol. 44, no. 2, pp. 230–236, Aug. 1957.

253. C. E. Shannon, “A symbolic analysis of relay and switching circuits,” Transactions of the American

Institute of Electrical Engineers, vol. 57, no. 12, pp. 713–723, 1938.

254. C. E. Shannon and W. Weaver, The mathematical theory of communication. Urbana,: University of

Illinois Press, 1949, pp. v (i.e. vii), 117 p.

255. A. Sharp and P. McDermott, Workflow modeling : tools for process improvement and applications

development, 2nd ed. Boston: Artech House, 2009, pp. xx, 449 p.

256. E. Sigler, “So, What is ChatOps? And How do I Get Started?,” Pagerduty.Com. 2014.

257. L. Silverston and John Wiley & Sons., “The data model resource CD-ROM. Volume 1 a library of

universal data models for all enterprises.” Wiley, New York, pp. 1 computer optical disc 4 3/4 in.,

2001.

Referenced Documents Informative References

Digital Practitioner Body of Knowledge™ Standard 23

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

258. L. Silverston, The data model resource book Vol 1: A library of universal data models for all

enterprises, Rev. ed. New York ; Chichester: Wiley, 2001, pp. 2 v.

259. L. Silverston, The data model resource book Vol 3: Universal patterns for data modeling.

Indianapolis, Ind.: Wiley, 2008, pp. xxxii, 606 p.

260. C. J. Sims, Scrum: a Breathtakingly Brief and Agile Introduction. Dymaxicon, 2012.

261. R. Sirkiä and M. Laanti, “Lean and Agile Financial Planning,” via Scaled Agile Framework website,

2013.

262. M. Skelton and M. Pais, Team Topologies: Organizing Business and Technology Teams for Fast Flow.

Portland, OR: IT Revolution Press, 2019.

263. P. G. Smith and D. G. Reinertsen, Developing products in half the time. New York, N.Y.: Van Nostrand

Reinhold, 1991.

264. P. G. Smith and D. G. Reinertsen, Developing products in half the time : new rules, new tools, [New

ed.]. New York ; London: Van Nostrand Reinhold, 1998, pp. xix, 298p.

265. O. Solon, “You are Facebook’s product, not customer,” Wired UK. 2011.

266. I. Sommerville, Software engineering, 6th ed. Harlow, England ; New York: Addison-Wesley, 2001,

pp. xx, 693.

267. Stephen Watts, “Enterprise Service Management vs IT Service Management: What’s The

Difference? – BMC Blogs,” BMC Blogs. .

268. J. Sterman, Business dynamics : systems thinking and modeling for a complex world. Boston:

Irwin/McGraw-Hill, 2000, pp. xxvi, 982 p.

269. D. E. Strode and S. L. Huff, “A Taxonomy of Dependencies in Agile Software Development,” in 23rd

Australasian Conference on Information Systems, 2012.

270. D. E. Strode, S. L. Huff, B. Hope, and S. Link, “Coordination in co-located agile software development

projects,” The Journal of Systems and Software, vol. 85, pp. 1222–1238, 2012.

271. B. Stroustrup, “Viewpoint: What should we teach new software developers? Why?,”

Communications of the ACM, vol. 53, no. 1, p. 40, Jan. 2010.

272. J. Sussna, Designing Delivery: Rethinking IT in the Digital Service Economy. O’Relly Publications,

2015.

273. J. V. Sutherland, Scrum : the art of doing twice the work in half the time, First Edit. Crown Business ,

2014, pp. viii, 248 pages.

274. R. I. Sutton and H. Rao, Scaling up excellence : getting to more without settling for less. Crown

Business/Random House, 2014.

275. A. Sweetser, “A Comparison of System Dynamics (SD) and Discrete Event Simulation (DES).”

276. The Joint Task Force on Computing Curricula IEEE Computer Society Association for Computing

Machinery, “Software Engineering 2014: Curriculum Guidelines for Undergraduate Degree

Programs in Software Engineering,” Association for Computing Machinery, February, 2015.

277. The National Court Rules Committee, “Federal Rules of Civil Procedure.” 2016.

Informative References Referenced Documents

24 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

278. The Open Group, “The Open Group IT4IT™ Reference Architecture, Version 2.1,” 2017.

279. The Open Group, “The TOGAF® Standard, Version 9.2,” 2018.

280. The Open Group, “Standards Process - Definitions and Glossary.” 2018.

281. The Stationery Office, ITIL Service Design: 2011 Edition. Norwich, U.K.: The Stationery Office, 2011.

282. The Stationery Office, ITIL Service Strategy: 2011 Edition. Norwich, U.K: The Stationery Office, 2011.

283. The Stationery Office, ITIL Continual Service Improvement: 2011 Edition. Norwich, U.K.: The

Stationery Office, 2011.

284. J. Tidwell, Designing Interfaces. Sebastopol, CA: O’Reilly Media, Inc., 2006.

285. H. Topi et al., “Revising the MSIS Curriculum: Specifying Graduate Competencies (Second Public

Deliverable of the ACM/AIS MSIS 2016 Task Force),” Joint ACM/AIS MSIS 2016 Task Force, 2016.

286. D. Traynor, “Focus on the Job, Not the Customer,” Inside Intercom. 2016.

287. M. Treacy and F. Wiersema, The Discipline of Market Leaders: Choose Your Customers, Narrow Your

Focus, Dominate Your Market. New York, N.Y.: Basic Books - Perseus Books Group, 1997.

288. E. R. Tufte, The Visual Display of Quantitative Information, vol. 4. 2001.

289. Uptime Institute, “Explaining the Uptime Institute’s Tier Classification System,” Uptime Institute

Journal. 2014.

290. Uptime Institute, “Tier Certification Tiers is the Global Language of Data Center Performance Tier

Certification is Worldwide Credibility.” 2016.

291. P. Venezia, “Murder in the Amazon cloud,” InfoWorld. 2014.

292. A. Venkatraman, “2e2 datacentre administrators hold customers’ data to \pounds1m ransom,”

ComputerWeekly.com. 2013.

293. D. Vergun, “Toxic leaders decrease Soldiers’ effectiveness, experts say,” www.army.mil. 2015.

294. J. von Neumann and H. H. Goldstine, “Planning and Coding of Problems for an Electronic

Computing Instrument,” Institute for Advanced Study, Princeton N.J., 1947.

295. A. Ward and D. K. Sobek, Lean Product and Process Development, 2nd Ed. Lean Enterprise Institute,

2014, p. 349.

296. S. Wardley, “Designing for constant evolution,” Hacker Noon. 2017.

297. G. West, Scale: The Universal Laws of Life and Death in Organisms, Cities, and Companies. London:

Weidenfeld & Nicolson: The Orion Publishing Group Ltd, 2017.

298. G. Westerman, D. Bonnet, and A. Mcafee, “The Nine Elements of Digital Transformation,” MIT Sloan

Management Review, vol. January, pp. 1–6, 2014.

299. WFMC, “Adaptive Case Management,” Http://Www.Xpdl.Org. pp. 1–23, 2010.

300. J. A. Whittaker, J. Arbon, and J. Carollo, How Google tests software. Upper Saddle River, NJ: Addison-

Wesley, 2012, pp. xxvii, 281 p.

301. N. Wiener, “Cybernetics,” Scientific American, vol. 179, pp. 14–18, 1948.

Referenced Documents Informative References

Digital Practitioner Body of Knowledge™ Standard 25

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

302. A. Wiggins, “The Twelve-Factor App.” 2017.

303. Wikipedia, “DevOps.” 2016.

304. Wikipedia, “Wikipedia:Learned Helplessness.” 2016.

305. Wikipedia, “‘Kubernetes.’” 2019.

306. Wikipedia Authors, “Multicloud,” Wikipedia, The Free Encyclopedia. 2019.

307. J. P. Womack and D. T. Jones, Lean thinking: banish waste and create wealth in your corporation, 1St

Free P. New York: Free Press, 2003, pp. 396 p.

308. J. P. Womack, D. T. Jones, D. Roos, and Massachusetts Institute of Technology., The machine that

changed the world : based on the Massachusetts Institute of Technology 5-million dollar 5-year study

on the future of the automobile. New York: Rawson Associates, 1990, pp. viii, 323 p.

309. A. Woolley, T. W. Malone, and C. F. Chabris, “Why Some Teams Are Smarter Than Others,” New York

Times, no. 12. Jan-2015.

310. S. Yegulalp, “Why GPL still gives enterprises the jitters | InfoWorld,” Infoworld.com. 2014.

311. W. Young and N. G. Leveson, “An integrated approach to safety and security based on systems

theory,” Communications of the ACM, vol. 57, no. 2, pp. 31–35, Feb. 2014.

312. E. Yourdon and L. L. Constantine, Structured design : fundamentals of a discipline of computer

program and systems design. Englewood Cliffs, N.J.: Prentice Hall, 1979, pp. xix, 473.

313. J. Zachman, “Zachman Framework,” IBM Systems Journal, vol. 26, no. 3, pp. 276–292, 1987.

Informative References Referenced Documents

26 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Chapter 1. Introduction

1.1. Objective

This document is intended to assist individuals and organizations who wish to create and manage

product offerings with an increasing digital component, or lead their organization through Digital

Transformation. It is a synthesis of practices and guidance from a wide variety of practitioners and

professional communities active in digital technology. It integrates concepts from diverse sources such

as business model innovation, product research and monetization, behavioral economics, Agile,

DevOps, Enterprise Architecture, organizational development, service management, product

management, data management, operations management, and corporate governance. Through

providing an integrated and rationalized framework, based on notable and proven practices and

perspectives, this document is positioned as leading guidance for digital technology and management

professionals worldwide.

1.2. Overview

This document describes the resources, services, and assets that may be involved in creating and

delivering such experiences. It provides guidance for the Digital Practitioner, whether based in a

traditional "IT" organization, manufacturing unit, sales, customer support, or embedded in a cutting-

edge integrated product team.

1.3. Conformance

Readers are advised to check The Open Group website for any conformance and certification

requirements referencing this standard.

1.4. Terminology

For the purposes of this document, the following terminology definitions apply:

Can

Describes a possible feature or behavior available to the user or application.

May

Describes a feature or behavior that is optional. To avoid ambiguity, the opposite of “may” is

expressed as “need not”, instead of “may not”.

Shall

Describes a feature or behavior that is a requirement. To avoid ambiguity, do not use “must” as an

alternative to “shall”.

Shall not

Describes a feature or behavior that is an absolute prohibition.

Chapter 1. Introduction 1.1. Objective

Digital Practitioner Body of Knowledge™ Standard 27

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Should

Describes a feature or behavior that is recommended but not required.

Will

Same meaning as “shall”; “shall” is the preferred term.

1.5. Future Directions

While digital is a fast-evolving field, the intent of this document is to identify the business and

technical practices needed for a digital business, and to stay as independent of the implementation

technology as possible. However, it is expected that this document will need to be revised from time to

time to remain current with both practice and technology. To maintain the coherence of the document

in the face of this evolution, a set of Principles of the DPBoK Standard have been established.

1.5. Future Directions Chapter 1. Introduction

28 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Chapter 2. Definitions

For the purposes of this document, the following terms and definitions apply. Merriam-Webster’s

Collegiate Dictionary should be referenced for terms not defined in this section.

Body of Knowledge

A collection of knowledge items or areas generally agreed to be essential to understanding a

particular subject. [Source:ISO/IEC 24773-1:2019]

Digital Enterprise

An enterprise characterized by: 1. creation of digitalized products or services that are either

delivered fully digitally (e.g., digital media or online banking), or 2. where physical products and

services are obtained by the customer by digital means (e.g., online car-sharing services).

Digital Technology

IT in the form of a product or service that is digitally consumable to create or enable business value.

Digital Transformation

The radical, fundamental change towards becoming a digital enterprise.

Digitalization

The application of digital technology to create additional business value within the primary value

chain of enterprises.

Digitization

The conversion of analog information into digital form.

Process

An ordered, countable set of activities; an event-driven, value-adding sequence that can be

measured and improved.

Chapter 2. Definitions

Digital Practitioner Body of Knowledge™ Standard 29

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Chapter 3. Digital Transformation

This chapter describes Digital Transformation.

3.1. Example Scenario

Consider a scenario wherein an individual is looking to buy a prosthetic limb for her brother. Today

and in the near future she is likely to perform the following activities:

• Send a picture of her brother to a limb designer

• Use an electronic device to measure the limb

• Visualize the design options of the limb with her brother and designer

• Get the limb design and connections validated by a specialist several thousand miles from her

home

• Select a facility closer to her home for final fitting and delivery

• Share the design electronically with the local facility

• Complete necessary arrangements with the local facility and the insurance company

• Transfer money to the designer and the print facility

• Make a reservation and have it honored at the print facility

• Use a wayfinding application on a smart device

• Watch the limb 3D printed, quality-tested, assembled, and fitted

• Make sure the insurance company has paid all parties

• And, most importantly, watch her brother light up in delight

Each of these experiences is co-created by her desire for value, and the responses of a set of digital

resources. It also reflects how distance, time, and costs have shrunk while the consumer’s experience

is increasingly customized and personal.

The resources and capabilities required to deliver such experiences are vast and complex, spanning

mainframe and distributed computers housed in data centers and managed in various ways, including

advanced cloud services. Every individual involved in the design and delivery of these contemporary,

evolving digital technologies is a Digital Practitioner.

3.2. Digital Transformation as Strategy

Jim Fowler, CIO of GE, stated in 2016: "When I am in business meetings, I hear people talk about digital

as a function or a role. It is not. Digital is a capability that needs to exist in every job. Twenty years ago,

we broke e-commerce out into its own organization, and today e-commerce is just a part of the way we

work. That’s where digital and IT are headed; IT will be no longer be a distinct function, it will just be

the way we work. … we have moved to a flatter organizational model with “teams of teams” who are

3.1. Example Scenario Chapter 3. Digital Transformation

30 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

focused on outcomes. These are co-located groups of people who own a small, minimal viable product

deliverable that they can produce in 90 days. The team focuses on one piece of work that they will own

through its complete lifecycle … in [the “back-office”] model, the CIO controls infrastructure, the

network, storage, and makes the PCs run. The CIOs who choose to play that role will not be relevant for

long.” [128]

Digital Transformation is fundamentally a strategy and an operating model change, in which

technological advancements are leveraged to improve human experiences and operating efficiencies,

and to evolve the products and services to which customers will remain loyal. It is the consequence of:

• The ability to handle information in the digital form

• Using digital technologies to manage the process of creating, capturing, and analyzing information

to deliver perceptive human-machine interaction experience

The modern digital enterprise faces multiple challenges in its transformation to the digital economy.

New technologies (cloud, IoT, machine learning) and new techniques (DPM, reliability engineering,

continuous delivery) both demand attention. This family of guidance will address both aspects.

However, technologies are faster moving, while techniques and practices evolve at a slower pace.

For organizations to cope with this fast technology evolution pace and succeed in this Digital

Transformation, changes should be pervasive through the whole organization. Digital Transformation

as strategy should be aligned with the overall organization context and environment, and should be

derived and sometimes even replace the existing organization strategy.

This strategy shift should encompass the new business and IT disruptive trends, using an outside-in

perspective, and lead the development of new business and operational models connected with digital

technologies and platforms and with the digital economy as a whole.

3.3. What is Digital?

Being "digital", in the sense of digitizing information, is not new. It has existed, arguably, since

Shannon mapped Boolean logic onto electronic circuits [253]. This document uses the definitions

defined in Chapter 2, Definitions.

A "digital-first" culture is where the business models, plans, architectures, and implementation

strategies are based on a digital organization architecture that inspires and rewards a number of

desired behaviors, such as servant leadership, strategic value chain thinking, consumer focus, fault

tolerance, agility, and more. It requires a workforce with a sense of psychological safety, digitally savvy

enough to execute a “digital-first approach".

As part of this paradigm shift, it is important to have a clear understanding of the existing capabilities,

which can be retired, and the new ones that will be needed. In some cases, organizations may need to

deal with all these changes while keeping their current legacy platform and supporting applications.

Chapter 3. Digital Transformation 3.3. What is Digital?

Digital Practitioner Body of Knowledge™ Standard 31

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

3.4. Seven Levers of Change

To succeed in today’s digital era, organizations will need to consider the following seven levers of

change, as discussed in the White Paper: "The Seven Levers of Digital Transformation" [81]:

• Business process transformation

• Customer engagement and experience

• Product or service digitization

• IT and delivery transformation

• Organizational culture

• Strategy

• Business ecosystem

These levers require a fundamental understanding of value creation for both the organization and the

customer. They equip businesses with a structure to reduce the number of failed projects, guide

investment decisions, and create a set of products and services designed to seal customer loyalty. For

digital success you will need to assess readiness, actively include your people, measure and govern for

value - not activities performed, develop your roadmap top-down, and pivot often with bottom-up

learnings.

The example given at the start of this section is an illustration of the impact of seven levers to the

primary value chain. In the example, some organizations that enabled the experience may be startups,

but others may be more established firms now changing the way they have been operating. The

printing facility, the orthopedic and prosthetic specialist, and even the customer changed their

expectations and ways they used to function. The change has been made possible with the innovations

in digital technologies.

Technology is the glue that connects all players in the ecosystem – suppliers, distributors, service

providers, employees, and the customers - and it is a powerful means to building a future-ready

organization. However, it is worth bearing in mind that it is not an end in itself. The seven levers are

symbiotic pillars that amplify the effects of one another.

For an organization to become Agile, change should start with organizational structure and cultural

change – the whole organization should be aligned with the Agile view. The new paradigm for an Agile

enterprise should focus on becoming flexible by design: the ability to modify tactics and operations to

respond to changing conditions.

3.4. Seven Levers of Change Chapter 3. Digital Transformation

32 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Chapter 4. Principles of the DPBoK Standard

4.1. Guiding Concepts

The content of this document will change over time, but shall remain consistent with these core

guiding concepts:

• Comprehensiveness

• Currency

• Capability-based

• Verifiability

• Fine-grained and Clinical Terminology

• Compatibility with Other Frameworks

• Compatibility with Agile Principles

• Compatibility with Enterprise Architecture

• A Learning Artifact

• Developed as a Digital Product

• Competency-based Content

• Scaling Model as Learning Progression

4.2. Comprehensiveness

This document shall provide comprehensive guidance for the digital and IT professional in his or her

professional contexts, whether market-facing or supporting. It shall address the complete spectrum of

concerns encountered by the Digital Practitioner, from the initial decision for digital investment

through value discovery, design, construction, delivery, operation, and ongoing evolution. It shall cover

management and organizational development topics of collaboration, coordination, structure, and

culture, in the context of Digital Product Management (DPM). It shall cover sourcing and human

resource management in the digital context. It shall cover Governance, Risk Management, and

Compliance (GRC), data and information management, and architecture. It shall strive to be the “go-to”

guidance for orienting Digital Practitioners worldwide to their chosen career.

This document shall demonstrate thorough and current consistency with the principles and practices

of Agile development and related trends, such as continuous delivery, DevOps, Lean Product

Development, Kanban and Lean IT, design thinking in the digital context, SRE, and web-scale

computing. It shall curate notable current guidance while maintaining a neutral and clinical overall

position on controversial topics. It shall serve the Digital Practitioner by identifying relationships and

overarching themes across this curated Body of Knowledge.

The focus of this document, however, is on longer-lived professional and management practices, not

Chapter 4. Principles of the DPBoK Standard 4.1. Guiding Concepts

Digital Practitioner Body of Knowledge™ Standard 33

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

the ephemeral aspects of technology. The following should be, in general, discussed primarily by

reference at a level suitable for non-technical audiences:

• Technical standards (platforms, protocols, formats, interoperability, etc.)

• Specific programming languages and frameworks

The following in general should be avoided, even by reference:

• Particular vendors and commercial products (this does not include notable open source products

with demonstrated longevity); if commercial products are mentioned as examples, at least two

examples should be supplied

• Specific commercial methodologies (some exceptions to this may exist, such as ITIL and SAFe,

subject to evidence of substantial notability and demonstrated longevity)

Specific technical practices, such as Infrastructure as Code (IaC), virtualization, cloud, and SRE, may be

in scope, to be determined on a case-by-case basis. Broader technical trends such as Internet of Things

(IoT) and cognitive technologies may be discussed, primarily in terms of their impact on technical

practices. (There are many other bodies of work for the practitioner to refer to on such topics.) In

general, this document should not be so technically-neutral and abstract as to appear academic and

irrelevant to the modern Digital Practitioner.

4.3. Currency

This document shall remain current with industry practices and trends, subject to evidence of

notability and reasonable longevity.

4.4. Capability-Based

Much current computing and IT guidance uses the concept of “process” as a fundamental building

block, with various issues:

• Inconsistency with the definition of “process” favored by the Business Process Management (BPM)

community [32]

• Promotion of formalized “process” as a primary, preferred coordination and delivery model and

basis for improvement, rather than one mechanism among several

This document should prefer the concept of “capability” as its fundamental structure, in a definition

consistent with other work of The Open Group. The concept of “practice” may also be used. The

highest-order DPBoK capabilities shall be cross-cutting, large-grained concepts, not to be confused with

organizational functions or processes. They shall be derived and ordered based on a scaling model.

Establishment or alteration of DPBoK capabilities and practices must be evidence-based. This

document shall align with emerging Business Architecture standards in this regard.

4.3. Currency Chapter 4. Principles of the DPBoK Standard

34 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

4.5. Verifiability

In the computing and digital professions, there is currently a significant and destructive gap between

academic theory and research and industrial practice. This can be corrected. For example, medicine

has a much more productive feedback loop between researchers and practicing clinicians.

In the interest of narrowing this gap, this document shall be verifiable. Its concepts must be well-

grounded, with clear evidence as to their notability. It must not propose concepts or terminology that

have little or no evidence of practical adoption in industry. Its structure, principles, practices, and

concepts must be falsifiable. It shall be open to rational skepticism and criticism and adaptive in the

face of evidence such as surveys, market assessments, analysis of industry narratives and cases, and

simulations of socio-technical systems. It should also demonstrate an awareness of useful academic

research and problem framing.

The principle of verifiability does permit for analysis, synthesis, and interpretation. This document

should seek to "add value" to industry understanding wherever possible, but must also remain well-

grounded while doing so.

Finally, this document must not fall into the trap of excessive semantic debate and the fruitless search

for universally applicable abstract ontologies. A framework with recognized inconsistencies but well

grounded in industry domain language is preferable to a perfectly consistent framework based on

conjectural concepts.

4.6. Fine-Grained and Clinical Terminology

Within its capability progression, this document shall strive to employ terminology and concepts that

are fine-grained, precise, objective, well-supported, and clinical. For example, it is helpful to break a

management concern such as “process management” down into lower-level concepts of task ordering

and dependencies, cadence, and synchronization. See, for example, Reinertsen’s work on “Managing

Flow under Variability” ([230], Chapter 7).

4.7. Compatibility with Other Frameworks

This document should be to the greatest extent possible compatible with other bodies of knowledge

and frameworks, while still adhering to the previously articulated principles. It should be positioned as

a “standard of standards”, with the objective of aligning and bringing a coherent approach to

navigating the currently fragmented information base in the digital industry.

Because other frameworks are large-grained combinations of many concerns, it may not be possible to

be compatible in all regards. This document should seek to interoperate with other frameworks using

fine-grained terminology. For example, rather than asserting consistency with the Project Management

Body of Knowledge® (PMBOK®) as a whole, it is preferable that this document frames its relationship

in terms of components such as investment management, planning, resource allocation, risk

management, and execution. Similarly, rather than characterizing its relationship to ITIL as a whole,

this document should frame its relationship more specifically in terms of the ITIL approaches to

Chapter 4. Principles of the DPBoK Standard 4.5. Verifiability

Digital Practitioner Body of Knowledge™ Standard 35

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

product management, process management, and continuous improvement.

Where other frameworks cover a topic sufficiently, this document shall not repeat that coverage. The

role of this document is to integrate and synthesize. However, this document shall not overlook or fail

to identify points where its point of view varies from the recommendations of other guidance. In such

cases, it shall do so in a principled fashion based on clear evidence and with specificity as to the nature

of the differences.

Not all sound practice has been formalized through standards. This document may, subject to evidence

of notability, reference the contributions of individuals.

4.8. Compatibility with Agile Principles

Agile software development has emerged as a dominant approach in software-intensive systems

creation, and is expanding its reach and insights into non-software, non-computing fields as well [234,

233]. There are a variety of principles and perspectives on Agile, starting with the well-known Agile

Manifesto [8], furthered by the work of the Agile Alliance. Commercial Agile frameworks are

increasing in number and scope; for example, [177, 18].

Agile principles can be described in specific and precise ways; Agile’s history and influence in the

computing profession are broad and notable [174], and the underlying intellectual foundations of Agile

are robust [250, 230]. Agile describes sound approaches and practices for product management with a

high Research and Development (R&D) component. Using collaborative, focused, cross-functional

teams with iterative, feedback-enhanced methods is the most effective approach for solving complex

problems (as compared to routing problem-solving work across functional team boundaries with

sequential “phase gates”). Where digital systems management involves the discovery of information

and coping with “unknown unknowns”, this document shall favor Agile principles.

However, Agile (as a specific set of documented, curated practices) is at its strongest in the cohesive

team context. It does not have the same level of consensus or clarity in larger contexts, and the topic of

“scaling Agile” is controversial in the industry. This document should approach the scaling problem in

part as a problem of coordination, which is a topic of research attention in academia. Scaling issues are

also driven by the organization’s approach to internal investment and organizational development, up

to and including culture. Corporate governance must be addressed as well. These are broad topics in

management, with many notable and qualified influences for this document to curate into the digital

context.

4.9. Compatibility with Enterprise Architecture

As part of the paradigm shift to digital, it is important to have a clear understanding of which existing

capabilities can be retired, and which new ones will be needed. In some cases, organizations may need

to deal with all these changes while keeping their current legacy platform and supporting applications.

Integrating new capabilities with existing ones in an effective and efficient way requires a clear

landscape and overall view of the organization context. This is provided by Enterprise Architecture.

While architecture as a competency area is covered in Competency Area 12, this document should

4.8. Compatibility with Agile Principles Chapter 4. Principles of the DPBoK Standard

36 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

implicitly reflect its principles throughout:

• A systemic view of organizational reality, capabilities, and dependencies

• Recognizing and communicating internal and external context, integrating the "outside in" and

"inside out" views

• Driving strategic alignment and synergy among organizational components

• Enabling innovation while also managing technical debt

This systemic and holistic view can be provided by an Enterprise Architecture capability. Due to the

continuous and rapid evolution of these disruptive trends, however, a shift to a more Agile style in the

Enterprise Architecture capability is also needed. Evolvability should become an Enterprise

Architecture concern that facilitates the modification of the enterprise’s products and supporting

operating model while preserving non-functional requirements. An example can be seen in The Open

Group White Paper "Agile Architecture in the Digital Age".

Enterprise Architecture standards such as the TOGAF Standard, Version 9.2 and the ArchiMate

Specification can be used to achieve this, and should be used along with other practices like Agile,

Lean, and DevOps methodologies mentioned later.

4.10. A Learning Artifact

Participants in developing this document shall recognize their responsibility in developing a learning

artifact. This document may be used in both commercial and academic settings for educating the next

generation of Digital Practitioners, and assisting Digital Practitioners and leaders in understanding

their challenges and options. This document may in part be expressed as competencies and learning

objectives compatible with Bloom’s taxonomy.

4.11. Developed as a Digital Product

This document itself must exemplify the new practices it describes. It is itself a product entering a

market. It must have:

• Clear and broad feedback channels

• Clear audience targeting

• A defined release cadence

• As frictionless and collaborative a development process as possible

• A production pipeline automated to the highest degree possible

Its audiences also need to be clearly stated; for example:

• Executive

• Management

Chapter 4. Principles of the DPBoK Standard 4.10. A Learning Artifact

Digital Practitioner Body of Knowledge™ Standard 37

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• Technologist

• New to workforce

• Domain audiences

◦ Service management

◦ Architecture

◦ Information management

4.12. Competency-Based Content

This document shall contain competency-based content, and shall be organized based on the structure

of the 2016 rewrite of the Masters' level Information Systems guidance (MSIS2016) [285]. It shall

contain:

• Contexts (four, ordered by scale; this layer is additional to MSIS2016)

• Competency Areas (Chapters)

• Competency Categories

• Example Competencies

Figure 1. DPBoK Structure

Contexts and Competency Areas contain descriptions and high-level "dimensions" that will list the

expected competency outcomes for the area as a whole.

4.12. Competency-Based Content Chapter 4. Principles of the DPBoK Standard

38 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Formalized Competency Categories shall be the majority of the standard and shall follow this

structure:

• Description statement(s): the Competency Category consists of …

• Evidence of Notability statement: the evidence for this competency’s importance is … (sources must

be cited)

• Limitations: known ways in which the Competency Category can fail, be mis-applied, or lead to

undesired results

• Example Competencies: competencies are granular and more transient; a decision will need to be

made as to how "normative" they are. Note that Example Competencies are not the same as

Learning Objectives, especially Learning Objectives that are "Lower Order" Dimensions in Bloom’s

Taxonomy (Remembering, Understanding). They may be based on, or reflect, "Higher Order"

Dimensions in Bloom’s Taxonomy (Applying, Evaluating, Creating). This document follows the

MSIS2016 lead in describing competency as "an integrative concept that brings together [the

learner’s] knowledge, skills, and attitudes" [285 p. 8].

NOTE

As of the DPBoK Standard, Version 1, competencies are mostly undefined and some

stated dimensions may need further evolution from a learning outcome bias to a true

competency orientation.

• Related Competency Categories: the following topic(s) underpin/relate to/depend on this topic

Example

This is an example only and the actual Competency Category for this topic may differ from this.

Context: Individual

Competency Area: Infrastructure

Competency Category: Infrastructure as Code

Description. Per Kief Morris, "Infrastructure as Code (IaC) is an approach to infrastructure automation

based on practices from software development" [203]. For example, instead of using an interactive

console to create and configure virtual servers on a one-time basis, an IaC approach would define the

parameters of the desired resources (OS, capacity, software installed) as a text artifact. This text artifact

can then be employed by configuration management tooling to create the infrastructure consistently.

Evidence. Evidence for this topic’s importance is pervasive throughout the modern cloud, DevOps,

Agile, and SRE communities. Current examples include the Phoenix Project [165], Infrastructure as

Code by Kief Morris [203], and …

Limitations. Infrastructure as Code may not be possible in certain environments where infrastructure

management platforms are not driven by text artifacts.

Competency examples. Suggested competencies with reference to current sources are as follows:

Chapter 4. Principles of the DPBoK Standard 4.12. Competency-Based Content

Digital Practitioner Body of Knowledge™ Standard 39

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• Compare and contrast various current approaches for infrastructure as code, such as shell scripts,

declarative configuration management, and open source Cloud-native technologies (e.g., Helm,

CNAB) and define an appropriate approach for a given organization.

• Define, deploy, and manage an application as a distributed system across several nodes using

infrastructure as code techniques

Related Topics:

• Version Control

• Configuration Management

• Package Management

• Deployment Management

• Operations

• SRE

End of Example

NOTE

It is expected that the material will have extensive internal cross-referencing. The

above example depends on other Competency Areas, such as source control and

configuration management. Use of pervasive cross-referencing will help with the

inevitable taxonomy debates over "does X belong under Y?".

4.13. Scaling Model as Learning Progression

The sequence or learning progression of any body of knowledge is critical for its transmission and

adoption [15]. Bodies of knowledge are used in part to educate newcomers to a field, and should reflect

an ordering suitable for this purpose. For maximum accessibility, the structure of this document shall

be based on a scaling model, that can be summarized as "from startup to enterprise".

See Models for Learning Progression in the next chapter.

4.13. Scaling Model as Learning Progression Chapter 4. Principles of the DPBoK Standard

40 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Chapter 5. Structure of the Body of Knowledge

This chapter describes how the Body of Knowledge is structured.

5.1. Models for Learning Progression

The term learning progression refers to the purposeful sequencing of teaching and learning expectations

across multiple developmental stages, ages, or grade levels. The term is most commonly used in reference

to learning standards - concise, clearly articulated descriptions of what students should know and be able

to do at a specific stage of their education. [115]

If a learning progression starts with overly abstract or remote concerns, it may be less accessible to the

student. Some may dismiss the course of learning as irrelevant, despite the presence of valuable

material further in. In this section we consider a number of models.

Figure 2. Lifecycle Dimension

Lifecycle Approach

Many bodies of knowledge in the digital profession are ordered using a "lifecycle" (planning, designing,

building, running). See Figure 2, “Lifecycle Dimension”. The biggest challenge with the "lifecycle"

concept is that it is easily mistaken for advocacy of sequential, stage-gated, open-loop "waterfall"

development methods. Ordering a standard with "requirements" or "analysis" as an initial section also

raises concerns from an Agile perspective. Professionals oriented to Agile methods deprecate excessive

focus on requirements prior to actual system delivery, preferring instead to deliver "walking skeletons"

or "Minimum Viable Products (MVPs)" in an overall strategy of iterative learning.

Starting with planning is also challenging because planning is an abstract activity and difficult to

formalize. It is an activity that is deeply controversial and scale and organization-dependent, with few

"best practices" and many contrary points of view. When guidance begins with an in-depth discussion

of planning (because that is "where the lifecycle starts"), it risks plunging the student or trainee

immediately into remote concerns that are experienced primarily by senior personnel in larger-scale

organizations.

Chapter 5. Structure of the Body of Knowledge 5.1. Models for Learning Progression

Digital Practitioner Body of Knowledge™ Standard 41

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 3. Stack Dimension

Stack Approach

Other guidance (e.g., the Zachman® Framework for Enterprise Architecture) is based on a "stack" of

abstractions. See Figure 3, “Stack Dimension”. Computer engineers and scientists start "at the bottom"

of the stack, with electrical and electronic engineering, Boolean logic, automata theory, and so forth.

This foundational material is difficult and abstract; not all practitioners need to follow such a learning

progression (although certain fundamentals such as the concept of computability should be

understood at least at a high level by all Digital Practitioners). Conversely, Enterprise Architects are

taught decomposition from business objectives, to data, to applications, to technologies.

Whether bottom-up or top-down, layered approaches to technology have utility, but are also prone to

reductionism; i.e., that a complex system can be understood as "merely an application" of an

underlying layer, or that once a business intent is defined, automating it with a computer is "merely a

matter of execution" in decomposition, design, and implementation.

Scaling Model

For maximum accessibility, a different "on-ramp" is needed to best serve the modern Digital

Practitioner. The DPBoK structure is based on a scaling model, that can be summarized as "from

startup to enterprise".

Verne Harnish, in the book Scaling Up [122 pp. 25-26], describes how companies tend to cluster at

certain levels of scale. (See Figure 4, “Organizations Cluster at Certain Sizes”, similar to [122 p. 25].) Of

28 million US firms, the majority of firms (96%) never grow beyond a founder; a small percentage

emerge as a viable team of 8-12, and even smaller numbers make it to the stable plateaus of 40-70 and

350-500. The “scaling crisis” is the challenge of moving from one major level to the next. (Harnish uses

the more poetic term “Valley of Death".) This scaling model, and the needs that emerge as companies

grow through these different stages, is the basis for this document’s learning progression.

5.1. Models for Learning Progression Chapter 5. Structure of the Body of Knowledge

42 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 4. Organizations Cluster at Certain Sizes

It draws from the concepts and research of Robin Dunbar [91] and Verne Harnish [122], Barry Boehm’s

Spiral Model [38], Eric Ries' Lean Startup [232], Alistair Cockburn’s Walking Skeleton design pattern [

64], John Gall’s heuristic that complex systems always evolve from simpler, functional systems [107],

Scott Ambler’s work on Agility@Scale [17], and the early Ward Cunningham recommendation: "Do the

simplest thing that could possibly work … if you’re not sure what to do yet" [79]. A related approach

can be seen in Simon Wardley’s concepts of "pioneer/settler/town planner" [296]. The book Scale by

physicist Geoffrey West [297] provides a useful foundation, based on fundamental physical principles.

The scaling progression can be seen as a third dimension to the previously discussed Stack and

Lifecycle (see Figure 5, “Scale as Third Dimension”).

Chapter 5. Structure of the Body of Knowledge 5.1. Models for Learning Progression

Digital Practitioner Body of Knowledge™ Standard 43

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 5. Scale as Third Dimension

A scaling digital startup exposes with great clarity the linkage between IT and “the business". The

success or failure of the company itself depends on the adept and responsive creation and deployment

of the software-based systems. The lessons that digital entrepreneurs have learned through this trial

by fire shed great light on IT’s value to the business. Thinking about a startup allows us to consider the

most fundamental principles as a sort of microcosm, a small laboratory model of the same problems

that the largest enterprises face.

The thought experiment does not limit the DPBoK Standard to entrepreneurial startups. It also may

represent the individual’s journey through their career in the organization, from individual developer

or engineer, to team lead, to group manager, to senior executive. Or, the journey of an experimental

product within an enterprise portfolio.

The Scaling Model and Enterprise Digital Transformation

Large enterprises may find the scaling model useful in their Digital Transformation execution. By

reviewing each layer of the model, they can identify whether they are sufficiently supporting critical

delivery capabilities. One common problem in the enterprise is the proliferation of processes and

controls at the upper levels (Contexts III and IV), to the point where team collaboration and

cohesiveness (Context II) is degraded.

5.1. Models for Learning Progression Chapter 5. Structure of the Body of Knowledge

44 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

5.2. Four Contexts

The DPBoK structure represents four contexts of organizational evolution:

• Individual/Founder

• Team

• Team of Teams

• Enduring Enterprise

The thought experiment is as follows:

Take a startup, one or two people in the proverbial garage, or an autonomous "skunkworks" team in a

large enterprise, with a powerful idea for a new product with a large digital component. Assume they

intend to remain self-funding and grow organically (no venture capital acceleration, or large corporate

budget until they have proven their viability). What capabilities do these people need to attract enough

revenue to hire others and form a team?

Suppose they succeed in building a viable concept, and hire a team. What new capabilities does this

organization need? (And, by omission, which can be deferred until further growth?)

Suppose the team grows to the point that it must be divided into multiple teams, or the internal

product is at a point where it must be re-integrated into the enterprise. Again, what new capabilities

are needed? And why?

Suppose that, finally, the organization (or product value stream) grows large enough to have formal

corporate governance, regulation, external audits, and/or relatively long time spans to manage in

terms of its core operating concepts, product portfolio, technology base, and commitments to both

suppliers and customers? What new capabilities are needed?

Criteria of Likely Formalization

Topics shall be selected to each context based on the criteria of likely formalization. For example, it

would be unusual for a two-person startup to establish a formal portfolio management process for

structuring investments; the startup is almost always one unitary investment (perhaps, itself, part of a

larger venture portfolio). It would also be unusual for a small startup to have a formalized risk

management process. Conversely, it would be unusual for an established large organization to not

have a formal portfolio or risk management.

The DPBoK hypothesis is that the conflict between Agile methods and traditional approaches revolves

around the transition from a single, collaborative team to a "team of teams" requiring coordination,

and the eventual institution of architecture and governance practices. The DPBoK shall curate the most

current and relevant industry guidance and academic research on these matters. Providing a rich set

of resources and approaches for solving this problem will be valuable for DPBoK consumers struggling

to integrate collaborative Agile approaches with service management, process management, project

management, architecture, and governance.

Chapter 5. Structure of the Body of Knowledge 5.2. Four Contexts

Digital Practitioner Body of Knowledge™ Standard 45

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

The progression shall be held to the above principle of verifiability. It is expected and hoped that the

concept of likely formalization will be supported by empirical evidence of organizational development

research. Such research might inform further evolution or re-ordering of the proposed capabilities.

Any DPBoK capability may be a concern at any time in an organization’s evolution. Security and

architectural thinking are of course required from Day 1. Formalization, however, implies one or more

of the following:

• The concern is explicit rather than tacit

• Dedicated staff or organization

• Defined processes or practices

As with Boehm’s spiral model, the same concern may be addressed from different perspectives or

contexts in the framework. Attempting to cover all nuances of a given practice area such as

requirements, or release management when it is first encountered in the team context, results in

coverage that is too detailed, bringing in the enterprise context too soon. Advanced discussions or

representations of the framework may include foreshadowing of higher-context concerns (e.g.,

discussion of security or architecture concerns in the Individual/Founder context, pre-formalization).

5.3. Context Summaries

Figure 6. Overview of DPBoK Structure

5.3. Context Summaries Chapter 5. Structure of the Body of Knowledge

46 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Brief summaries of the four levels follow.

Context I: Individual/Founder

The Individual/Founder context represents the bare minimum requirements of delivering digital

value. The governing thought experiment is that of one or two founders of a startup, or an R&D team

with high autonomy (e.g.,"skunkworks") in a larger organization. What are the minimum essential

concerns they must address to develop and sustain a basic digital product?

Proposed capabilities include:

• Conception of digital value

• Digital infrastructure and related practices; this topic will likely be the most susceptible to the

problem of keeping up with the fast pace of technology evolution

• Agile development and continuous delivery practices

The startup thought experiment should be relevant for individuals in organizations of all sizes. The

guidance is not intended for entrepreneurs specifically. Rather, the startup is a powerful frame for

all Digital Practitioners, as it represents an environment where there can be no distinctions

between "business" and "IT" concerns.

Context II: Team

The collaboration level represents the critical team-level experience. Establishing team collaboration

as a fundamental guiding value is essential to successful digital product development. The insights of

the Agile movement and related themes such as Lean are primary in this context. Competency Areas

include:

• Product management

• Work execution

• Operations

Context III: Team of Teams

The thought experiment here is the "team of teams" (a term borrowed from the title of a well-known

book by General Stanley S. McChrystal [192]). Coordinating across the "team of teams" is a hard

problem. Too often, coordination mechanisms (such as overly process-centric operating models)

degrade team cohesion and performance. The Agile movement can be seen in part as a reaction to this

problem. There is a significant opportunity to compile industry guidance on this topic. Competency

Areas are focused on the required capabilities to ensure alignment and joint execution:

• Coordination mechanisms (including process management and ITSM)

• Investment and sourcing (including project management)

• Organization and cultural factors

Chapter 5. Structure of the Body of Knowledge 5.3. Context Summaries

Digital Practitioner Body of Knowledge™ Standard 47

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Context IV: Enduring Enterprise

The thought experiment here is "the growing enterprise" and the establishment of additional feedback

mechanisms for steering, managing risk, and assuring performance at scale and over increasing time

horizons and increasingly complex ecosystems:

• Governance, risk, security, and compliance

• Information management

• Architecture and portfolio management

5.3. Context Summaries Chapter 5. Structure of the Body of Knowledge

48 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Chapter 6. The Body of Knowledge

6.1. Context I: Individual/Founder

This is the introduction to Context I.

Context Description

The founder or individual context represents the bare minimum requirements of delivering digital

value. The governing thought experiment is that of one or two founders of a startup, or an R&D team

with high autonomy. What are the minimum essential concerns they must address to develop and

sustain a product in a digital environment? There is little or no concern for process or method.

Approaches and practices are opportunistic and tactical, driven by technical choices such as

programming language, delivery pipeline, and target execution platform.

In this context, the guidance must strike a fine balance between being too applied and technical, versus

being too abstract and theoretical. In the interest of not becoming outdated, much existing guidance

opts for the latter, seeking to provide generic guidance applicable to all forms of technology. However,

this approach encounters issues in topics such as Configuration Management, which is challenging to

abstract from platform and technology particulars. There is no definitive solution to this problem, but

the DPBoK Standard in general should be somewhat more tolerant of real-world examples reflecting

actual digital systems practices, while not becoming overly coupled to particular languages, tools, or

frameworks. Being technology-agnostic ultimately may not be possible.

6.1.1. Digital Fundamentals

There are many ways in which digital systems deliver value. Some systems serve as the modern

equivalent of file cabinets: massive and secure storage for financial transactions, insurance records,

medical records, and the like. Other systems enable the transmission of information around the globe,

whether as emails, web pages, voice calls, video on-demand, or data to be displayed in a smartphone

application (app). Some of these systems support engaged online communities and social interactions

with conversations, media sharing, and even massive online gaming ecosystems. Yet other systems

enable penetrating analysis and insight by examining the volumes of data contained in the first two

kinds of systems for patterns and trends. Sophisticated statistical techniques and cutting-edge

approaches like neural network-based machine learning increase the insights of which our digital

systems are capable, at a seemingly exponential rate.

Digital technology generates value in both direct and indirect ways. Some of the best known uses of

digital technology were and are very indirect — for example, banks and insurance agencies using the

earliest computers to automate the work of thousands of typists and file clerks. More directly, people

have long consumed (and paid for) communication services, such as telephone services. Broadcast

entertainment was a different proposition, however. The consumer (the person with the radio or

television) was not the customer (the person paying for the programming to go out over the airwaves).

New business models sprung up to support the new media through the sale of advertising air time. In

other words, the value proposition was indirect, or at least took multiple parties to achieve: the

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

Digital Practitioner Body of Knowledge™ Standard 49

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

listener, the broadcaster, and the advertiser. This model, originating in the analog era, has carried

through into the digital economy.

From these early business models have evolved and blossomed myriads of creative applications of

digital technology for the benefit of human beings in their ongoing pursuit of happiness and security.

Digital and IT pervades all of the major industry verticals (e.g., manufacturing, agriculture, finance,

retail, healthcare, transportation, services) and common industry functions (e.g., supply chain, human

resources, corporate finance, and even IT itself). Digital systems and technologies also are critical

components of larger-scale industrial, military, and aerospace systems. For better or worse, general-

purpose computers are increasingly found controlling safety-critical infrastructure and serving as an

intermediating layer between human actions and machine response. Robotic systems are based on

software, and the IoT ultimately will span billions of sensors and controllers in interconnected webs

monitoring and adjusting all forms of complex operations across the planet.

6.1.1.1. Digital Context

Description

6.1.1.1.1. Positioning Digital Products

Digital services can be:

• Directly market and consumer-facing (e.g., Facebook®, LinkedIn®), to be used by external

consumers and paid for by either them or closely associated customers (e.g., Netflix®, or an online

banking system)

• Customer “supporting” systems, such as the online system that a bank teller uses when interacting

with a customer; customers do not interact directly with such systems, but customer-facing

representatives do, and problems with such systems may be readily apparent to the end customer

• Completely “back-office” systems (human resources, payroll, marketing, etc.)

Note, however, that (especially in the current digitally transforming market) a service previously

thought of as “back office” (when run internally) becomes “market-facing” when developed as a profit-

seeking offering. For example, a human resources system built internally is “back office”, but Workday

is a directly market-facing product, even though the two services may be similar in functionality.

In positioning a digital offering, one must consider the likelihood of its being adopted. Is it part of a

broader “movement” of technological innovation? Where is the customer base in terms of its

willingness to adopt the innovation? A well-known approach is the idea of "diffusion theory”, first

researched by Everett Rogers and proposed in his Diffusion of Innovations, [236].

Rogers' research proposed the idea of “Adopter Categorization on the Basis of Innovativeness”, with a

well-known graphic (see Figure 7, “Technology Adoption Categories (Rogers)”, similar to [236] Figure 7-

3, p.281).

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

50 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 7. Technology Adoption Categories (Rogers)

Rogers went on to characterize the various stages:

• Innovators: venturesome risk-takers

• Early adopters: opinion leaders

• Early majority: deliberative, numerous

• Late majority: skeptical, also numerous

• Laggards: traditional, isolated, conservative

Steve Blank, in The Four Steps to Epiphany [36], argues there are four categories for startups (p.31):

• Startups that are entering an existing market

• Startups that are creating an entirely new market

• Startups that want to re-segment an existing market as a low-cost entrant

• Startups that want to re-segment an existing market as a niche player

Understanding which category you are attempting is critical, because “the four types of startups have

very different rates of customer adoption and acceptance”.

Another related and well-known categorization of competitive strategies comes from Michael Treacy

and Fred Wiersma [287]:

• Customer intimacy

• Product leadership

• Operational excellence

It is not difficult to categorize well-known brands in this way:

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

Digital Practitioner Body of Knowledge™ Standard 51

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Table 1. Companies and their Competitive Strategies

Customer Intimacy Product Leadership Operational Excellence

Nordstrom Apple Dell Technologies

Home Depot Nike Wal-Mart

However, deciding which strategy to pursue as a startup may require some experimentation.

6.1.1.1.2. Defining Consumer, Customer, and Sponsor

In understanding IT value, it is essential to clarify the definitions of user, customer, and sponsor, and

understand their perspectives and motivations. Sometimes, the user is the customer. But more often,

the user and the customer are different, and the role of system or service sponsor may additionally

need to be distinguished.

The following definitions may help:

• The consumer (sometimes called the user) is the person actually interacting with the IT or digital

service

• The customer is a source of revenue for the service

◦ If the service is part of a profit center, the customer is the person actually purchasing the

product (e.g., demand deposit banking). If the service is part of a cost center (e.g., a human

resources system), the customer is best seen as an internal executive, as the actual revenue-

producing customers are too far removed.

• The sponsor is the person who authorizes and controls the funding used to construct and operate

the service

Depending on the service type, these roles can be filled by the same or different people. Here are some

examples:

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

52 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Table 2. Defining Consumer, Customer, and Sponsor

Example Consumer Customer Sponsor Notes

Online banking Bank account holder Managing Director,

consumer banking

Customer-facing

profit center with

critical digital

component

Online restaurant

reservation

application

Restaurant

customers

Restaurant owners Product owner Profit-making

digital product

Enterprise human

resources

application

Human resources

analyst

Vice-president, human resources Cost center funded

through corporate

profits

Online video

streaming service

End video

consumer (e.g., any

family member)

Streaming account

holder (e.g.,

parent)

Streaming video

product owner

Profit-making

digital product

Social traffic

application

Driver Advertiser, data

consumer

Product owner Profit-making

digital product

So, who paid for the user’s enjoyment? The bank and restaurant both had clear motivation for

supporting a better online experience, and people now expect that service organizations provide this.

The bank experiences less customer turnover and increased likelihood that customers add additional

services. The restaurant sees increased traffic and smoother flow from more efficient reservations.

Both see increased competitiveness.

The traffic application is a somewhat different story. While it is an engineering marvel, there is still

some question as to how to fund it long term. It requires a large user base to operate, and yet end

consumers of the service are unlikely to pay for it. At this writing, the service draws on advertising

dollars from businesses wishing to advertise to passersby, and also sells its real-time data on traffic

patterns to a variety of customers, such as developers considering investments along given routes.

This last example illustrates the maxim (attributed to media theorist and writer Douglas Rushkoff [

265]) that “if you don’t know how the product is making money, you are the product”.

Evidence of Notability

The context for the existence and operation of a digital system is fundamental to its existence; the

digital system in fact typically operates as part of a larger sociotechnical system. The cybernetics

literature [301, 25] provides theoretical grounding. The IT Service Management (ITSM) literature is also

concerned with the context for IT services, in terms of the desired outcomes they provide to end

consumers [282].

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

Digital Practitioner Body of Knowledge™ Standard 53

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Limitations

Understanding a product context is important; however, there is feedback between a product and its

context, so no amount of initial analysis will be able to accurately predict the ultimate outcome of

fielding a given digital product (internally or externally). A concrete example is the concept of a

network effect, in which a product becomes more valuable due to the size of its user base [117].

Related Topics

• Product Management

• Portfolio and Investment Management

• Governance

• Enterprise Architecture

6.1.1.2. Digital Value Methods

NOTE

This topic is covered in further depth in Context II, when product management

emerges as a fully formalized capability. However, even in the individual context the

practitioner should have some idea of product positioning and discovery.

Description

Once context is at least initially understood, there are a number of well-known approaches that can

help the practitioner bridge from an understanding of your product context, to an effective vision for

building and sustaining a product:

• Traditional business case analysis

• Alexander Osterwalder’s Business Model Canvas

• Eric Ries' Lean Startup

The Business Model Canvas and the Lean Startup may seem more suitable for truly entrepreneurial

contexts, but there are many practitioners in larger organizations who apply these techniques as well;

the thought experiment is "business within a business"; i.e., intrapreneurship [162].

6.1.1.2.1. Business Model Canvas

One recent book that has been influential among entrepreneurs is Alex Osterwalder’s Business Model

Generation [215]. This document is perhaps best known for introducing the concept of the Business

Model Canvas, which it defines as: “a shared language for describing, visualizing, assessing, and

changing business models”. The Business Model Canvas uses nine major categories to describe the

business model:

• Key Partners

• Key Activities

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

54 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• Value Proposition

• Customer Relationships

• Customer Segments

• Key Resources

• Channels

• Cost Structure

• Revenue Streams

and suggests they be visualized as in Figure 8, “Business Model Canvas” (similar to [215], p.44).

Figure 8. Business Model Canvas

The canvas is then used in collaborative planning; e.g., as a large format wall poster where the

business team can brainstorm, discuss, and fill in the boxes (e.g., what is the main “Value Proposition"?

Mobile bank account access?).

Osterwalder and his colleagues, in Business Model Generation and the follow-up Value Proposition

Design [216], suggest a wide variety of imaginative and creative approaches to developing business

models and value propositions, in terms of patterns, processes, design approaches, and overall

strategy.

6.1.1.2.2. Business Case Analysis

There are a wide variety of analysis techniques for making a business case at a more detailed level.

Donald Reifer, in Making the Software Business Case [228], lists:

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

Digital Practitioner Body of Knowledge™ Standard 55

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• Breakeven analysis

• Cause-and-effect analysis

• Cost/benefit analysis

• Value chain analysis

• Investment opportunity analysis

• Pareto analysis

• Payback analysis

• Sensitivity analysis

• Trend analysis

Empirical, experimental approaches are essential to digital management. Any analysis, carried to an

extreme without a sound basis in real data, risks becoming a “castle in the air”. But when real money

is on the line (even the opportunity costs of the time you are spending on your startup), it is advisable

to look at the decision from various perspectives. These techniques can be useful for that purpose.

However, once you have some indication there might be business value in a given idea, applying Lean

Startup techniques may be more valuable than continuing to analyze.

6.1.1.2.3. Lean Startup

Figure 9. Lean Startup Flowchart

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

56 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Lean Startup is a philosophy of entrepreneurship developed by Eric Ries [232]. It is not specific to IT;

rather, it is broadly applicable to all attempts to understand a product and its market. (According to

our definition of product management a workable market position is essential to any product.)

The idea of the Lean Startup has had profound influence on product design, including market-facing

and even internal IT systems. It is grounded in Agile concepts such as:

“Do the simplest thing that could possibly work.”

Lean Startup calls for an iterative, “Build-Measure-Learn” cycle (see Figure 9, “Lean Startup

Flowchart”, summary of ideas in [232]). Repeating this cycle frequently is the essential process of

building a successful startup (whatever the digital proportion):

• Develop an idea for a "Minimum Viable Product" MVP

• Measure its effectiveness in the market (internal/external)

• Learn from the experiment

• Decide to persevere or pivot (change direction while leveraging momentum)

• New idea development, evolution of MVP

Flowcharts such as Figure 9, “Lean Startup Flowchart” are often seen to describe the Lean Startup

process.

6.1.1.2.4. Digital Security

A Digital Practitioner often starts by thinking about value creation through their digital products or

services. However, now is also the time to think about protecting that digital value. Your customers will

be sharing data about themselves, their preferences, and even financial information; e.g., credit cards

to make purchases. Failure to protect that data can irreparably damage any other digital value you

manage to create; it will certainly damage your or your organization’s reputation, and may have

financial consequences.

Architects of buildings need to appreciate that the physical materials that will implement their

creations need to be strong enough to produce the envisioned construct. Similarly, a Digital

Practitioner needs to understand that software can be weak and they need to appreciated how to

examine the software artifacts for the precursors of those weaknesses that would threaten the

operational capabilities and integrity of their envisioned constructs.

Attack surface analysis, design reviews for security weaknesses, static source code analysis for

weaknesses, dynamic fuzz testing, adversary-based pen testing, and binary analysis are all techniques

used to gain confidence that dangerous failure modes of the software-based system are not rampant

and that some evidence-based argument can be made about the adequacy of the rigor used to create

the software.

In the building of buildings, this is done by the engineering elements of a team, along with building

code inspectors and material scientists, but the analogous activities are not the norm in software

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

Digital Practitioner Body of Knowledge™ Standard 57

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

systems. So, as you go through both the analysis and description phase and the construction phase,

keep in mind that that all software has strengths and weaknesses and needs to be checked for

weaknesses that would impact the intended functionality, reasoning, and logic. See the [Common

Weakness Enumeration (Mitre)] for examples of weaknesses with security, performance, reliability,

and maintainability consequences.

As software-enabled elements become more entwined in our physical lives, both at work and not,

there needs to be attention paid to this line of thinking in the education of the software-based systems

work force.

A deeper treatment of this subject can be found in the later chapter on Security and in The Open Group

Guide to Integrating Risk and Security Within a TOGAF® Enterprise Architecture.

Evidence of Notability

The complex process of discovering and supporting digital value is covered in industry work on Digital

Transformation [298, 81]. It is also addressed as an important sub-topic within the product

management literature, especially at its intersection with Agile. Product management is a large and

growing professional community, with a major professional organization (the Product Development

and Marketing Association) and many less formalized meetings and groups. It has a correspondingly

rich body of professional literature [36, 53, 114]. Product management is also a major topic at Agile

conferences.

Limitations

Some digital efforts are more instrumental, and provide value in the same way that a cog provides

value to a machine. They have little independence. Discussions of value imply greater autonomy to act

on the analysis. Business case analysis would rarely be applied in the engineering of a small

component; similarly, business case analysis makes less sense with digital systems whose existence is

required by a larger whole. It is at the level of that larger whole that value analysis should take place.

Related Topics

• Product Management

• Portfolio and Investment Management

• Governance

• Architecture

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

58 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.1.1.3. The Digital Stack

Description

6.1.1.3.1. The Moment of Truth

Any human-facing digital service can be seen as delivering a “moment of truth”. In terms of digital

systems, this English-language cliche (elaborated into an important service concept by SAS group

president Jan Carlzon [55]) represents the user’s outcome, their experience of value. All discussions of

digital value should either start or end there.

In order to view a bank balance, a user may use an application downloaded from a “store” of

applications made available to her device. On her device, this “app” is part of an intricate set of

components performing functions such as:

• Accepting “input” (user intent) through a screen or voice input

• Processing that input through software and acting on her desire to see her bank balance

• Connecting to the phone network

• Securely connecting over the mobile carrier network to the Internet and then to the bank

• Identifying the user to the bank’s systems

• Requesting the necessary information (in this case, an account balance)

• Receiving that information and converting it to a form that can be represented on a screen

• Finally, displaying the information on the screen

The application, or “app”, downloaded to the phone plays a primary role, but is enabled by:

• The phone’s Operating System (OS) and associated services

• The phone’s hardware

• The telecommunications infrastructure (cell phone towers, long distance fiber optic cables,

switching offices, and much more)

Of course, without the banking systems on the other end, there is no bank balance to transmit. These

systems are similar, but on a much larger scale than the end user’s device:

• Internet and middleware services to receive the request from the international network

• Application services to validate the user’s identity and route the request to the appropriate

handling service

• Data services to store the user’s banking information (account identity and transactions) along with

millions of other customers

• Many additional services to detect fraud and security attacks, report on utilization, identify any

errors in the systems, and much more

• Physical data centers full of computers and associated hardware including massive power and

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

Digital Practitioner Body of Knowledge™ Standard 59

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

cooling infrastructure, and protected by security systems and personnel

Consider: what does all this mean to the user? Does she care about cell phone towers, or middleware,

or triply redundant industrial-strength Power Distribution Units ? Usually, not in the least. Therefore,

as we study this world, we need to maintain awareness of her perspective. The user is seeking some

value that digital technology uniquely can enable, but does not want to consider all the complexity that

goes into it. She just wants to go out with friends. The moment of truth (see Figure 10, “The Digital

Stack Supports the Moment of Truth”) depends on the service; the service may contain great

complexity, but part of its success lies in shielding the user from that complexity.

6.1.1.3.2. Stack Examples

Figure 10. The Digital Stack Supports the Moment of Truth

The outcome of a digital service (e.g., an account balance lookup for an online banking application) is

supported by a complex, layered structure of technology. For example, a simple systems architecture

might be represented in layers as:

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

60 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• User interface

• Middleware/business logic

• Data management

• OS

• Network

Architecture also uses a layered method, but in a different way that is more abstracted from the

particular and concrete to the conceptual; for example:

• Business process architecture

• Information architecture

• Application architecture

• Technical architecture

Evidence of Notability

The use of layered abstractions in digital systems engineering is well established. Such abstractions

may be highly technical, such as the OSI stack describing layered networking protocols [154], or more

conceptual, such as the Zachman Framework [313].

Limitations

Sometimes, organizations attempt to structure themselves around the stack, with separate functional

units for user interface, middleware, data management, network, and so forth. This approach may

result in monolithic, hard to change systems. See Conway’s Law.

Related Topics

• Infrastructure Management

• Application Development

• Product Management

• Operations Management

• Architecture

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

Digital Practitioner Body of Knowledge™ Standard 61

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.1.1.4. The Digital Lifecycle

6.1.1.4.1. The Essential States of the Digital Product

Description

Figure 11. The Essential States of the Digital Product

The digital or IT service is based on a complex stack of technology, from local devices to global

networks to massive data centers. Software and hardware are layered together in endlessly inventive

ways to solve problems people did not even know they had ten years ago. However, these IT service

systems must come from somewhere. They must be designed, built, and operated, and continually

improved over time. A simple representation of the IT service lifecycle is:

• An idea is developed for an IT-enabled value proposition that can make a profit, or better fulfill a

mission

• The idea must garner support and resources so that it can be built

• The idea is then constructed, at least as an initial proof of concept or MVP (construction is assumed

to include an element of design; in this document, design and construction are not represented as

two large-scale separate phases; the activities may be distinct, but are conducted within a context

of faster design-build iterations)

• There is a critical state transition, however, that will always exist; initially, it is the change from

OFF to ON when the system is first constructed - after the system is ON, there are still distinct

changes in state when new features are deployed, or incorrect behaviors ("bugs" or "defects") are

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

62 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

rectified

• The system may be ON, but it is not delivering value until the user can access it; sometimes, that

may be as simple as providing someone with a network address, but usually there is some initial

"provisioning" of system access to the user, who needs to identify themselves

• The system can then deliver services (moments of truth) to the end users; it may deliver millions or

billions of such experiences, depending on its scale and how to count the subjective concept of

value experience

• The user may have access, but may still not receive value, if they do not understand the system well

enough to use it; whether via a formal service desk, or informal social media channels, users of IT

services will require and seek support on how to maximize the value they are receiving from the

system

• Sometimes, something is wrong with the system itself; if the system is no longer delivering value

experiences (bank balances, restaurant reservations, traffic directions) then some action must be

taken promptly to restore service

• All of the previous states in the lifecycle generate data and insight that lead to further evolution of

the system; there is a wide variety of ways systems may evolve: new user functionality, more stable

technology, increased system capacity, and more - such motivations result in new construction and

changes to the existing system, and so the cycle begins again

• Unless … the system’s time is at an end; if there is no reason for the system to exist any longer, it

should be retired

The digital service/product evolves over time, through many repetitions ("iterations") of the

improvement cycle. An expanding spiral is a useful visualization:

Figure 12. The Digital Service Lifecycle

This entire process, from idea to decommissioning (“inspire to retire”) can be understood as the service

lifecycle (see Figure 12, “The Digital Service Lifecycle”). Sometimes, the service lifecycle is simplified as

"plan, build, run"; however, this can lead to the assumption that only one iteration is required, which is

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

Digital Practitioner Body of Knowledge™ Standard 63

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

in general incorrect in digital systems. Multiple iterations should be assumed as the product is fine-

tuned and evolves to meet changing demand.

We can combine the service experience (moment of truth) with the service/product lifecycle into the

“dual-axis value chain” (originally presented in [32]):

Figure 13. Dual-Axis Value Chain

The dual-axis value chain can be seen in many representations of IT and digital delivery systems.

Product evolution flows from right to left, while day-to-day value flows up, through the technical stack.

It provides a basis for (among other things) thinking about the IT user, customer, and sponsor, which

we will cover in the next section.

6.1.1.4.2. The Three Ways of DevOps

DevOps is discussed in depth later in this document. At this point, however, as originally conceived in

The Phoenix Project [165], there are three core DevOps principles applicable at the earliest stages of the

digital product:

• Flow (the "First Way")

• Feedback (the "Second Way")

• Continuous Learning (the "Third Way")

DevOps emphasizes speeding up the flow of value in the product lifecycle (left to right), and the

feedback of learning (right to left) "at all stages of the value stream". When this is done consistently at

scale over time, DevOps advocates argue that the result is a: "generative, high-trust culture that

supports a dynamic, disciplined, and scientific approach to experimentation and risk-taking,

facilitating the creation of organizational learning, both from our successes and failures. Furthermore,

by continually shortening and amplifying our feedback loops, we create ever-safer systems of work

and are better able to take risks and perform experiments that help us learn faster than our

competition and win in the marketplace." [166 p. 12].

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

64 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Limitations

The limitations of relying on a lifecycle model as a basis for systems implementation are by now well

known. Attempting to fully understand a system’s "requirements" prior to any development can lead to

project failure, and deferring integration of sub-modules until late in a project also is risky. See Agile

canon for further discussion (e.g., [250, 220, 230, 68]). Nevertheless, the concept of the lifecycle remains

a useful model; these state transitions exist and drive organizational behavior.

Evidence of Notability

The evidence for this topic’s importance is seen across much guidance for software and systems

professionals. Examples include the original statement of "waterfall" development [241], the

overlapping phases of the Rational Unified Process [227], the ITIL Service Lifecycle’s

"strategy/design/transition/operate/improve," [282], the clear reach and influence of the DevOps

movement, and many more.

Related Topics

• Application Development

• Product Management

• Work Management

• Operations Management

6.1.2. Digital Infrastructure

Area Description

A Digital Practitioner cannot start developing a product until deciding what it will be built with. They

also need to understand something of how computers are operated, enough to make decisions on how

the system will run. Most startups choose to run IT services on infrastructure owned by a cloud

computing provider, but there are other options. As the product scales up, the practitioner will need to

be more and more sophisticated in their understanding of its underlying IT services. Finally,

developing deep skills in configuring the base platform is one of the most important capabilities for the

practitioner.

6.1.2.1. Computing and Information Principles

Description

“Information Technology” (IT) is ultimately based on the work of Claude Shannon, Alan Turing, Alonzo

Church, John von Neumann, and the other pioneers who defined the central problems of information

theory, digital logic, computability, and computer architecture.

Pragmatically, there are three major physical aspects to “IT infrastructure” relevant to the practitioner:

• Computing cycles (sometimes called just “compute”)

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

Digital Practitioner Body of Knowledge™ Standard 65

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• Memory and storage (or “storage”)

• Networking and communications (or “network”)

6.1.2.1.1. Compute

Compute is the resource that performs the rapid, clock-driven digital logic that transforms data inputs

to outputs.

Software is the thing that structures the logic and reasoning of the “compute” and allows for the

dynamic use of inputs to vary the output following the logic and reasoning laid down by the software

developer. While the computers process instructions at the level of “true” and “false”, represented as

binary “1s” and “0s”, because humans cannot easily understand binary data and processing, higher-

level abstractions of machine code and programming languages are used.

It is critical to understand that computers, traditionally understood, can only operate in precise,

"either-or" ways. Computers are often used to automate business processes, but in order to do so, the

process needs to be carefully defined, with no ambiguity. Complications and nuances, intuitive

understandings, judgment calls — in general, computers can’t do any of this, unless and until you

program them to — at which point the logic is no longer intuitive or a judgment call.

Creating programs for a specific functionality is challenging in two different ways:

• Understanding the desired functionality, logic, and reasoning of the intended program takes skill as

does the implementation of that reasoning into software and requires much testing and validation

• The software programming languages, designs, and methods used can be flawed and unable to

withstand the intended volume of data, user interactions, malicious inputs, or careless inputs, and

testing for these must also be done, known as abuse "case testing"

Computer processing is not free. Moving data from one point to another — the fundamental

transmission of information — requires matter and energy, and is bound up in physical reality and the

laws of thermodynamics. The same applies for changing the state of data, which usually involves

moving it somewhere, operating on it, and returning it to its original location. In the real world, even

running the simplest calculation has physical and therefore economic cost, and so we must pay for

computing.

6.1.2.1.2. Storage

Storage is the act of computation that is bound up with the concept of state, but they are also distinct.

Computation is a process; state is a condition. Many technologies have been used for digital storage [

71]. Increasingly, the IT professional need not be concerned with the physical infrastructure used for

storing data. Storage increasingly is experienced as a virtual resource, accessed through executing

programmed logic on cloud platforms. “Underneath the covers” the cloud provider might be using

various forms of storage, from Random Access Memory (RAM) to solid state drives to tapes, but the end

user is, ideally, shielded from the implementation details (part of the definition of a service).

In general, storage follows a hierarchy. Just as we might “store” a document by holding it in our hands,

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

66 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

setting it on a desktop, filing it in a cabinet, or archiving it in a banker’s box in an offsite warehouse, so

computer storage also has different levels of speed and accessibility:

• On-chip registers and cache

• Random Access Memory (RAM), aka “main memory”

• Online mass storage, often “disk”

• Offline mass storage; e.g., “tape”

6.1.2.1.3. Networking

With a computing process, one can change the state of some data, store it, or move it. The last is the

basic concern of networking, to transmit data (or information) from one location to another. We see

evidence of networking every day; coaxial cables for cable TV, or telephone lines strung from pole to

pole in many areas. However, like storage, there is also a hierarchy of networking:

• Intra-chip pathways

• Motherboard and backplane circuits

• Local area networks

• Wide area networks

• Backbone networks

Like storage and compute, networking as a service increasingly is independent of implementation. The

developer uses programmatic tools to define expected information transmission, and (ideally) need not

be concerned with the specific networking technologies or architectures serving their needs.

Evidence of Notability

• Body of computer science and information theory (Church/Turing/Shannon et al.)

• Basic IT curricula guidance and textbooks

Limitations

• Quantum computing

• Computing where mechanisms become opaque (e.g., neural nets) and therefore appear to be non-

deterministic

Related Topics

• Infrastructure Management

• Application Development

• Operations Management

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

Digital Practitioner Body of Knowledge™ Standard 67

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.1.2.2. Virtualization

6.1.2.2.1. Virtualization Basics

Description

Assume a simple, physical computer such as a laptop. When the laptop is first turned on, the OS loads;

the OS is itself software, but is able to directly control the computer’s physical resources: its Central

Processing Unit (CPU), memory, screen, and any interfaces such as WiFi, USB, and Bluetooth. The OS (in

a traditional approach) then is used to run “applications” such as web browsers, media players, word

processors, spreadsheets, and the like. Many such programs can also be run as applications within the

browser, but the browser still needs to be run as an application.

Figure 14. Virtualization is Computers within a Computer

In the simplest form of virtualization, a specialized application known as a hypervisor is loaded like

any other application. The purpose of this hypervisor is to emulate the hardware computer in

software. Once the hypervisor is running, it can emulate any number of “virtual” computers, each of

which can have its own OS (see Figure 14, “Virtualization is Computers within a Computer”). The

hypervisor mediates the "virtual machine" access to the actual, physical hardware of the laptop; the

virtual machine can take input from the USB port, and output to the Bluetooth interface, just like the

master OS that launched when the laptop was turned on.

There are two different kinds of hypervisors. The example we just discussed was an example of a Type

2 hypervisor, which runs on top of a host OS. In a Type 1 hypervisor, a master host OS is not used; the

hypervisor runs on the “bare metal” of the computer and in turn “hosts” multiple virtual machines.

Paravirtualization, e.g., containers, is another form of virtualization found in the marketplace. In a

paravirtualized environment, a core OS is able to abstract hardware resources for multiple virtual

guest environments without having to virtualize hardware for each guest. The benefit of this type of

virtualization is increased Input/Output (I/O) efficiency and performance for each of the guest

environments.

However, while hypervisors can support a diverse array of virtual machines with different OSs on a

single computing node, guest environments in a paravirtualized system generally share a single OS.

See Figure 15, “Virtualization Types” for an overview of all the types.

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

68 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.1.2.2.2. Virtualization and Efficiency

Figure 15. Virtualization Types

Virtualization attracted business attention as a means to consolidate computing workloads. For years,

companies would purchase servers to run applications of various sizes, and in many cases the

computers were badly underutilized. Because of configuration issues and (arguably) an

overabundance of caution, average utilization in a pre-virtualization data center might average 10-

20%. That’s up to 90% of the computer’s capacity being wasted (see Figure 16, “Inefficient Utilization”).

Figure 16. Inefficient Utilization

The above figure is a simplification. Computing and storage infrastructure supporting each application

stack in the business were sized to support each workload. For example, a payroll server might run on

a different infrastructure configuration than a Data Warehouse (DW) server. Large enterprises needed

to support hundreds of different infrastructure configurations, increasing maintenance and support

costs.

The adoption of virtualization allowed businesses to compress multiple application workloads onto a

smaller number of physical servers (see Figure 17, “Efficiency through Virtualization”).

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

Digital Practitioner Body of Knowledge™ Standard 69

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 17. Efficiency through Virtualization

NOTE
For illustration only. A utilization of 62.5% might actually be a bit too high for comfort,

depending on the variability and criticality of the workloads.

In most virtualized architectures, the physical servers supporting workloads share a consistent

configuration, which makes it easy to add and remove resources from the environment. The virtual

machines may still vary greatly in configuration, but the fact of virtualization makes managing that

easier — the virtual machines can be easily copied and moved, and increasingly can be defined as a

form of code.

Virtualization thus introduced a new design pattern into the enterprise where computing and storage

infrastructure became commoditized building blocks supporting an ever-increasing array of services.

But what about where the application is large and virtualization is mostly overhead? Virtualization

still may make sense in terms of management consistency and ease of system recovery.

6.1.2.2.3. Container Management and Kubernetes

Containers (paravirtualization) have emerged as a powerful and convenient technology for managing

various workloads. Architectures based on containers running in Cloud platforms, with strong API

provisioning and integrated support for load balancing and autoscaling, are called "cloud-native". The

perceived need for a standardized control plane for containers resulted in various initiatives in the

2010s: Docker Swarm, Apache Mesos®, and (emerging as the de facto standard), the Cloud Native

Computing Foundation’s Kubernetes.

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

70 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Kubernetes is an open source orchestration platform based on the following primitives (see Figure 18,

“Kubernetes Infrastructure, Pods, and Services”):

• Pods: group containers

• Services: a set of pods supporting a common set of functionality

• Volumes: define persistent storage coupled to the lifetime of pods (therefore lasting across

container lifetimes, which can be quite brief)

• Namespaces: in Kubernetes (as in computing generally) provide mutually-exclusive labeling to

partition resources

Figure 18. Kubernetes Infrastructure, Pods, and Services

Kubernetes management (see Figure 19, “Kubernetes Cluster Architecture”) is performed via a Master

controller which supervisees the nodes. This consists of:

• API server: the primary communication point for provisioning and control requests

• Controller manager: implements declarative functionality, in which the state of the cluster is

managed against policies; the controller seeks to continually converge the actual state of the cluster

with the intended (policy-specified) state (see Imperative and Declarative)

• Scheduler: manages the supply of computing resources to the stated (policy-drive) demand

The nodes run:

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

Digital Practitioner Body of Knowledge™ Standard 71

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• Kubelet for managing nodes and containers

• Kube-proxy for services and traffic management

Much other additional functionality is available and under development; the Kubernetes ecosystem as

of 2019 is growing rapidly.

Figure 19. Kubernetes Cluster Architecture

Graphics similar to those presented in [305+]+.

Competency Category "Virtualization" Example Competencies

• Install and configure a virtual machine

• Configure several virtual machines to communicate with each other

Evidence of Notability

Virtualization was predicted in the earliest theories that led to the development of computers. Turing

and Church realized that any general-purpose computer could emulate any other. Virtual systems have

existed in some form since at latest 1967 — only 20 years after the first fully functional computers.

Virtualization is discussed extensively in core computer science and engineering texts and is an

essential foundation of cloud computing.

The Cloud-Native community is at this writing (2019) one of the most active communities in

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

72 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

computing.

Limitations

Virtualization is mainly relevant to production computing. It is less relevant to edge devices.

Related Topics

• Computing

• Infrastructure Management

• Cloud Computing

6.1.2.3. Cloud Services

Description

Companies have always sought alternatives to owning their own computers. There is a long tradition

of managed services, where applications are built out by a customer and then their management is

outsourced to a third party. Using fractions of mainframe “time-sharing” systems is a practice that

dates back decades. However, such relationships took effort to set up and manage, and might even

require bringing physical tapes to the third party (sometimes called a “service bureau”). Fixed-price

commitments were usually high (the customer had to guarantee to spend X dollars). Such relationships

left much to be desired in terms of responsiveness to change.

As computers became cheaper, companies increasingly acquired their own data centers, investing

large amounts of capital in high-technology spaces with extensive power and cooling infrastructure.

This was the trend through the late 1980s to about 2010, when cloud computing started to provide a

realistic alternative with true “pay as you go” pricing, analogous to electric metering.

The idea of running IT completely as a utility service goes back at least to 1965 and the publication of

The Challenge of the Computer Utility, by Douglas Parkhill (see Figure 20, “Initial Statement of Cloud

Computing”). While the conceptual idea of cloud and utility computing was foreseeable 50 years ago, it

took many years of hard-won IT evolution to support the vision. Reliable hardware of exponentially

increasing performance, robust open-source software, Internet backbones of massive speed and

capacity, and many other factors converged towards this end.

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

Digital Practitioner Body of Knowledge™ Standard 73

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 20. Initial Statement of Cloud Computing

However, people store data — often private — on computers. In order to deliver compute as a utility, it

is essential to segregate each customer’s workload from all others. This is called multi-tenancy. In

multi-tenancy, multiple customers share physical resources that provide the illusion of being

dedicated.

NOTE
The phone system has been multi-tenant ever since they got rid of party lines. A party

line was a shared line where anyone on it could hear every other person.

In order to run compute as a utility, multi-tenancy was essential. This is different from electricity (but

similar to the phone system). As noted elsewhere, one watt of electric power is like any other and there

is less concern for information leakage or unexpected interactions. People’s bank balances are not

encoded somehow into the power generation and distribution infrastructure.

Virtualization is necessary, but not sufficient for cloud. True cloud services are highly automated, and

most cloud analysts will insist that if virtual machines cannot be created and configured in a

completely automated fashion, the service is not true cloud. This is currently where many in-house

“private” cloud efforts struggle; they may have virtualization, but struggle to make it fully self-service.

Cloud services have refined into at least three major models:

• Software as a Service (SaaS)

• Platform as a Service (PaaS)

• Infrastructure as a Service (IaaS)

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

74 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

From the NIST Definition of Cloud Computing (p.2-3):

Software as a Service (SaaS) The capability provided to the consumer is to use the provider’s

applications running on a cloud infrastructure. The applications are accessible from various

client devices through either a thin client interface, such as a web browser (e.g., web-based

email), or a program interface. The consumer does not manage or control the underlying cloud

infrastructure including network, servers, OSs, storage, or even individual application

capabilities, with the possible exception of limited user-specific application configuration

settings.

Platform as a Service (PaaS) The capability provided to the consumer is to deploy onto the

cloud infrastructure consumer-created or acquired applications created using programming

languages, libraries, services, and tools supported by the provider. The consumer does not

manage or control the underlying cloud infrastructure including network, servers, OSs, or

storage, but has control over the deployed applications and possibly configuration settings for

the application-hosting environment.

Infrastructure as a Service (IaaS) The capability provided to the consumer is to provision

processing, storage, networks, and other fundamental computing resources where the consumer

is able to deploy and run arbitrary software, which can include OSs and applications. The

consumer does not manage or control the underlying cloud infrastructure but has control over

OSs, storage, and deployed applications; and possibly limited control of select networking

components (e.g., host firewalls) [209].

There are cloud services beyond those listed above (e.g., Storage as a Service). Various platform

services have become extensive on providers such as Amazon™, which offers load balancing,

development pipelines, various kinds of storage, and much more.

Evidence of Notability

Cloud computing is one of the most economically active sectors in IT. Cloud computing has attracted

attention from the US National Institute for Standards and Technology (NIST) [209]. Cloud law is

becoming more well defined [196].

Limitations

The future of cloud computing appears assured, but computing and digital competencies also extend to

edge devices and in-house computing. The extent to which organizations will retain in-house

computing is a topic of industry debate.

Related Topics

• Application Development

• Operations Management

• Sourcing and Vendor Management

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

Digital Practitioner Body of Knowledge™ Standard 75

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.1.2.4. Configuration Management and Infrastructure as Code

Description

This section covers:

• Version control

• Source control

• Package management

• Deployment management

• Configuration management

6.1.2.4.1. Managing Infrastructure

Two computers may both run the same version of an OS, and yet exhibit vastly different behaviors.

This is due to how they are configured. One may have web serving software installed; the other may

run a database. One may be accessible to the public via the Internet; access to the other may be tightly

restricted to an internal network. The parameters and options for configuring general-purpose

computers are effectively infinite. Mis-configurations are a common cause of outages and other issues.

In years past, infrastructure administrators relied on the ad hoc issuance of commands either at an

operations console or via a GUI-based application. Such commands could also be listed in text files; i.e.,

"batch files" or "shell scripts" to be used for various repetitive processes, but systems administrators by

tradition and culture were empowered to issue arbitrary commands to alter the state of the running

system directly.

However, it is becoming more and more rare for a systems administrator to actually “log in” to a

server and execute configuration-changing commands in an ad hoc manner. Increasingly, all actual

server configuration is based on pre-developed specification.

Because virtualization is becoming so powerful, servers increasingly are destroyed and rebuilt at the

first sign of any trouble. In this way, it is certain that the server’s configuration is as intended. This

again is a relatively new practice.

Previously, because of the expense and complexity of bare-metal servers, and the cost of having them

offline, great pains were taken to fix troubled servers. Systems administrators would spend hours or

days troubleshooting obscure configuration problems, such as residual settings left by removed

software. Certain servers might start to develop “personalities”. Industry practice has changed

dramatically here since around 2010.

As cloud infrastructures have scaled, there has been an increasing need to configure many servers

identically. Auto-scaling (adding more servers in response to increasing load) has become a widely

used strategy as well. Both call for increased automation in the provisioning of IT infrastructure. It is

simply not possible for a human being to be hands on at all times in configuring and enabling such

infrastructures, so automation is called for.

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

76 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Sophisticated Infrastructure as Code techniques are an essential part of modern SRE practices such as

those used by Google®. Auto-scaling, self-healing systems, and fast deployments of new features all

require that infrastructure be represented as code for maximum speed and reliability of creation.

Infrastructure as Code is defined by Morris as: an approach to infrastructure automation based on

practices from software development. It emphasizes consistent, repeatable routines for provisioning and

changing systems and their configuration. Changes are made to definitions and then rolled out to systems

through unattended processes that include thorough validation. [203+]+

6.1.2.4.2. Infrastructure as Code

Figure 21. Simple Directory/File Structure Script

In presenting Infrastructure as Code at its simplest, we will start with the concept of a shell script.

Consider the following set of commands:

$ mkdir foo bar

$ cd foo

$ touch x y z

$ cd ../bar

$ touch a b c

What does this do? It tells the computer:

• Create (mkdir) two directories, one named foo and one named bar

• Move (cd) to the one named foo

• Create (touch) three files, named x, y, and z

• Move to the directory named bar

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

Digital Practitioner Body of Knowledge™ Standard 77

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• Create three blank files, named a, b, and c

A user with the appropriate permissions at a UNIX® or Linux® command prompt who runs those

commands will wind up with a configuration that could be visualized as in Figure 21, “Simple

Directory/File Structure Script”. Directory and file layouts count as configuration and in some cases are

critical.

Assume further that the same set of commands is entered into a text file thus:

#!/bin/bash

mkdir foo bar

cd foo

touch x y z

cd ../bar

touch a b c

The file might be named iac.sh, and with its permissions set correctly, it could be run so that the

computer executes all the commands, rather than a person running them one at a time at the console.

If we did so in an empty directory, we would again wind up with that same configuration.

Beyond creating directories and files shell scripts can create and destroy virtual servers and

containers, install and remove software, set up and delete users, check on the status of running

processes, and much more.

NOTE

The state of the art in infrastructure configuration is not to use shell scripts at all but

either policy-based infrastructure management or container definition approaches.

Modern practice in cloud environments is to use templating capabilities such as

Amazon CloudFormation or Hashicorp Terraform (which is emerging as a de facto

platform-independent standard for cloud provisioning).

6.1.2.4.3. Version Control

Consider again the iac.sh file. It is valuable. It documents intentions for how a given configuration

should look. It can be run reliably on thousands of machines, and it will always give us two directories

and six files. In terms of the previous section, we might choose to run it on every new server we create.

Perhaps it should be established it as a known resource in our technical ecosystem. This is where

version control and the broader concept of configuration management come in.

For example, a configuration file may be developed specifying the capacity of a virtual server, and

what software is to be installed on it. This artifact can be checked into version control and used to re-

create an equivalent server on-demand.

Tracking and controlling such work products as they evolve through change after change is important

for companies of any size. The practice applies to computer code, configurations, and, increasingly,

documentation, which is often written in a lightweight markup language like Markdown or Asciidoc.

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

78 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

In terms of infrastructure, configuration management requires three capabilities:

• The ability to backup or archive a system’s operational state (in general, not including the data it is

processing — that is a different concern); taking the backup should not require taking the system

down

• The ability to compare two versions of the system’s state and identify differences

• The ability to restore the system to a previously archived operational state

Version control is critical for any kind of system with complex, changing content, especially when

many people are working on that content. Version control provides the capability of seeing the exact

sequence of a complex system’s evolution and isolating any particular moment in its history or

providing detailed analysis on how two versions differ. With version control, we can understand what

changed and when – which is essential to coping with complexity.

While version control was always deemed important for software artifacts, it has only recently become

the preferred paradigm for managing infrastructure state as well. Because of this, version control is

possibly the first IT management system you should acquire and implement (perhaps as a cloud

service, such as Github, Gitlab, or Bitbucket).

Version control in recent years increasingly distinguishes between source control and package

management (see Figure 22, “Types of Version Control” and Figure 27, “Configuration Management

and its Components” below): the management of binary files, as distinct from human-understandable

symbolic files. It is also important to understand what versions are installed on what computers; this

can be termed “deployment management”. (With the advent of containers, this is a particularly fast-

changing area.)

Figure 22. Types of Version Control

Version control works like an advanced file system with a memory. (Actual file systems that do this are

called versioning file systems.) It can remember all the changes you make to its contents, tell you the

differences between any two versions, and also bring back the version you had at any point in time.

Survey research presented in the annual State of DevOps report indicates that version control is one of

the most critical practices associated with high-performing IT organizations [44]. Forsgren [98]

summarizes the practice of version control as:

• Our application code is in a version control system

• Our system configurations are in a version control system

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

Digital Practitioner Body of Knowledge™ Standard 79

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• Our application configurations are in a version control system

• Our scripts for automating build and configuration are in a version control system

6.1.2.4.4. Source Control

Figure 23. Source Control

Digital systems start with text files; e.g., those encoded in ASCII or Unicode. Text editors create source

code, scripts, and configuration files. These will be transformed in defined ways (e.g., by compilers and

build tools) but the human-understandable end of the process is mostly based on text files. In the

previous section, we described a simple script that altered the state of a computer system. We care

very much about when such a text file changes. One wrong character can completely alter the

behavior of a large, complex system. Therefore, our configuration management approach must track

to that level of detail.

Source control is at its most powerful when dealing with textual data. It is less useful in dealing with

binary data, such as image files. Text files can be analyzed for their differences in an easy to

understand way (see Figure 23, “Source Control”). If “abc” is changed to “abd”, then it is clear that the

third character has been changed from “c” to “d”. On the other hand, if we start with a digital image

(e.g., a *.png file), alter one pixel, and compare the resulting before and after binary files in terms of

their data, it would be more difficult to understand what had changed. We might be able to tell that

they are two different files easily, but they would look very similar, and the difference in the binary

data might be difficult to understand.

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

80 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

The “Commit” Concept

Although implementation details may differ, all version control systems have some concept of

“commit”. As stated in Version Control with Git [181]:

In Git, a commit is used to record changes to a repository … Every Git commit represents a single, atomic

changeset with respect to the previous state. Regardless of the number of directories, files, lines, or bytes

that change with a commit … either all changes apply, or none do. [emphasis added]

The concept of a version or source control “commit” serves as a foundation for IT management and

governance. It both represents the state of the computing system as well as providing evidence of the

human activity affecting it. The “commit” identifier can be directly referenced by the build activity,

which in turn is referenced by the release activity, which typically visible across the IT value chain.

Also, the concept of an atomic “commit” is essential to the concept of a “branch” — the creation of an

experimental version, completely separate from the main version, so that various alterations can be

tried without compromising the overall system stability. Starting at the point of a “commit”, the

branched version also becomes evidence of human activity around a potential future for the system. In

some environments, the branch is automatically created with the assignment of a requirement or

story. In other environments, the very concept of branching is avoided. The human-understandable,

contextual definitions of IT resources is sometimes called metadata.

6.1.2.4.5. Package Management

Figure 24. Building Software

Much if not most software, once created as some kind of text-based artifact suitable for source control,

must be compiled and further organized into deployable assets, often called “packages” (see Figure 24,

“Building Software”).

In some organizations, it was once common for compiled binaries to be stored in the same repositories

as source code (see Figure 25, “Common Version Control”). However, this is no longer considered a best

practice. Source and package management are now viewed as two separate things (see Figure 26,

“Source versus Package Repos”). Source repositories should be reserved for text-based artifacts whose

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

Digital Practitioner Body of Knowledge™ Standard 81

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

differences can be made visible in a human-understandable way. Package repositories in contrast are

for binary artifacts that can be deployed.

Figure 25. Common Version Control

Package repositories also can serve as a proxy to the external world of downloadable software. That is,

they are a cache, an intermediate store of the software provided by various external or “upstream”

sources. For example, developers may be told to download the approved Ruby on Rails version from

the local package repository, rather than going to get the latest version, which may not be suitable for

the environment.

Package repositories furthermore are used to enable collaboration between teams working on large

systems. Teams can check in their built components into the package repository for other teams to

download. This is more efficient than everyone always building all parts of the application from the

source repository.

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

82 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 26. Source versus Package Repos

The boundary between source and package is not hard and fast, however. We sometimes sees binary

files in source repositories, such as images used in an application. Also, when interpreted languages

(such as JavaScript™) are “packaged”, they still appear in the package as text files, perhaps compressed

or otherwise incorporated into some larger containing structure.

While in earlier times, systems would be compiled for the target platform (e.g., compiled in a

development environment, and then re-compiled for subsequent environments such as quality

assurance and production) the trend today is decisively towards immutability. With the

standardization brought by container-based architecture, current preference increasingly is to compile

once into an immutable artifact that is deployed unchanged to all environments, with any necessary

differences managed by environment-specific configuration such as source-managed text artifacts and

shared secrets repositories.

6.1.2.4.6. Deployment Management

Version control is an important part of the overall concept of configuration management. But

configuration management also covers the matter of how artifacts under version control are combined

with other IT resources (such as virtual machines) to deliver services. Figure 27, “Configuration

Management and its Components” elaborates on Figure 22, “Types of Version Control” to depict the

relationships.

Resources in version control in general are not yet active in any value-adding sense. In order for them

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

Digital Practitioner Body of Knowledge™ Standard 83

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

to deliver experiences, they must be combined with computing resources: servers (physical or virtual),

storage, networking, and the rest, whether owned by the organization or leased as cloud services. The

process of doing so is called deployment. Version control manages the state of the artifacts; meanwhile,

deployment management (as another configuration management practice) manages the combination

of those artifacts with the needed resources for value delivery.

Figure 27. Configuration Management and its Components

6.1.2.4.7. Imperative and Declarative Approaches

Before we turned to source control, we looked at a simple script that changed the configuration of a

computer. It did so in an imperative fashion. Imperative and declarative are two important terms from

computer science.

In an imperative approach, one tells the computer specifically how we want to accomplish a task; e.g.:

• Create a directory

• Create some files

• Create another directory

• Create more files

Many traditional programming languages take an imperative approach. A script such as our iac.sh

example is executed line by line; i.e., it is imperative.

In configuring infrastructure, scripting is in general considered “imperative”, but state-of-the-art

infrastructure automation frameworks are built using a “declarative”, policy-based approach, in which

the object is to define the desired end state of the resource, not the steps needed to get there. With such

an approach, instead of defining a set of steps, we simply define the proper configuration as a target,

saying (in essence) that “this computer should always have a directory structure thus; do what you

need to do to make it so and keep it this way”.

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

84 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Declarative approaches are used to ensure that the proper versions of software are always present on

a system and that configurations such as Internet ports and security settings do not vary from the

intended specification.

This is a complex topic, and there are advantages and disadvantages to each approach [47].

Evidence of Notability

Andrew Clay Shafer, credited as one of the originators of DevOps, stated: "In software development,

version control is the foundation of every other Agile technical practice. Without version control, there

is no build, no test-driven development, no continuous integration" [14 p. 99]. It is one of the four

foundational areas of Agile, according to the Agile Alliance [10].

Limitations

Older platforms and approaches relied on direct command line intervention and (in the 1990s and

2000s) on GUI-based configuration tools. Organizations still relying on these approaches may struggle

to adopt the principles discussed here.

Competency Category "Configuration Management and Infrastructure as Code" Example

Competencies

• Develop a simple Infrastructure as Code definition for a configured server

• Demonstrate the ability to install, configure, and use a source control tool

• Demonstrate the ability to install, configure, and use a package manager

• Develop a complex Infrastructure as Code definition for a cluster of servers, optionally including

load balancing and failover

Related Topics

• Infrastructure Management

• DevOps Technical Practices

• Operations Management

6.1.2.5. Securing Infrastructure

NOTE

Security as an enterprise capability is covered in Section 6.4.1, “Governance, Risk,

Security, and Compliance”, as a form of applied risk management involving concepts of

controls and assurance. But, securing infrastructure and applications must be a focus

from the earliest stages of the digital product.

This document recognizes the concept of securing infrastructure as critical to the practice of digital

delivery:

• Physical security

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

Digital Practitioner Body of Knowledge™ Standard 85

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• Networking issues

• Core OS

• Cloud issues

Description

Infrastructure security, whether for on-premises computing or for cloud services, is first and foremost

a security architecture issue. Many existing security control frameworks are available that describe

various categories of controls which can be used to secure infrastructure. These include ISO/IEC

27002:2013, NIST 800-53, Security Services Control Catalog (jointly developed by The Open Group and

The SABSA® Institute), and the Center for Internet Security Controls Version 7. These are

comprehensive sets of security controls spanning many domains of security. While these control

frameworks predate cloud computing, most of the control categories affecting infrastructure security

apply in cloud services as well. In addition, security practitioners tasked with securing infrastructure

may benefit from reference security architectures such as the Open Enterprise Security Architecture

(O-ESA) from The Open Group, which describes basic approaches to securing enterprise networks,

including infrastructure.

The diagram below
[1]

 depicts some broad categories of security control types:

Figure 28. Security Hierarchy

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

86 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.1.2.5.1. Common security practices

Since the advent of cloud computing, securing cloud infrastructure has been a key concern. Most of the

security issues that exist in non-cloud environments exist in cloud services as well. In other words,

access control, user authentication, vulnerability management, patching, securing network access,

anti-malware capabilities, data loss prevention, encryption of data, and a host of other security

controls that we deploy in on-premises computing require careful consideration in cloud services. The

security concerns around cloud computing vary depending on whether the cloud service is SaaS, PaaS,

or IaaS.

6.1.2.5.2. On premise versus Cloud security practices

There are also fundamental differences in security controls deployed in on-premises infrastructure

(security controls may be physical or virtual), and those deployed in cloud infrastructure (which is

purely virtual). These differences follow on from the shift brought by cloud computing. In on-premises

computing, security architects and security solution providers had access to the physical computing

networks, so physical security devices could be deployed in-line. The most common security design

patterns leverage this physical access. In cloud services, there is no ability to insert security

components which are physically in-line. This means that in cloud computing, we may have to utilize

virtual security appliances, and virtual network segmentation solutions such as VLANs and Software-

Defined Networks (SDNs) versus physical security approaches.

Another difference in securing physical versus cloud infrastructure arises in defining and

implementing microsegmentation (small zones of access control). In physical networks, multiple

hardware firewalls are required to achieve this. In cloud computing, VLANs and SDNs may be used to

deliver equivalent capability, with some unique advantages (they are more manageable, at a lower

capital expense).

In addition, the responsibility for securing cloud infrastructure varies considerably based upon the

service model as well. While early focus on cloud security tended to focus on potential security

concerns and gaps in security capabilities, the security community today generally acknowledges that

while security concerns relating to cloud computing persist, there is also an opportunity for cloud

services to “raise the bar”, improving upon baseline security for many customer organizations. Hybrid

cloud computing combining public cloud services with private cloud infrastructure brings further

complexity to infrastructure security.

Evidence of Notability

The need to secure computing infrastructure has been obvious and self-evident for decades, and has

evolved alongside changes in popular computing paradigms, including the mainframe era,

client/server computing, and now cloud computing. The need for specific, unique guidance relating to

securing cloud services of various types emerged in 2009, when the Cloud Security Alliance (CSA) was

first formed, and when they published Version 1 of their Security Guidance for Critical Areas of Focus

in Cloud Computing. The CSA guidance is now on Version 4, and includes 14 different security

domains.

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

Digital Practitioner Body of Knowledge™ Standard 87

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Limitations

Organizations accustomed to deploying physical security capabilities on their own infrastructure may

find it difficult to adapt to the challenges of securing cloud infrastructure in the various types cloud

services. They may also have challenges adapting to the changes in responsibilities that are brought by

the use of cloud services, where the Cloud Service Provider (CSP) is responsible for delivering many

security capabilities, especially in SaaS services, and as a result the customer organization needs to

specify needed security capabilities in Request for Proposals (RFPs). In addition, incident response

management routines will require change.

Related Topics

• ISO/IEC 27002:2013 (International Standards Organization

• NIST SP 800-53 Rev. 4 (National Institute of Standards and Technology)

• CIS Controls Version 7 (Center for Internet Security)

• Security Services Control Catalog (jointly developed by The Open Group and The SABSA Institute)

• Enterprise Security Architecture (The Open Group)

• Security Guidance for Critical Areas of Focus in Cloud Computing (CSA)

6.1.3. Application Delivery

NOTE

Not all Digital Practitioners develop applications. As SaaS options expand, many

practitioners will focus on acquiring, configuring, and operating them. However, the

premise of this Competency Area is that all Digital Practitioners need to understand at

least the basics of modern application delivery in order to effectively manage digital

sourcing and operations. Understanding these basics will help the practitioner develop

a sense of empathy for their vendors supplying digital services.

Area Description

Based on the preceding competencies of digital value understanding and infrastructure, the

practitioner can now start building.

IT systems that directly create value for non-technical users are usually called “applications”, or

sometimes “services” or "service systems". As discussed in the Digital Fundamentals Competency Area,

they enable value experiences in areas as diverse as consumer banking, entertainment and hospitality,

and personal transportation. In fact, it is difficult to think of any aspect of modern life untouched by

applications. (This overall trend is sometimes called Digital Transformation [298].)

Applications are built from software, the development of which is a core concern for any IT-centric

product strategy. Software development is a well-established career, and a fast-moving field with new

technologies, frameworks, and schools of thought emerging weekly, it seems. This Competency Area

will cover applications and the software lifecycle, from requirements through construction, testing,

building, and deployment of modern production environments. It also discusses earlier approaches to

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

88 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

software development, the rise of the Agile movement, and its current manifestation in the practice of

DevOps.

This document uses an engineering definition of “application”. To an electrical engineer, a toaster or a

light bulb is an “application” of electricity (hence the term “appliance”). Similarly, a Customer

Relationship Management (CRM) system, or a web video on-demand service, are “applications” of the

digital infrastructure covered previously.

Without applications, computers would be merely a curiosity. Electronic computers were first

“applied” to military needs for codebreaking and artillery calculations. After World War II, ex-military

officers like Edmund Berkeley at Prudential realized computers' potential if “applied” to problems like

insurance record-keeping [11]. At first, such systems required actual manual configuration or

painstaking programming in complex, tedious, and unforgiving low-level programming languages. As

the value of computers became obvious, investment was made in making programming easier through

more powerful languages.

The history of software is well documented. Low-level languages (binary and assembler) were

increasingly replaced by higher-level languages such as FORTRAN, COBOL, and C. Proprietary

machine/language combinations were replaced by open standards and compilers that could take one

kind of source code and build it for different hardware platforms. Many languages followed, such as

Java, Visual Basic, and JavaScript. Sophisticated middleware was developed to enable ease of

programming, communication across networks, and standardization of common functions.

Today, much development uses frameworks like Apache Struts, Spring, and Ruby on Rails, along with

interpreted languages that take much of the friction out of building and testing code. But even today,

the objective remains to create a binary executable file or files that computer hardware can “execute”;

that is, turn into a computing-based value experience, mediated through devices such as workstations,

laptops, smartphones, and their constituent components.

In the first decades of computing, any significant application of computing power to a new problem

typically required its own infrastructure, often designed specifically for the problem. While awareness

existed that computers, in theory, could be “general-purpose”, in practice, this was not so easy.

Military/aerospace needs differed from corporate information systems, which differed from scientific

and technical uses. And major new applications required new compute capacity.

The software and hardware needed to be specified in keeping with requirements, and acquiring it took

lengthy negotiations and logistics and installation processes. Such a project from inception to

production might take nine months (on the short side) to 18 or more months.

Hardware was dedicated and rarely re-used. Servers compatible with one system might have few other

applications if they became surplus. In essence, this sort of effort had a strong component of systems

engineering, as designing and optimizing the hardware component was a significant portion of the

work.

Today, matters are quite different, and yet echoes of the older model persist. As mentioned, any

compute workloads are going to incur economic cost. However, capacity is being used more efficiently

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

Digital Practitioner Body of Knowledge™ Standard 89

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

and can be provisioned on-demand. Currently, it is a significant application indeed that merits its own

systems engineering.

NOTE
To “provision” in an IT sense means to make the needed resources or services available

for a particular purpose or consumer.

Instead, a variety of mechanisms (as covered in the previous discussion of cloud systems) enable the

sharing of compute capacity, the raw material of application development. The fungibility and agility

of these mechanisms increase the velocity of creation and evolution of application software. For small

and medium-sized applications, the overwhelming trend is to virtualize and run on commodity

hardware and OSs. Even 15 years ago, non-trivial websites with database integration would be hosted

by internal PaaS clusters at major enterprises (for example, Microsoft® ASP, COM+, and SQL server

clusters could be managed as multi-tenant).

The general-purpose capabilities of virtualized public and private cloud today are robust. Assuming

the organization has the financial capability to purchase computing capacity in anticipation of use, it

can be instantly available when the need surfaces. Systems engineering at the hardware level is more

and more independent of the application lifecycle; the trend is towards providing compute as a

service, carefully specified in terms of performance, but not particular hardware.

Hardware physically dedicated to a single application is rarer, and even the largest engineered systems

are more standardized so that they may one day benefit from cloud approaches. Application

architectures have also become much more powerful. Interfaces (interaction points for applications to

exchange information with each other, generally in an automated way) are increasingly standardized.

Applications are designed to scale dynamically with the workload and are more stable and reliable

than in years past.

6.1.3.1. Application Basics

Description

This section discusses the generally understood phases or stages of application development. With

current trends towards Agile development, it is critical to understand that these phases are not

intended as a prescriptive plan, nor is there any discussion of how long each should last. It is possible

to spend months at a time on each phase, and it is possible to perform each phase in the course of a

day. However, there remains a rough ordering of:

• Understanding intended outcome

• Analyzing and designing the "solution" that can support the outcome

• Building the solution

• Evaluating whether the solution supports the intended outcome (usually termed "testing")

• Delivering or transitioning the solution into a state where it is delivering the intended outcome

This set of activities is sometimes called the "Software Development Lifecycle" (SDLC). These activities

are supported by increasingly automated approaches which are documented in succeeding sections.

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

90 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.1.3.1.1. Documenting System Intent

The application or digital product development process starts with a concept of intended outcome.

In order to design and build a digital product, the Digital Practitioner needs to express what theory

needs the product to do. The conceptual tool used to do this has historically been termed the

Requirement. The literal word “Requirement” has fallen out of favor with the rise of Agile [217], and

has a number of synonyms and variations:

• Use-case

• User story

• Non-functional requirement

• Epic

• Architectural epic

• Architectural requirement

While these may differ in terms of focus and scope, the basic concept is the same — the requirement,

however named, expresses some outcome, intent, or constraint the system must fulfill. This intent calls

for work to be performed.

Requirements management is classically taught using the "shall" format. For example, the system shall

provide …, the system shall be capable of …, etc.

More recently, Agile-aligned teams sometimes prefer user story mapping [217]. Here is an example

from [68]:

“As a shopper, I can select how I want items shipped based on the actual costs of shipping to my

address so that I can make the best decision.”

The basic format is:

As a <type of user>, I want <goal>, so that <some value>.

The story concept is flexible and can be aggregated and decomposed in various ways, as we will

discuss in Section 6.2.1, “Product Management”. Our interest here is in the basic stimulus for

application development work that it represents.

6.1.3.1.2. Analysis and Design

The analysis and design of software-based systems itself employs a variety of techniques. Starting from

the documented system intent, in general, the thought process will seek to answer questions such as:

• Is it possible to support the intended outcome with a digital system?

• What are the major data concepts and processing activities the proposed digital system will need to

support?

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

Digital Practitioner Body of Knowledge™ Standard 91

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• What are the general attributes or major classifications of such a potential solution? Will it be a

transactional system, an analytic system?

• How do these major concepts decompose into finer-grained concepts, and how are these finer-

grained concepts translated into executable artifacts such as source code and computable data

structures?

A variety of tools and approaches may be used in analysis and design. Sometimes, the analysis and

design is entirely internal to the person building the system. Sometimes, it may be sketched on paper

or a whiteboard. There are a wide variety of more formalized approaches (process models, data

models, systems models) used as these systems and organizations scale up; these will be discussed in

future Competency Areas.

6.1.3.1.3. Construction

When an apparently feasible approach is determined, construction may commence. How formalized

"apparently feasible" is depends greatly on the organization and scale of the system. "You start coding

and I’ll go find out what the users want" is an old joke in IT development. It represents a long-standing

pair of questions: Are we ready to start building? Are we engaged in excessive analysis - sometimes

called "analysis paralysis"? Actually writing source code and executing it, preferably with

knowledgeable stakeholders evaluating the results, provides unambiguous confirmation of whether a

given approach is feasible.

Actual construction techniques will typically center around the creation of text files in specialized

computing languages such as C++, Javascript, Java®, Ruby on Rails, or Python. These languages are the

fundamental mechanisms for accessing the core digital infrastructure services of compute,

transmission, and storage discussed previously. There is a vast variety of instructional material

available on the syntax and appropriate techniques for using such languages.

6.1.3.1.4. Testing

Evaluating whether a developed system fulfills the intended outcome is generally called testing. There

is a wide variety of testing types, such as:

• Functional testing (does the system, or specific component of it, deliver the intended outcomes as

specified in requirements?)

• Integration testing (if the system is modularized, can modules interoperate as needed to fulfill the

intended outcomes?)

• Usability testing (can operators navigate the system intuitively, given training that makes economic

sense? are there risks of operator error presented by system design choices?)

• Performance testing (does the system scale to necessary volumes and speeds?)

• Security testing (does the system resist unauthorized attempts to access or change it?)

Although testing is logically distinct from construction, in modern practices they are tightly integrated

and automated, as will be discussed below.

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

92 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.1.3.1.5. Delivery

Finally, the system completes construction and testing activities - it must be made available (delivered

or transitioned) into a state where it can fulfill its intended outcomes. This is sometimes called the state

of "production", discussed below. Delivery may take two forms:

• Moving installable "packages" of software to a location where users can install them directly on

devices of their choice; this includes delivery media such as DVDs as well as network-accessible

locations

• Installing the software so that its benefits - its intended outcomes - are available "as a service" via

networks; outcomes may be delivered via the interface of an application or "app" on a mobile

phone or personal computer, a web page, an Application Programming Interface (API), or other

behavior of devices responding to the programmed application (e.g., IoT)

Delivery is increasingly automated, as will be covered in the section on DevOps technical practices.

Evidence of Notability

The basic concepts of the "software lifecycle" as expressed here are broadly discussed in software

engineering; e.g., [140, 276, 266].

Limitations

Application construction, including programming source code, is not necessary (in general) when

consuming SaaS. Many companies prefer to avoid development as much as possible, relying on

commercially available services. Such companies still may be pursuing a digital strategy in important

regards.

Related Topics

• Digital Value

• Digital Infrastructure

• Digital Product Management

• Digital Operations

• Investment Management

• Architecture

6.1.3.2. Agile Software Development

Description

6.1.3.2.1. Waterfall Development

When a new analyst would join a large systems integrator Andersen Consulting (now Accenture) in

1998, they would be schooled in something called the Business Integration Method (BIM). The BIM was

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

Digital Practitioner Body of Knowledge™ Standard 93

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

a classic expression of what is called “waterfall development".

What is waterfall development? It is a controversial question. Walker Royce, the original theorist who

coined the term named it in order to critique it [241]. Military contracting and management

consultancy practices, however, embraced it, as it provided an illusion of certainty. The fact that

computer systems until recently included a substantial component of hardware systems engineering

may also have contributed.

Waterfall development as a term has become associated with a number of practices. The original

illustration was similar to Figure 29, “Waterfall Lifecycle” (similar to [241]):

Figure 29. Waterfall Lifecycle

First, requirements need to be extensively captured and analyzed before the work of development can

commence. So, the project team would develop enormous spreadsheets of requirements, spending

weeks on making sure that they represented what “the customer” wanted. The objective was to get the

customer’s signature. Any further alterations could be profitably billed as “change requests”.

The analysis phase was used to develop a more structured understanding of the requirements; e.g.,

conceptual and logical data models, process models, business rules, and so forth.

In the design phase, the actual technical platforms would be chosen; major subsystems determined

with their connection points, initial capacity analysis (volumetrics) translated into system sizing, and so

forth. (Perhaps hardware would not be ordered until this point, leading to issues with developers now

being “ready”, but hardware not being available for weeks or months yet.)

Only after extensive requirements, analysis, and design would coding take place (implementation).

Furthermore, there was a separation of duties between developers and testers. Developers would write

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

94 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

code and testers would try to break it, filing bug reports to which the developers would then need to

respond.

Another model sometimes encountered at this time was the V-model (see Figure 30, “V-Model”
[2]

). This

was intended to better represent the various levels of abstraction operating in the systems delivery

activity. Requirements operate at various levels, from high-level business intent through detailed

specifications. It is all too possible that a system is “successfully” implemented at lower levels of

specification, but fails to satisfy the original higher-level intent.

Figure 30. V-Model

The failures of these approaches at scale are by now well known. Large distributed teams would

wrestle with thousands of requirements. The customer would “sign off” on multiple large binders,

with widely varying degrees of understanding of what they were agreeing to. Documentation became

an end in itself and did not meet its objectives of ensuring continuity if staff turned over. The

development team would design and build extensive product implementations without checking the

results with customers. They would also defer testing that various component parts would effectively

interoperate until the very end of the project, when the time came to assemble the whole system.

Failure after failure of this approach is apparent in the historical record [111]. Recognition of such

failures, dating from the 1960s, led to the perception of a “software crisis”.

However, many large systems were effectively constructed and operated during the “waterfall years",

and there are reasonable criticisms of the concept of a “software crisis” [39].

Successful development efforts existed back to the earliest days of computing (otherwise, there

probably wouldn’t be computers, or at least not so many). Many of these successful efforts used

prototypes and other means of building understanding and proving out approaches. But highly

publicized failures continued, and a substantial movement against “waterfall” development started to

take shape.

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

Digital Practitioner Body of Knowledge™ Standard 95

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.1.3.2.2. Origins and Practices of Agile Development

By the 1990s, a number of thought leaders in software development had noticed some common themes

with what seemed to work and what didn’t. Kent Beck developed a methodology known as “eXtreme

Programming” (XP) [24]. XP pioneered the concepts of iterative, fast-cycle development with ongoing

stakeholder feedback, coupled with test-driven development, ongoing refactoring, pair programming,

and other practices. (More on the specifics of these in the next section.)

Various authors assembled in 2001 and developed the Agile Manifesto [8], which further emphasized

an emergent set of values and practices:

The Agile Manifesto

We are uncovering better ways of developing software by doing it and helping others do it.

Through this work we have come to value:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more.

The Manifesto authors further stated:

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

96 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

We follow these principles:

• Our highest priority is to satisfy the customer through early and continuous delivery of

valuable software

• Welcome changing requirements, even late in development; Agile processes harness change

for the customer’s competitive advantage

• Deliver working software frequently, from a couple of weeks to a couple of months, with a

preference for the shorter time scale

• Business people and developers must work together daily throughout the project

• Build projects around motivated individuals - give them the environment and support they

need, and trust them to get the job done

• The most efficient and effective method of conveying information to and within a

development team is face-to-face conversation

• Working software is the primary measure of progress

• Agile processes promote sustainable development - the sponsors, developers, and users

should be able to maintain a constant pace indefinitely

• Continuous attention to technical excellence and good design enhances agility

• Simplicity - the art of maximizing the amount of work not done - is essential

• The best architectures, requirements, and designs emerge from self-organizing teams

• At regular intervals, the team reflects on how to become more effective, then tunes and

adjusts its behavior accordingly

See http://agilemanifesto.org/.

Agile methodologists emphasize that software development is a learning process. In general, learning

(and the value derived from it) is not complete until the system is functioning to some degree of

capability. As such, methods that postpone the actual, integrated verification of the system increase

risk. Alistair Cockburn visualizes risk as the gap between the ongoing expenditure of funds and the lag

in demonstrating valuable learning (see Figure 31, “Waterfall Risk”, similar to [66]).

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

Digital Practitioner Body of Knowledge™ Standard 97

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 31. Waterfall Risk

Because Agile approaches emphasize delivering smaller batches of complete functionality, this risk gap

is minimized (see Figure 32, “Agile Risk”, similar to [66]).

Figure 32. Agile Risk

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

98 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

The Agile models for developing software aligned with the rise of cloud and web-scale IT. As new

customer-facing sites like Flickr®, Amazon, Netflix, Etsy®, and Facebook scaled to massive

proportions, it became increasingly clear that waterfall approaches were incompatible with their

needs. Because these systems were directly user-facing, delivering monetized value in fast-moving

competitive marketplaces, they required a degree of responsiveness previously not seen in “back-

office” IT or military-aerospace domains (the major forms that large-scale system development had

taken to date). We will talk more of product-centricity and the overall DevOps movement in the next

section.

This new world did not think in terms of large requirements specifications. Capturing a requirement,

analyzing and designing to it, implementing it, testing that implementation, and deploying the result to

the end user for feedback became something that needed to happen at speed, with high repeatability.

Requirements “backlogs” were (and are) never “done”, and increasingly were the subject of ongoing

re-prioritization, without high-overhead project “change” barriers.

These user-facing, web-based systems integrate the SDLC tightly with operational concerns. The sheer

size and complexity of these systems required much more incremental and iterative approaches to

delivery, as the system can never be taken offline for the “next major release” to be installed. New

functionality is moved rapidly in small chunks into a user-facing, operational status, as opposed to

previous models where vendors would develop software on an annual or longer version cycle, to be

packaged onto media for resale to distant customers.

Contract software development never gained favor in the Silicon Valley web-scale community;

developers and operators are typically part of the same economic organization. So, it was possible to

start breaking down the walls between “development” and “operations”, and that is just what

happened.

Large-scale systems are complex and unpredictable. New features are never fully understood until

they are deployed at scale to the real end user base. Therefore, large-scale web properties also started

to “test in production” (more on this in the Operations Competency Area) in the sense that they would

deploy new functionality to only some of their users. Rather than trying to increase testing to

understand things before deployment better, these new firms accepted a seemingly higher-level of risk

in exposing new functionality sooner. (Part of their belief is that it actually is lower risk because the

impacts are never fully understood in any event.)

Evidence of Notability

See [174] for a thorough history of Agile and its antecedents. Agile is recognized as notable in leading

industry and academic guidance [276, 140] and has a large, active, and highly visible community (see

http://www.agilealliance.org). It is increasingly influential on non-software activities as well [234, 233].

Limitations

Agile development is not as relevant when packaged software is acquired. Such software has a more

repeatable pattern of implementation, and more up-front planning may be appropriate.

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

Digital Practitioner Body of Knowledge™ Standard 99

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Related Topics

• Core SDLC Practices

• Digital Product Management

• Work Management

• Coordination

• Investment Management

• Digital Governance

• Agile Information Management

6.1.3.3. DevOps Technical Practices

Description

Consider this inquiry by Mary and Tom Poppendieck:

How long would it take your organization to deploy a change that involved one single line

of code? Do you deploy changes at this pace on a repeat, reliable basis? [221 p. 92]

The implicit goal is that the organization should be able to change and deploy one line of code, from

idea to production in under an hour, and in fact, might want to do so on an ongoing basis. There is

deep Lean/Agile theory behind this objective; a theory developed in reaction to the pattern of massive

software failures that characterized IT in the first 50 years of its existence. (This document discusses

systems theory, including the concept of feedback, in Context II and other aspects of Agile theory,

including the ideas of Lean Product Development, in Contexts II and III.)

Achieving this goal is feasible but requires new approaches. Various practitioners have explored this

problem, with great success. Key initial milestones included:

• The establishment of “test-driven development” as a key best practice in creating software [24]

• Duvall’s book Continuous Integration [92]

• Allspaw & Hammonds’s seminal “10 Deploys a Day” presentation describing technical practices at

Flickr [13]

• Humble & Farley’s Continuous Delivery [136]

• The publication of The Phoenix Project [165]

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

100 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 33. DevOps Definition

6.1.3.3.1. Defining DevOps

“DevOps” is a broad term, encompassing product management, continuous delivery, organization

structure, team behaviors, and culture (see Figure 33, “DevOps Definition”). Some of these topics will

not be covered until Contexts II and III in this document. At an execution level, the fundamental goal of

moving smaller changes more quickly through the pipeline is a common theme. Other guiding

principles include: “If it hurts, do it more frequently”. (This is in part a response to the poor practice, or

antipattern, of deferring integration testing and deployment until those tasks are so big as to be

unmanageable.) There is a great deal written on the topic of DevOps currently; the Humble/Farley

book is recommended as an introduction. Let’s go into a little detail on some essential Agile/DevOps

practices:

• Test-driven development

• Ongoing refactoring

• Continuous integration

• Continuous deployment

6.1.3.3.2. Continuous Delivery Pipeline

The infrastructure Competency Area suggests that the Digital Practitioner may need to select:

• Development stack (language, framework, and associated enablers such as database and

application server)

• Cloud provider that supports the chosen stack

• Version control

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

Digital Practitioner Body of Knowledge™ Standard 101

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• Deployment capability

The assumption is that the Digital Practitioner is going to start immediately with a continuous delivery

pipeline.

What is meant by a continuous delivery pipeline? Figure 34, “A Simple Continuous Delivery Toolchain”

presents a simplified, starting overview.

Figure 34. A Simple Continuous Delivery Toolchain

First, some potential for value is identified. It is refined through product management techniques into

a feature — some specific set of functionality that when complete will enable the value proposition

(i.e., as a moment of truth).

1. The feature is expressed as some set of IT work, today usually in small increments lasting between

one and four weeks (this of course varies). Software development commences; e.g., the creation of

Java components by developers who first write tests, and then write code that satisfies the test.

2. More or less simultaneously, the infrastructure configuration is also refined, also "as-code".

3. The source repository contains both functional and infrastructure artifacts (text-based).

4. When the repository detects the new “check-in”, it contacts the build choreography manager,

which launches a dedicated environment to build and test the new code. The environment is

configured using “Infrastructure as Code” techniques; in this way, it can be created automatically

and quickly.

5. If the code passes all tests, the compiled and built binary executables may then be “checked in” to a

package management repository.

6. Infrastructure choreography may be invoked at various points to provision and manage compute,

storage, and networking resources (on-premise or cloud-based).

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

102 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

7. Release automation deploys immutable binary packages to target infrastructure.

8. Examples of such infrastructure may include quality assurance, user acceptance, and production

environments.

9. The production system is monitored for availability and performance.

10. An emerging practice is to manage the end-to-end flow of all of the above activities as

"choreography", providing comprehensive traceability of configuration and deployment activities

across the pipeline.

6.1.3.3.3. Test Automation and Test-Driven Development

Testing software and systems is a critically important part of digital product development. The earliest

concepts of waterfall development called for it explicitly, and “software tester” as a role and “software

quality assurance” as a practice have long histories. Evolutionary approaches to software have a

potential major issue with software testing:

As a consequence of the introduction of new bugs, program maintenance

requires far more system testing per statement written than any other

programming. Theoretically, after each fix one must run the entire bank of test

cases previously run against the system, to ensure that it has not been

damaged in an obscure way. In practice, such regression testing must indeed

approximate this theoretical ideal, and it is very costly.

— Fred Brooks, Mythical Man-Month

This issue was and is well known to thought leaders in Agile software development. The key response

has been the concept of automated testing so that any change in the software can be immediately

validated before more development along those lines continues. One pioneering tool was JUnit:

The reason JUnit is important … is that the presence of this tiny tool has been

essential to a fundamental shift for many programmers. A shift where testing

has moved to a front and central part of programming. People have advocated it

before, but JUnit made it happen more than anything else.

— Martin Fowler, http://martinfowler.com/books/meszaros.html

From the reality that regression testing was “very costly” (as stated by Brooks in the above quote), the

emergence of tools like JUnit (coupled with increasing computer power and availability) changed the

face of software development, allowing the ongoing evolution of software systems in ways not

previously possible.

In test-driven development, the idea essence is to write code that tests itself, and in fact to write the

test before writing any code. This is done through the creation of test harnesses and the tight

association of tests with requirements. The logical culmination of test-driven development was

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

Digital Practitioner Body of Knowledge™ Standard 103

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

expressed by Kent Beck in eXtreme Programming: write the test first [24]. Thus:

1. Given a “user story” (i.e., system intent), figure out a test that will demonstrate its successful

implementation

2. Write this test using the established testing framework

3. Write the code that fulfills the test

Employing test-driven development completely and correctly requires thought and experience. But it

has emerged as a practice in the largest-scale systems in the world. Google runs many millions of

automated tests daily [300]. It has even been successfully employed in hardware development [118].

6.1.3.3.4. Refactoring and technical debt

Test-driven development enables the next major practice, that of refactoring. Refactoring is how

technical debt is addressed. What is technical debt? Technical debt is a term coined by Ward

Cunningham and is now defined by Wikipedia as:

… the eventual consequences of poor system design, software architecture, or software development

within a codebase. The debt can be thought of as work that needs to be done before a particular job can be

considered complete or proper. If the debt is not repaid, then it will keep on accumulating interest,

making it hard to implement changes later on … Analogous to monetary debt, technical debt is not

necessarily a bad thing, and sometimes technical debt is required to move projects forward. [303]

Test-driven development ensures that the system’s functionality remains consistent, while refactoring

provides a means to address technical debt as part of ongoing development activities. Prioritizing the

relative investment of repaying technical debt versus developing new functionality will be examined

in future sections.

Technical debt is covered further in here.

6.1.3.3.5. Continuous Integration

As systems engineering approaches transform to cloud and Infrastructure as Code, a large and

increasing percentage of IT work takes the form of altering text files and tracking their versions. This

was covered in the discussion of configuration management with artifacts such as scripts being

created to drive the provisioning and configuring of computing resources. Approaches which

encourage ongoing development and evolution are increasingly recognized as less risky since systems

do not respond well to big “batches” of change. An important concept is that of “continuous

integration”, popularized by Paul Duvall in his book of the same name [92].

In order to understand why continuous integration is important, it is necessary to discuss further the

concept of source control and how it is employed in real-world settings. Imagine Mary has been

working for some time with her partner Aparna in their startup (or on a small team) and they have

three code modules (see Figure 35, “File B being Worked on by Two People”). Mary is writing the web

front end (file A), Aparna is writing the administrative tools and reporting (file C), and they both

partner on the data access layer (file B). The conflict, of course, arises on file B that they both need to

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

104 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

work on. A and C are mostly independent of each other, but changes to any part of B can have an

impact on both their modules.

If changes are frequently needed to B, and yet they cannot split it into logically separate modules, they

have a problem; they cannot both work on the same file at the same time. They are each concerned

that the other does not introduce changes into B that “break” the code in their own modules A and C.

Figure 35. File B being Worked on by Two People

In smaller environments, or under older practices, perhaps there is no conflict, or perhaps they can

agree to take turns. But even if they are taking turns, Mary still needs to test her code in A to make sure

it has not been broken by changes Aparna made in B. And what if they really both need to work on B

(see Figure 35, “File B being Worked on by Two People”) at the same time?

Given that they have version control in place, each of them works on a “local” copy of the file (see

illustration “File B being worked on by two people”).

That way, they can move ahead on their local workstations. But when the time comes to combine both

of their work, they may find themselves in “merge hell”. They may have chosen very different

approaches to solving the same problem, and code may need massive revision to settle on one

codebase. For example, in the accompanying illustration, Mary’s changes to B are represented by

triangles and Aparna’s are represented by circles. They each had a local version on their workstation

for far too long, without talking to each other.

The diagrams represent the changes graphically; of course, with real code, the different graphics

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

Digital Practitioner Body of Knowledge™ Standard 105

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

represent different development approaches each person took. For example, Mary had certain needs

for how errors were handled, while Aparna had different needs.

Figure 36. Merge Hell

In Figure 36, “Merge Hell”, where triangles and circles overlap, Mary and Aparna painstakingly have to

go through and put in a consolidated error handling approach, so that the code supports both of their

needs. The problem, of course, is there are now three ways errors are being handled in the code. This

is not good, but they did not have time to go back and fix all the cases. This is a classic example of

technical debt.

Suppose instead that they had been checking in every day. They can identify the first collision quickly

(see Figure 37, “Catching Errors Quickly is Valuable”), and have a conversation about what the best

error handling approach is. This saves them both the rework of fixing the collisions, and the technical

debt they might have otherwise accepted:

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

106 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 37. Catching Errors Quickly is Valuable

These problems have driven the evolution of software configuration management for decades. In

previous methods, to develop a new release, the code would be copied into a very long-lived “branch”

(a version of the code to receive independent enhancement). Ongoing “maintenance” fixes of the

existing codebase would also continue, and the two codebases would inevitably diverge. Switching

over to the “new” codebase might mean that once-fixed bugs (bugs that had been addressed by

maintenance activities) would show up again, and, logically, this would not be acceptable. So, when the

newer development was complete, it would need to be merged back into the older line of code, and

this was rarely if ever easy (again, “merge hell”). In a worst-case scenario, the new development might

have to be redone.

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

Digital Practitioner Body of Knowledge™ Standard 107

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 38. Big Bang versus Continuous Integration

Enter continuous integration (see Figure 38, “Big Bang versus Continuous Integration”). As presented in

[92] the key practices (note similarities to the pipeline discussion) include:

• Developers run private builds including their automated tests before committing to source control

• Developers check in to source control at least daily

◦ Distributed version control systems such as git are especially popular, although older

centralized products are starting to adopt some of their functionality

◦ Integration builds happen several times a day or more on a separate, dedicated machine

• 100% of tests must pass for each build, and fixing failed builds is the highest priority

• A package or similar executable artifact is produced for functional testing

• A defined package repository exists as a definitive location for the build output

Rather than locking a file so that only one person can work on it at a time, it has been found that the

best approach is to allow developers to actually make multiple copies of such a file or file set and work

on them simultaneously.

This is the principle of continuous integration at work. If the developers are continually pulling each

other’s work into their own working copies, and continually testing that nothing has broken, then

distributed development can take place. So, for a developer, the day’s work might be as follows:

8 AM: check out files from master source repository to a local branch on the workstation. Because files

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

108 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

are not committed unless they pass all tests, the code is clean. The developer selects or is assigned a

user story (requirement) that they will now develop.

8:30 AM: The developer defines a test and starts developing the code to fulfill it.

10 AM: The developer is close to wrapping up the first requirement. They check the source repository.

Their partner has checked in some new code, so they pull it down to their local repository. They run all

the automated tests and nothing breaks, so all is good.

10:30 AM: They complete their first update of the day; it passes all tests on the local workstation. They

commit it to the master repository. The master repository is continually monitored by the build server,

which takes the code created and deploys it, along with all necessary configurations, to a dedicated

build server (which might be just a virtual machine or transient container). All tests pass there (the test

defined as indicating success for the module, as well as a host of older tests that are routinely run

whenever the code is updated).

11:00 AM: Their partner pulls these changes into their working directory. Unfortunately, some changes

made conflict with some work the partner is doing. They briefly consult and figure out a mutually-

acceptable approach.

Controlling simultaneous changes to a common file is only one benefit of continuous integration.

When software is developed by teams, even if each team has its own artifacts, the system often fails to

“come together” for higher-order testing to confirm that all the parts are working correctly together.

Discrepancies are often found in the interfaces between components; when component A calls

component B, it may receive output it did not expect and processing halts. Continuous integration

ensures that such issues are caught early.

6.1.3.3.6. Continuous Integration Choreography

DevOps and continuous delivery call for automating everything that can be automated. This goal led to

the creation of continuous integration managers such as Hudson, Jenkins, Travis CI, and Bamboo. Build

managers may control any or all of the following steps:

• Detecting changes in version control repositories and building software in response

• Alternately, building software on a fixed (e.g., nightly) schedule

• Compiling source code and linking it to libraries

• Executing automated tests

• Combining compiled artifacts with other resources into installable packages

• Registering new and updated packages in the package management repository, for deployment into

downstream environments

• In some cases, driving deployment into downstream environments, including production (this can

be done directly by the build manager, or through the build manager sending a message to a

deployment management tool)

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

Digital Practitioner Body of Knowledge™ Standard 109

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Build managers play a critical, central role in the modern, automated pipeline and will likely be a

center of attention for the new Digital Practitioner in their career.

Figure 39. Deployment

6.1.3.3.7. Continuous Delivery

Once the software is compiled and built, the executable files that can be installed and run

operationally should be checked into a package manager. At that point, the last mile steps can be taken,

and the now tested and built software can be deployed to pre-production or production environments

(see Figure 39, “Deployment”). The software can undergo usability testing, load testing, integration

testing, and so forth. Once those tests are passed, it can be deployed to production.

Moving new code into production has always been a risky procedure. Changing a running system

always entails some uncertainty. However, the practice of Infrastructure as Code coupled with

increased virtualization has reduced the risk. Often, a rolling release strategy is employed so that code

is deployed to small sets of servers while other servers continue to service the load. This requires

careful design to allow the new and old code to co-exist at least for a brief time.

This is important so that the versions of software used in production are well controlled and

consistent. The package manager can then be associated with some kind of deploy tool that keeps track

of what versions are associated with which infrastructure.

Timing varies by organization. Some strive for true “continuous deployment”, in which the new code

flows seamlessly from developer commit through build, test, package, and deploy. Others put gates in

between the developer and check-in to mainline, or source-to-build, or package-to-deploy so that some

human governance remains in the toolchain. This document goes into more detail on these topics in

the section on digital operations.

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

110 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.1.3.3.8. The Concept of “Release”

Release management, and the concept of a “release”, are among the most important and widely seen

concepts in all forms of digital management. Regardless of working in a cutting-edge Agile startup with

two people or one of the largest banks with a portfolio of thousands of applications, releases for

coordination and communication are likely being used.

What is a “release?”. Betz defined it this way in other work: “A significant evolution in an IT service,

often based on new systems development, coordinated with affected services and stakeholders”.

Release management’s role is to “Coordinate the assembly of IT functionality into a coherent whole

and deliver this package into a state in which the customer is getting the intended value” [31 p. 68, 31

p. 119].

Evidence of Notability

DevOps has not yet been fully recognized for its importance in academic guidance or peer-reviewed

literature. Nevertheless, its influence is broad and notable. Significant publications include [92, 13, 136,

165, 166, 99]. Large international conferences (notably the DevOps Enterprise Summit,

https://itrevolution.com/devops_events/) are dedicated to the event, as well as many smaller local

events under the banner of "DevOpsDays" (https://www.devopsdays.org/).

Limitations

Like Agile, DevOps is primarily valuable in the development of new digital functionality. It has less

relevance for organizations that choose to purchase digital functionality; e.g., as SaaS offerings. While

it includes the fragment "Ops", it does not cover the full range of operational topics covered in the

Operations Competency Area, such as help desk and field services.

Related Topics

• Digital Infrastructure

• Infrastructure as Code

• Agile Development

• Digital Operations

• Digital Product Management

• Work Management

• Lean Product Development

6.1.3.4. APIs, Microservices, and Cloud-Native

This document has now covered modern infrastructure, including container-based infrastructure

available via Cloud providers, and application development from waterfall, through Agile, and on to

DevOps. The industry term for the culmination of all of these trends is "cloud-native". The Cloud Native

Computing Foundation (CNCF) defines "cloud-native" as follows:

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

Digital Practitioner Body of Knowledge™ Standard 111

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

CNCF Cloud-Native Definition

Cloud-native technologies empower organizations to build and run scalable applications in

modern, dynamic environments such as public, private, and hybrid clouds. Containers, service

meshes, microservices, immutable infrastructure, and declarative APIs exemplify this approach.

These techniques enable loosely-coupled systems that are resilient, manageable, and observable.

Combined with robust automation, they allow engineers to make high-impact changes

frequently and predictably with minimal toil [62].

While this document does not cover specific programming languages or techniques, there are leading

practices for building modern applications that are notable and should be understood by all Digital

Practitioners. In software construction a programming language and execution environment must be

chosen, but this choice is only the start. Innumerable design choices are required in structuring

software, and the quality of these choices will affect the software’s ultimate success and value.

Early computer programs tended to be "monolithic"; that is, they were often built as one massive set of

logic and their internal structure might be very complex and hard to understand. (In fact, considerable

research has been performed on the limitations of human comprehension when faced with software

systems of high complexity.) Monolithic programs also did not lend themselves to re-use, and therefore

the same logic might need to be written over and over again. The use of "functions" and re-usable

"libraries" became commonplace, so that developers were not continuously rewriting the same thing.

Two of the most critical concepts in software design are coupling and cohesion. In one of the earliest

discussions of coupling, Ed Yourdon states:

"Coupling [is] the probability that in coding, debugging, or modifying one module, a programmer will

have to take into account something about another module. If two modules are highly coupled, then

there is a high probability that a programmer trying to modify one of them will have to make a change

to the other. Clearly, total systems cost will be strongly influenced by the degree of coupling between

modules." [312]

This is not merely a technical concern; as Yourdon implies, highly-coupled designs will result in higher

system costs.

Cohesion is the opposite idea: that a given module should do one thing and do it well. Software

engineers have been taught to develop highly-cohesive, loosely-coupled systems since at least the early

1970s, and these ideas continue to underlie the most modern trends in digital systems delivery. The

latest evolution is the concept of cloud-native systems, which achieve these ideals through APIs,

microservices, and container-based infrastructure.

6.1.3.4.1. Application Programming Interfaces

Three smaller software modules may be able to do the job of one monolithic program; however, those

three modules must then communicate in some form. There are a variety of ways that this can occur;

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

112 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

for example, communication may be via a shared data store. The preferred approach, however, is that

communication occur over APIs.

An API is the public entry point in and out of a softwre component. It can be understood as a sort of

contract; it represents an expectation that if you send a message or signal in a precisely specified

format to the API, you will receive a specific, expected response. For example, your online banking

service can be seen as having an API. You send it your name, password, and an indication that you

want your account balance, and it will return your account balance. In pseudocode, the API might look

like:

GetAccountBalance(user_name, password, account_number) returns amount

The modern digital world runs on APIs; they are pervasive throughout digital interactions. They

operate at different levels of the digital stack; your bank balance request might be transmitted by

HTTP, which is a lower-level set of APIs for all web traffic. At scale, APIs present a challenge of

management: how do you cope with thousands of APIs? Mechanisms must be created for

standardizing, inventorying, reporting on status, and many other concerns.

6.1.3.4.2. Microservices

APIs can be accessed in various ways. For example, a developer might incorporate a "library" in a

program she is writing. The library (for example, one that supports trigonometric functions) has a set

of APIs, that are only available if the library is compiled into the developer’s program and is only

accessible if the program itself is running. Also, in this case, the API is dependent on the programming

language; in general, a C++ library will not work in Java.

Increasingly, however, with the rise of the Internet, programs are continually "up" and running, and

available to any other program that can communicate over the Internet, or an organization’s internal

network. Programs that are continually run in this fashion, with attention to their availability and

performance, are called "services". In some cases, a program or service may only be available as a

visual web page. While this is still an API of a sort, many other services are available as direct API

access; no web browser is required. Rather, services are accessed through protocols such as REST over

HTTP. In this manner, a program written in Java can easily communicate with one written in C++. This

idea is not new; many organizations started moving towards Service-Oriented Architecture (SOA) in

the late 1990s and early 2000s. More recently, discussions of SOA have largely been replaced by

attention to microservices.

Sam Newman, in Building Microservices, provides the following definition: "Microservices are small,

autonomous services that work together" [208]. Breaking this down:

• "Small" is a relative term

Newman endorses an heuristic that it should be possible to rewrite the microservice in two weeks.

Matthew Skelton and Manuel Pais in Team Topologies [262] emphasize that optimally-sized teams have

an upper bound to their "cognitive capacity"; this is also a pragmatic limit on the size of an effective

microservice.

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

Digital Practitioner Body of Knowledge™ Standard 113

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• "Autonomous" means "loosely coupled" as discussed above, both in terms of the developer’s

perspective as well as the operational perspective

Each microservice runs independently, typically on its own virtual machines or containers.

Newman observes that microservices provide the following benefits:

• Technology flexibility: as noted above, microservices may be written in any language and yet

communicate over common protocols and be managed in a common framework

• Resilience: failure of one microservice should not result in failure of an entire digital product

• Scalability: monolithic applications typically must be scaled as one unit; with microservices, just

those units under higher load can have additional capacity allocated

• Ease of deployment: because microservices are small and loosely coupled, change is less risky; see

The DevOps Consensus as Systems Thinking

• Organizational alignment: large, monolithic codebases often encounter issues with unclear

ownership; microservices are typically each owned by one team, although this is not a hard and

fast rule

• Composability: microservices can be combined and re-combined ("mashed up") in endless

variations, both within and across organizational boundaries; an excellent example of this is

Google Maps, which is widely used by many other vendors (e.g. Airbnb™, Lyft™) when location

information is needed

• Replaceability: because they are loosely coupled and defined by their APIs, a microservice can be

replaced without replacing the rest of a broader system; for example, a microservice written in

Java can be replaced by one written in Go, as long as the APIs remain identical

6.1.3.4.3. The Twelve-Factor App

A number of good practices are associated with microservices success. One notable representation of

this broader set of concerns is known as the "twelve-factor app" (see https://12factor.net/). To quote

[302]:

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

114 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

The twelve-factor app is a methodology for building SaaS apps that:

• Use declarative formats for setup automation, to minimize time and cost for new developers

joining the project

• Have a clean contract with the underlying OS, offering maximum portability between

execution environments

• Are suitable for deployment on modern cloud platforms, obviating the need for servers and

systems administration

• Minimize divergence between development and production, enabling continuous

deployment for maximum agility

• Can scale up without significant changes to tooling, architecture, or development practices

The twelve-factor methodology can be applied to apps written in any programming language,

and which use any combination of backing services (database, queue, memory cache, etc.).

Excerpts from the Twelve-Factor App Website

1. Codebase

One codebase tracked in revision control, many deploys

A copy of the revision tracking database is known as a code repository, often shortened to code

repo or just repo … A codebase is any single repo (in a centralized revision control system like

Subversion), or any set of repos who share a root commit (in a decentralized revision control

system like Git). Twelve-factor principles imply continuous integration.

2. Dependencies

Explicitly declare and isolate dependencies

A twelve-factor app never relies on implicit existence of system-wide packages. It declares all

dependencies, completely and exactly, via a dependency declaration manifest. Furthermore, it uses

a dependency isolation tool during execution to ensure that no implicit dependencies “leak in”

from the surrounding system. The full and explicit dependency specification is applied uniformly

to both production and development.

3. Configuration management

Store config in the environment

An app’s config is everything that is likely to vary between deploys (staging, production, developer

environments, etc.). Apps sometimes store config as constants in the code. This is a violation of

twelve-factor, which requires strict separation of config from code. Config varies substantially

across deploys, code does not. Typical configuration values include server or hostnames, database

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

Digital Practitioner Body of Knowledge™ Standard 115

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

names and locations, and (critically) authentication and authorization information (e.g., usernames

and passwords, or private/public keys).

4. Backing services

Treat backing services as attached resources

A backing service [aka a resource] is any service the app consumes over the network as part of its

normal operation. Examples include data stores (such as MySQL or CouchDB®),

messaging/queueing systems (such as RabbitMQ® or Beanstalkd), SMTP services for outbound

email (such as Postfix), and caching systems (such as Memcached).

In addition to these locally-managed services, the app may also have services provided and

managed by third parties. The code for a twelve-factor app makes no distinction between local and

third-party services. To the app, both are attached resources, accessed via a URL or other

locator/credentials stored in the config. A deploy of the twelve-factor app should be able to swap

out a local MySQL database with one managed by a third party - such as Amazon Relational

Database Service (Amazon RDS) - without any changes to the app’s code … only the resource handle

in the config needs to change.

5. Build, release, run

Strictly separate build and run stages

A codebase is transformed into a (non-development) deploy through three [strictly separated]

stages: The build stage is a transform which converts a code repo into an executable bundle known

as a build. Using a version of the code at a commit specified by the deployment process, the build

stage fetches vendors' dependencies and compiles binaries and assets … The release stage takes the

build produced by the build stage and combines it with the deploy’s current config. The resulting

release contains both the build and the config and is ready for immediate execution in the

execution environment … The run stage (also known as “runtime”) runs the app in the execution

environment, by launching some set of the app’s processes against a selected release.

6. Processes

Execute the app as one or more stateless processes

Twelve-factor processes are stateless and share nothing. Any data that needs to persist must be

stored in a stateful backing service, typically a database … The memory space or file system of the

process can be used as a brief, single-transaction cache. For example, downloading a large file,

operating on it, and storing the results of the operation in the database. The twelve-factor app

never assumes that anything cached in memory or on disk will be available on a future request or

job – with many processes of each type running, chances are high that a future request will be

served by a different process.

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

116 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

1. Port binding

Export services via port binding

Web apps are sometimes executed inside a web server container. For example, PHP apps might run

as a module inside Apache® HTTPD, or Java apps might run inside Tomcat … The twelve-factor app

is completely self-contained and does not rely on runtime injection of a web server into the

execution environment to create a web-facing service. The web app exports HTTP as a service by

binding to a port, and listening to requests coming in on that port … In a local development

environment, the developer visits a service URL like http://localhost:5000/ to access the service

exported by their app. In deployment, a routing layer handles routing requests from a public-facing

hostname to the port-bound web processes.

2. Concurrency

Scale out via the process model

Any computer program, once run, is represented by one or more processes. Web apps have taken a

variety of process-execution forms. For example, PHP processes run as child processes of Apache,

started on demand as needed by request volume. Java processes take the opposite approach, with

the Java Virtual Machine (JVM) providing one massive [process] that reserves a large block of

system resources (CPU and memory) on startup, with concurrency managed internally via threads.

In both cases, the running process(es) are only minimally visible to the developers of the app … In

the twelve-factor app, processes are a first-class citizen. Processes in the twelve-factor app take

strong cues from the UNIX process model for running service daemons. Using this model, the

developer can architect their app to handle diverse workloads by assigning each type of work to a

process type. For example, HTTP requests may be handled by a web process, and long-running

background tasks handled by a worker process.

3. Disposability

Maximize robustness with fast startup and graceful shutdown

The twelve-factor app’s processes are disposable, meaning they can be started or stopped at a

moment’s notice. This facilitates fast elastic scaling, rapid deployment of code or config changes,

and robustness of production deploys … Processes should strive to minimize startup time. Ideally, a

process takes a few seconds from the time the launch command is executed until the process is up

and ready to receive requests or jobs … Processes shut down gracefully when they receive a

SIGTERM signal from the process manager. For a web process, graceful shutdown is achieved by

ceasing to listen on the service port (thereby refusing any new requests), allowing any current

requests to finish, and then exiting … For a worker process, graceful shutdown is achieved by

returning the current job to the work queue … Processes should also be robust against sudden

death … A twelve-factor app is architected to handle unexpected, non-graceful terminations.

4. Dev/prod parity

Keep development, staging, and production as similar as possible

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

Digital Practitioner Body of Knowledge™ Standard 117

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Historically, there have been substantial gaps between development (a developer making live edits

to a local deploy of the app) and production (a running deploy of the app accessed by end users).

These gaps manifest in three areas … The time gap: A developer may work on code that takes days,

weeks, or even months to go into production … The personnel gap: Developers write code,

operations engineers deploy it … The tools gap: Developers may be using a stack like NGINX™,

SQLite, and OS X, while the production deploy uses Apache, MySQL, and Linux … The twelve-factor

app is designed for continuous deployment by keeping [these gaps] between development and

production small.

Traditional app Twelve-factor app

Time between deploys Weeks Hours

Code authors versus code

deployers

Different people Same people

Dev versus production

environments

Divergent As similar as possible

5. Logs

Logs are the stream of aggregated, time-ordered events collected from the output streams of all

running processes and backing services. Logs in their raw form are typically a text format with one

event per line (though backtraces from exceptions may span multiple lines). Logs have no fixed

beginning or end, but flow continuously as long as the app is operating … A twelve-factor app

never concerns itself with routing or storage of its output stream … Instead, each running process

writes its event stream, unbuffered, to stdout. During local development, the developer will view

this stream in the foreground of their terminal to observe the app’s behavior … In staging or

production deploys, each process’ stream will be captured by the execution environment, collated

together with all other streams from the app, and routed to one or more final destinations for

viewing and long-term archival.

6. Admin processes

The process formation is the array of processes that are used to do the app’s regular business (such

as handling web requests) as it runs. Separately, developers will often wish to do one-off

administrative or maintenance tasks for the app, such as:

◦ Running database migrations …

◦ Running a console … to run arbitrary code or inspect the app’s models against the live database

…

◦ Running one-time scripts committed into the app’s repo …

One-off admin processes should be run in an identical environment as the regular long-running

processes of the app. They run against a release, using the same codebase and config as any process

run against that release. Admin code must ship with application code to avoid synchronization

issues.

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

118 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

It is strongly recommended that the reader review the unabridged set of guidelines at 12Factor.net.

Evidence of Notability

Cloud-native approaches are at the time of publication receiving enormous industry attention.

Kubecon (the leading conference of the CNCF) attracts wide interest, and all major cloud providers and

many smaller firms participate in the ecosystem. All major cloud providers and scores of smaller firms

participate in the CNCF ecosystem.

Limitations

Trillions of dollars of IT investment have been made in older architectures: bare-metal computing,

tightly-coupled systems, stateful applications, and every imaginable permutation of not following

guidance such as the twelve-factor methodology. The Digital Practitioner should be prepared to

encounter this messy real world.

Related Topics

• Digital Infrastructure

• Configuration Management and Infrastructure as Code

• Application Basics

• Agile Development

• DevOps

• Digital Operations

6.1.3.5. Securing Applications and Digital Products

Description

Application security includes a broad range of specialized areas, including secure software design and

development, threat modeling, vulnerability assessment, penetration testing, and the impact of

security on DevOps (and vice versa). As with other aspects of security, the move to cloud computing

brings some changes to application security. The CSA guidance on cloud security specifically addresses

application security considerations in cloud environments in domain 10 of their latest cloud security

guidance.

An important element of application security is Secure Software Development Lifecycle (SSDLC), an

approach toward developing software in a secure manner. Numerous frameworks and resources are

available to follow, including from Microsoft (Security Development Lifecycle), NIST (NIST SP 800-64

Rev. 2), ISO/IEC (ISO/IEC 27034-1:2011), and the Open Web Application Security Project (OWASP Top

Ten). In addition, information resources available from MITRE including Common Weaknesses

Enumeration (CWE) and Common Vulnerability and Exposures (CVE) are helpful to development

teams striving to develop secure code.

A basic approach to secure design and development will include these phases: Training – Define –

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

Digital Practitioner Body of Knowledge™ Standard 119

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Design – Develop – Test.
[3]

 A component of an SSDLC is threat modeling. Good resources on threat

modeling are available from Microsoft and from The Open Group.

It is worth noting that the move to cloud computing affects all aspects of an SSDLC, because cloud

services abstract various computing resources, and there are automation approaches used in cloud

services that fundamentally change the ways in which software is developed, tested, and deployed in

cloud services versus in on-premises computing. In addition, there are significant differences in the

degree of visibility and control that is provided to the customer, including availability of system logs at

various points in the computing stack.

Application security will also include secure deployment, encompassing code review, unit, regression,

and functional testing, and static and dynamic application security testing.

Other key aspects of application security include vulnerability assessment and penetration testing.

Both have differences in cloud versus on-premises, as a customer’s ability to perform vulnerability

scans and penetration tests may be restricted by contract by the CSP, and there may be technical issues

relating to the type of cloud service, single versus multi-tenancy of the application, and so on.

Evidence of Notability

To be added in a future version.

Limitations

To be added in a future version.

Related Topics

• Security Development Lifecycle (Microsoft)

• Threat Modeling (Microsoft)

• Open Enterprise Security Architecture (O-ESA) (The Open Group)

• Security Considerations in the System Development Life Cycle (NIST)

• Security Guidance for Critical Areas of Focus in Cloud Computing (CSA)

• Application Security - Part 1: Overview and Concepts, ISO/IEC27034-1:2011 (ISO/IEC)

• OWASP Top 10

• https://cwe.mitre.org/, Common Weaknesses Enumeration, Common Vulnerability, and Exposures

(MITRE)

6.1.4. Context I Conclusion

Preparing for the state transition to team.

6.1. Context I: Individual/Founder Chapter 6. The Body of Knowledge

120 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.1.4.1. Architectural View

The DPBoK contexts can be represented as subsets of The Open Group IT4IT Reference Architecture

([278]). The IT4IT Reference Architecture is fully elaborated to support the largest digital delivery

organizations, and includes components that are critical from the earliest days of an organization’s

evolution. A proposed implementation order for IT4IT functional components is mapped onto the

DPBoK Standard at the end of each context.

Figure 40. Architectural View

In this first context, the automation requirements are minimal but present. The ability to track the

state of the digital service across a rudimentary build/run pipeline is essential from the earliest efforts.

The digital nucleus should implement:

• Source Control Component

• Build Component

• Build Package Component

• Configuration Management Component

There is some ambiguity in the terminology, in that Source Control and Package Management are both

forms of Configuration Management in an abstract sense. However, neither of them covers

deployment to operational systems; additional capability is required for that.

Context I "Architectural View" Learning Objectives

• Identify the IT4IT components suitable for Context I

Chapter 6. The Body of Knowledge 6.1. Context I: Individual/Founder

Digital Practitioner Body of Knowledge™ Standard 121

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Related Topics

• Configuration Management and Infrastructure as Code

• DevOps Technical Practices

6.2. Context II: Team

Context Description

The hypothetical startup or product prototype has met with some success, and is now supported by a

team. (If the founder was based in an enterprise, they have been promoted to team lead.) The team has

a single mission and a cohesive identity, but still does not need a lot of overhead to get the job done.

Even with a few new people comes the need to more clearly establish product direction, so people are

building the right thing. The team is all in the same location, and can still communicate informally, but

there is enough going on that it needs a more organized approach to getting work done.

Things are getting larger and more complex. The product has a significant user base, and the founder

is increasingly out meeting with users, customers, and investors. As a result, she isn’t in the room with

the product team as much any more; in fact, she just named someone to be “product owner”. Finally,

the product is not valuable if people cannot understand how best to use it, or if it is not running and

the right people can’t get to it.

The practices and approaches established at the team level are critical to the higher levels of scale

discussed in Contexts III and IV. Context II focuses on small, cross-functional, outcome-oriented teams,

covering product management, work management, shared mental models, visualization, and systems

monitoring. It covers collaboration and customer intimacy, and the need to limit work-in-process, and

blameless cultures where people are safe to fail and learn. All of these are critical foundations for

future growth; scaling success starts with building a strong team level.

Competency Area: Product Management

The original product developer is spending more time with investors and customers, and maintaining

alignment around the original product vision is becoming more challenging as they are pulled in

various directions. They need some means of keeping the momentum here. The concept of “product

management” represents a rich set of ideas for managing the team’s efforts at this stage.

Competency Area: Work Management

Even with a small team of five people (let alone eight or nine), it is too easy for balls to get dropped as

work moves between key contributors. The team probably doesn’t need a complex software-based

process management tool yet, but it does need some way of managing work-in-process. More generally,

work takes many forms and exists as a concept at different scales.

One of the most important aspects of DevOps and Agile is "systems thinking", and even a small team

building one digital product can be viewed as a system. The term "information system" has a long

6.2. Context II: Team Chapter 6. The Body of Knowledge

122 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

history, but what is a "system"? What is feedback? There is a rich body of knowledge describing these

topics.

Competency Area: Operations Management

Since Section 6.1.3, “Application Delivery”, application developers have been running the product and

even answering the occasional phone call from customers. The team is now big enough that it starts to

become more specialized. Dedicated support staff answer phone calls, and even if the team rotates

operational responsibilities across developers, they are a distinct kind of “interrupt-driven” work that

is not compatible with heads-down, focused software development. Complex digital systems are fragile

and tend to fail; how you learn (or don’t) from those failures is a critical question. The learnings gained

from scaling systems in fact become a new source of demand on your product teams' development

time.

6.2.1. Product Management

Area Description

As a company or team grows, how does it ensure that newcomers share the same vision that inspired

the organization’s creation? This is the goal of product management as a formalized practice.

Product strategy was largely tacit in Context I. The founder or individual used product management

and product discovery practices, and may well be familiar with the ideas here, but the assumption is

that they did not explicitly formalize their approach to them. Now the team needs a more prescriptive

and consistent approach to discovering, defining, designing, communicating, and executing a product

vision.

This Competency Area defines and discusses product management, and distinguishes it from project

and process management. It covers how product teams are formed and what practices and attitudes

should be established quickly.

Product management has various schools of thought and practices, including Gothelf’s Lean UX,

Scrum, and more specific techniques for product “discovery”. The concepts of design and design

thinking are important philosophical foundations.

6.2.1.1. Product Management Basics

Description

Before work, before operations, there must be a vision of the product. A preliminary vision may exist,

but now as the organization grows, the Digital Practitioner needs to consider further how they will

sustain that vision and establish an ongoing capability for realizing it. Like many other topics in this

document, product management is a significant field in and of itself.

Historically, product management has not been a major theme in enterprise IT management. IT

systems started by serving narrow purposes, often “back-office” functions such as accounting or

materials planning. Mostly, such systems were managed as projects assembled on a temporary basis,

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Digital Practitioner Body of Knowledge™ Standard 123

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

resulting in the creation of a system to be “thrown over the wall” to operations. Product management,

on the other hand, is concerned with the entire lifecycle. The product manager (or owner, in Scrum

terms) cares about the vision, its execution, the market reaction to the vision (even if an internal

market), the health, care, and feeding of the product, and the product’s eventual sunset or

replacement.

In the enterprise IT world, “third-party” vendors (e.g., IBM®) providing the back-office systems had

product management approaches, but these were external to the IT operations. Nor were IT-based

product companies as numerous 40 years ago as they are today; as noted in the section on Digital

Transformation, the digital component of modern products continues to increase to the point where it

is often not clear whether a product is “IT” or not.

Reacting to market feedback and adapting product direction is an essential role of the product owner.

In the older model, feedback was often unwelcome, as the project manager typically was committed to

the open-loop dead reckoning of the project plan and changing scope or direction was seen as a failure,

more often than not.

Now, it is accepted that systems evolve, perhaps in unexpected directions. Rapidly testing, failing fast,

learning, and pivoting direction are all part of the lexicon, at least for market-facing IT-based products.

And even back-office IT systems with better understood scope are being managed more as systems (or

products) with lifecycles, as opposed to transient projects. (See the Amazon discussion, below.)

6.2.1.1.1. Defining Product Management

In order to define product management, the product first needs to be defined. Previously, it was

established that products are goods, services, or some combination, with some feature that provides

value to some consumer. BusinessDictionary.com defines it as follows:

[A Product is] A good, idea, method, information, object, or service created as a

result of a process and serves a need or satisfies a want. It has a combination

of tangible and intangible attributes (benefits, features, functions, uses) that a

seller offers a buyer for purchase. For example, a seller of a toothbrush offers

the physical product and also the idea that the consumer will be improving the

health of their teeth. A good or service [must] closely meet the requirements of

a particular market and yield enough profit to justify its continued existence.

— BusinessDictionary.com

Product management, according to the same source, is:

6.2. Context II: Team Chapter 6. The Body of Knowledge

124 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

The organizational structure within a business that manages the development,

marketing, and sale of a product or set of products throughout the product

lifecycle. It encompasses the broad set of activities required to get the product

to market and to support it thereafter.

— BusinessDictionary.com

Product management in the general sense often reports to the Chief Marketing Officer (CMO). It

represents the fundamental strategy of the firm, in terms of its value proposition and viability. The

product needs to reflect the enterprise’s strategy for creating and maintaining customers.

Product strategy for internally-facing products is usually not defined by the enterprise CMO. If it is a

back-office product, then “business within a business” thinking may be appropriate. (Even the payroll

system run by IT for human resources is a “product”, in this view.) In such cases, there still is a need

for someone to function as an “internal CMO” to the external “customers".

With Digital Transformation, all kinds of products have increasing amounts of “IT” in them. This

means that an understanding of IT, and ready access to any needed IT specialty skills, is increasingly

important to the general field of product management. Product management includes R&D, which

means that there is considerable uncertainty. This is of course also true of IT systems development.

Perhaps the most important aspect of product design is focusing on the user, and what they need. The

concept of outcome is key. This is easier said than done. The general problem area is considered

marketing, a core business school topic. Entire books have been written about the various tools and

techniques for doing this, from focus groups to ethnographic analysis.

However, Marty Cagan recommends distinguishing product management from product marketing. He

defines the two as follows:

The product manager is responsible for defining — in detail — the product to be built and validating that

product with real customers and users. The product marketing person is responsible for telling the world

about that product, including positioning, messaging and pricing, managing the product launch,

providing tools for the sales channel to market and sell the product, and for leading key programs such as

online marketing and influencer marketing programs [53 pp. 10-11].

Criticisms of overly marketing-driven approaches are discussed below.

6.2.1.1.2. Process, Project, and Product Management

In the remainder of this document, we will continually encounter three major topics:

• Product Management (this Competency Area)

• Process Management (covered in Section 6.3.1, “Coordination and Process”)

• Project Management (covered in Section 6.3.1, “Coordination and Process” and Section 6.3.2,

“Investment and Portfolio”)

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Digital Practitioner Body of Knowledge™ Standard 125

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

They have an important commonality: all of them are concepts for driving results across

organizations. Here are some of the key differences between process, project, and product

management in the context of digital services and systems:

Table 3. Process, Project, and Product Management

Process Project Product

Task-oriented Deliverable-oriented Outcome-oriented

Repeatable with a high degree of

certainty

Executable with a medium

degree of certainty

Significant component of R&D,

less certain of outcome —

empirical approaches required

Fixed time duration, relatively

brief (weeks/months)

Limited time duration, often

scoped to a year or less

No specific time duration; lasts

as long as there is a need

Fixed in form, no changes

usually tolerated

Difficult to change scope or

direction, unless specifically set

up to accommodate

Must accommodate market

feedback and directional change

Used to deliver service value and

operate system (the “Ops” in

DevOps)

Often concerned with system

design and construction, but

typically not with operation (the

“Dev” in DevOps)

Includes service concept and

system design, construction,

operations, and retirement (both

“Dev” and “Ops”)

Process owners are concerned

with adherence and continuous

improvement of the process;

otherwise can be narrow in

perspective

Project managers are trained in

resource and timeline

management, dependencies, and

scheduling; they are not typically

incented to adopt a long-term

perspective

Product managers need to have

project management skills as

well as understanding market

dynamics, feedback, building

long-term organizational

capability

Resource availability and

fungibility is assumed

Resources are specifically

planned for, but their

commitment is temporary (team

is “brought to the work”)

Resources are assigned long-

term to the product (work is

“brought to the team”)

The above distinctions are deliberately exaggerated, and there are of course exceptions (short projects,

processes that take years). However, it is in the friction between these perspectives we see some of the

major problems in modern IT management. For example, an activity which may be a one-time task or

a repeatable process results in some work product - perhaps an artifact (see Figure 41, “Activities

Create Work Products”).

Figure 41. Activities Create Work Products

6.2. Context II: Team Chapter 6. The Body of Knowledge

126 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

The consumer or stakeholder of that work product might be a project manager.

Project management includes concern for both the activities and the resources (people, assets,

software) required to produce some deliverable (see Figure 42, “Projects Create Deliverables with

Resources and Activities”).

Figure 42. Projects Create Deliverables with Resources and Activities

The consumer of that deliverable might be a product manager. Product management includes concern

for projects and their deliverables, and their ultimate outcomes, either in the external market or

internally (see Figure 43, “Product Management may Use Projects”).

Figure 43. Product Management may Use Projects

Notice that product management may directly access activities and resources. In fact, earlier-stage

companies often do not formalize project management (see Figure 44, “Product Management

Sometimes does not Use Projects”).

Figure 44. Product Management Sometimes does not Use Projects

In our scenario, you are now on a tight-knit, collaborative team. You should think in terms of

developing and sustaining a product. However, projects still exist, and sometimes you may find

yourself on a team that is funded and operated on that basis. You also will encounter the concept of

“process” even on a single team; more on that in Section 6.2.2, “Work Management”. We will go further

into projects and process management in Context III.

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Digital Practitioner Body of Knowledge™ Standard 127

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.2.1.1.3. Productization as a Strategy at Amazon

Amazon (the online retailer) is an important influence in the modern trend towards product-centric IT

management. First, all Amazon teams were told to assume that the functionality being built might at

some point be offered to external customers [3].

Second, a widely reported practice at Amazon.com is the limitation of product teams to between five

and eight people, the number that can be fed by “two pizzas” (depending on how hungry they are) [

110]. It has long been recognized in software and IT management that larger teams do not necessarily

result in higher productivity. The best known statement of this is "Brooks' Law” from The Mythical

Man-Month, that “adding people to a late project will make it later” [42].

The reasons for “Brooks' Law” have been studied and analyzed (see, for example, [183, 59]) but in

general, it is due to the increased communication overhead of expanded teams. Product design work

(of which software development is one form) is creative and highly dependent on tacit knowledge,

interpersonal interactions, organizational culture, and other “soft” factors. Products, especially those

with a significant IT component, can be understood as socio-technical systems, often complex. This

means that small changes to their components or interactions can have major effects on their overall

behavior and value.

This, in turn, means that newcomers to a product development organization can have a profound

impact on the product. Getting them “up to speed” with the culture, mental models, and tacit

assumptions of the existing team can be challenging and rarely is simple. And the bigger the team, the

bigger the problem. The net result of these two practices at Amazon (and now General Electric and

many other companies) is the creation of multiple nimble services that are decoupled from each other,

constructed and supported by teams appropriately sized for optimal high-value interactions.

Finally, Amazon founder Jeff Bezos mandated that all software development should be service-

oriented. That means that some form of standard API was required for all applications to communicate

with each other. Amazon’s practices are a clear expression of cloud-native development.

Evidence of Notability

Product management has a dedicated professional association, the Product Development and

Management Association (www.pdma.org.) Notable authors include Steve Blank, Marty Cagan, and Jeff

Gothelf. The topic as a whole is closely related to the general topic of R&D. There are many meetups,

conferences, and other events held under various banners such as Agile development.

Limitations

Product management tends to assume the existence of a market, and customers whose reaction is

unpredictable. This is not always the case in digital systems. Sometimes, digital artifacts and

capabilities have greater constraints, and must follow established specifications.

Related Topics

• Digital Value

6.2. Context II: Team Chapter 6. The Body of Knowledge

128 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• Application Delivery

• Operational Component

• Investment

• Architectural Coordination

6.2.1.2. Product Discovery

Description

Now that we have discussed the overall concept of product management and why it is important, and

how product teams are formed, we can turn more specifically to the topics of product discovery and

product design (see Section 6.2.1.3, “Product Design”). We have previously discussed the overall digital

business context, as a startup founder might think of the problem. But the process of discovery

continues as the product idea is refined, new business problems are identified, and solutions (such as

specific feature ideas) are designed and tested for outcomes.

NOTE This guidance favors the idea that products are “discovered” as well as "designed”.

The presence of a section entitled “product discovery” in this document is a departure from other IT

management textbooks. “Traditional” models of IT delivery focus on projects and deliverables,

concepts we touched on previously but that we will not explore in depth until later in the document.

However, the idea of “product discovery” within the large company is receiving more and more

attention. Even large companies benefit when products are developed with tight-knit teams using fast

feedback.

For our discussion here, the challenge with the ideas of projects and deliverables is that they represent

approaches that are more open-loop, or at least delayed in feedback. Design processes do not perform

well when feedback is delayed. System intent, captured as a user story or requirement, is only a

hypothesis until tested via implementation and user confirmation.

6.2.1.2.1. Formalizing Product Discovery

In Section 6.1.3, “Application Delivery”, we needed to consider the means for describing system intent.

Even as a bare-bones startup, some formalization of this starts to emerge, at the very least in the form

of test-driven development (see Figure 45, “Product Discovery Tacit”).

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Digital Practitioner Body of Knowledge™ Standard 129

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 45. Product Discovery Tacit

But, the assumption in our emergence model is that more formalized product management emerges

with the formation of a team. As a team, we now need to expand “upstream” of the core delivery

pipeline, so that we can collaborate and discover more effectively. Notice the grey box in Figure 46,

“Product Discovery Explicit”.

Figure 46. Product Discovery Explicit

6.2. Context II: Team Chapter 6. The Body of Knowledge

130 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

The most important foundation for your newly formalized product discovery capability is that it must

be empirical and hypothesis-driven. Too often, product strategy is based on the Highest Paid Person’s

Opinion (HiPPO).

The problem with relying on “gut feeling” or personal opinions is that people — regardless of

experience or seniority — perform poorly in assessing the likely outcome of their product ideas. A

well-known case is the initial rejection of Amazon shopping cart suggestions [179]. Some well-known

research on this topic was conducted by Microsoft’s Ronny Kohavi. In this research, Kohavi and team

determined that “only about 1/3 of ideas improve the metrics they were designed to improve” [170]. As

background, the same report cites that:

• "Netflix considers 90% of what they try to be wrong”

• “75% of important business decisions and business improvement ideas either have no impact on

performance or actually hurt performance” according to Qualpro (a consultancy specializing in

controlled experiments)

It is, therefore, critical to establish a strong practice of data-driven experimentation when forming a

product team and avoid any cultural acceptance of “gut feel” or deferring to HiPPOs. This can be a

difficult transition for the company founder, who has until now served as the de facto product

manager.

A useful framework, similar to Lean Startup is proposed by Spotify™, in the “DIBB” model:

• Data

• Insight

• Belief

• Bet

Data leads to insight, which leads to a hypothesis that can be tested (i.e., “bet” on — testing hypotheses

is not free). We discuss issues of prioritization further in Section 6.2.2, “Work Management”, in the

section on cost of delay.

Don Reinertsen (whom we will read more about in Competency Area 5) emphasizes that such

experimentation is inherently variable. We can’t develop experiments with any sort of expectation that

they will always succeed. We might run 50 experiments, and only have two succeed. But if the cost of

each experiment is $10,000, and the two that succeeded earned us $1 million each, we gained:

$ 2,000,000

$ — 500,000

$ 1,500,000

Not a bad return on investment! (see [230], Section 6.2.1, “Product Management”, for a detailed,

mathematical discussion, based on options and information theory). Roman Pichler, in Agile Product

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Digital Practitioner Body of Knowledge™ Standard 131

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Management with Scrum, describes “old-school” versus “new-school” product management as in Table

4, “Old School versus New School Product Management” (summarized from [219], p.xii).

Table 4. Old School versus New School Product Management

Old School New School

Shared responsibility Single product owner

Detached/distant product management Product owner on the Scrum team

Extensive up-front research Minimal up-front work to define rough vision

Requirements frozen early Dynamic backlog

Late feedback due to lengthy release cycle Early and frequent releases drive fast feedback,

resulting in customer value

6.2.1.2.2. Product Discovery Techniques

There are a wide variety of techniques and even “schools” of product discovery and design. This

section considers a few representatives. At the team level, such techniques must be further formalized.

The techniques are not mutually-exclusive; they may be complementary. User Story Mapping was

previously mentioned. In product discovery terms, User Story Mapping is a form of persona analysis.

But that is only one of many techniques. Roman Pichler mentions “Vision Box and Trade Journal

Review” and the “Kano Model” [219 p. 39]. Here, let’s discuss:

• “Jobs to be Done” analysis

• Impact mapping

• Business analysis and architecture

Jobs to Be Done

The “Jobs to be Done” framework was created by noted Harvard professor Clayton Christensen, in part

as a reaction against conventional marketing techniques that:

"frame customers by attributes - using age ranges, race, marital status, and other categories that

ultimately create products and entire categories too focused on what companies want to sell, rather than

on what customers actually need" [61].

“Some products are better defined by the job they do than the customers they serve”, in other words

[286]. This is in contrast to many kinds of business and requirements analysis that focus on identifying

different user personas (e.g., 45-55 married Black woman with children in the house). Jobs to be Done

advocates argue that “The job, not the customer, is the fundamental unit of analysis” and that

customers “hire” products to do a certain job [60].

To apply the Jobs to be Done approach, Des Traynor suggests filling in the blanks in the following [286]:

People hire your product to do the job of ------— every --------— when ----------. The other applicants for

this job are --------, --------, and --------, but your product will always get the job because of --------.

6.2. Context II: Team Chapter 6. The Body of Knowledge

132 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Understanding the alternatives people have is key. It is possible that the job can be fulfilled in multiple

different ways. For example, people may want certain software to be run. This job can be undertaken

through owning a computer (e.g., having a data center). It can also be managed by hiring someone

else’s computer (e.g., using a cloud provider). Not being attentive and creative in thinking about the

diverse ways jobs can be done places you at risk for disruption.

Impact Mapping

Understanding the relationship of a given feature or component to business objectives is critical. Too

often, technologists (e.g., software professionals) are accused of wanting “technology for technology’s

sake”.

Showing the “line of sight” from technology to a business objective is, therefore, critical. Ideally, this

starts by identifying the business objective. Gojko Adzic’s Impact Mapping: Making a big impact with

software products and projects [7] describes a technique for doing so:

An impact map is a visualization of scope and underlying assumptions, created collaboratively by senior

technical and business people.

Starting with some general goal or hypothesis (e.g., generated through Lean Startup thinking), build a

“map” of how the goal can be achieved, or hypothesis can be measured. A simple graphical approach

can be used, as in Figure 47, “Impact Map”.

Figure 47. Impact Map

NOTE
Impact mapping is similar to mind mapping, and some drawing tools such as Microsoft

Visio™ come with “Mind Mapping” templates.

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Digital Practitioner Body of Knowledge™ Standard 133

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

The most important part of the impact map is to answer the question “why are we doing this?”. The

impact map is intended to help keep the team focused on the most important objectives, and avoid less

valuable activities and investments.

For example, in the above diagram, we see that a bank may have an overall business goal of customer

retention. (It is much more expensive to gain a new customer than to retain an existing one, and

retention is a metric carefully measured and tracked at the highest levels of the business.)

Through focus groups and surveys, the bank may determine that staying current with online services

is important to retaining customers. Some of these services are accessed by home PCs, but increasingly

customers want access via mobile devices.

These business drivers lead to the decision to invest in online banking applications for both the

Apple® and Android™ mobile platforms. This decision, in turn, will lead to further discovery, analysis,

and design of the mobile applications.

The Business Analysis Body of Knowledge® (BABOK®)

One well-established method for product discovery is that of business analysis, formalized in the

Business Analysis Body of Knowledge (BABOK), from the International Institute of Business Analysis

[143].

The BABOK defines business analysis as (p.442):

The practice of enabling change in the context of an enterprise by defining needs and recommending

solutions that deliver value to stakeholders.

The BABOK is centrally concerned with the concept of requirements, and classifies them as follows:

• Business requirements

• Stakeholder requirements

• Solution requirements

◦ Functional requirements

◦ Non-functional requirements

• Transition requirements

The BABOK also provides a framework for understanding and managing the work of business analysts;

in general, it assumes that a Business Analyst capability will be established and that maturing such a

capability is a desirable thing. This may run counter to the Scrum ideal of cross-functional, multi-

skilled teams. Also as noted above, the term "requirements” has fallen out of favor with some Agile

thought leaders.

6.2. Context II: Team Chapter 6. The Body of Knowledge

134 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.2.1.3. Product Design

Once we have discovered at least a direction for the product’s value proposition, and have started to

understand and prioritize the functions it must perform, we begin the activity of design. Design, like

most other topics in this document, is a broad and complex area with varying definitions and schools

of thought. The Herbert Simon quote at the beginning of this section is frequently cited.

Design is an ongoing theme throughout the humanities, encountered in architecture (the non-IT

variety), art, graphics, fashion, and commerce. It can be narrowly focused, such as the question of

what color scheme to use on an app or web page. Or it can be much more expansive, as suggested by

the field of design thinking. We will start with the expansive vision and drill down into a few topics.

6.2.1.3.1. Design Thinking

Design thinking is a recent trend with various definitions, but in general, combines a design sensibility

with problem solving at significant scale. It usually is understood to include a significant component of

systems thinking.

Design thinking is the logical evolution of disciplines such as user interface design when such designs

encounter constraints and issues beyond their usual span of concern. Although it has been influential

on Lean UX and related works, it is not an explicitly digital discipline.

There are many design failures in digital product delivery. What is often overlooked is that the entire

customer experience of the product is a form of design.

Consider for example Apple. Their products are admired worldwide and cited as examples of “good

design”. Often, however, this is only understood in terms of the physical product; for example, an

iPhone® or a MacBook Air®. But there is more to the experience. Suppose you have technical

difficulties with your iPhone, or you just want to get more value out of it. Apple created its popular

Genius Bar support service, where you can get support and instruction in using the technology.

Notice that the product you are using is no longer just the phone or computer. It is the combination of

the device PLUS your support experience. This is essential to understanding the modern practices of

design thinking and Lean UX.

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Digital Practitioner Body of Knowledge™ Standard 135

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

The following table condensed from Lotta Hassi and Miko Laakso [125] provides a useful overview of

design thinking:

Table 5. Design Thinking Key Characteristics

PRACTICES THINKING STYLES MENTALITY

• HUMAN-CENTERED

APPROACH; e.g., people-based,

user-centered, empathizing,

ethnography, observation

• THINKING BY DOING; e.g., early

and fast prototyping, fast

learning, rapid iterative

development cycles

• COMBINATION OF DIVERGENT

AND CONVERGENT

APPROACHES; e.g., ideation,

pattern finding, creating

multiple alternatives

• COLLABORATIVE WORK STYLE;

e.g., multi-disciplinary

collaboration, involving many

stakeholders, interdisciplinary

teams

• ABDUCTIVE REASONING; e.g.,

the logic of "what could be",

finding new opportunities, urge

to create something new,

challenge the norm

• REFLECTIVE REFRAMING; e.g.,

rephrasing the problem, going

beyond what is obvious to see

what lies behind the problem,

challenge the given problem

• HOLISTIC VIEW; e.g., systems

thinking, 360 degree view on the

issue

• INTEGRATIVE THINKING; e.g.,

harmonious balance, creative

resolution of tension, finding

balance between validity and

reliability

• EXPERIMENTAL &

EXPLORATIVE; e.g., the license to

explore possibilities, risking

failure, failing fast

• AMBIGUITY TOLERANT; e.g.,

allowing for ambiguity, tolerance

for ambiguity, comfortable with

ambiguity, liquid and open

process

• OPTIMISTIC; e.g., viewing

constraints as positive, optimism

attitude, enjoying problem

solving

• FUTURE-ORIENTED; e.g.,

orientation towards the future,

vision versus status quo,

intuition as a driving force

6.2.1.3.2. Hypothesis Testing

The concept of hypothesis testing is key to product discovery and design. The power of scalable cloud

architectures and fast continuous delivery pipelines has made it possible to test product hypotheses

against real-world customers at scale and in real time. Companies like Netflix and Facebook have

pioneered techniques like "canary deployments” and "A/B testing”.

In these approaches, two different features are tried out simultaneously, and the business results are

measured. For example, are customers more likely to click on a green button or a yellow one? Testing

such questions in the era of packaged software would have required lab-based usability engineering

approaches, which risked being invalid because of their small sample size. Testing against larger

numbers is possible, now that software is increasingly delivered as a service.

6.2.1.3.3. Usability and Interaction

At a lower level than the holistic concerns of design thinking, we have practices such as usability

engineering. These take many forms. There are many systematic and well-researched approaches to:

6.2. Context II: Team Chapter 6. The Body of Knowledge

136 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• Usability, interaction design [74, 144, 284, 23]

• Visualization [54, 288]

and related topics. All such approaches, however, should be used in the overall Lean Startup/Lean UX

framework of hypothesis generation and testing. If we subscribe to design thinking and take a whole-

systems view, designing for ease of operations is also part of the design process. We will discuss this

further in Section 6.2.3, “Operations Management”. Developing documentation of the product’s

characteristics, from the perspective of those who will run it on a day-to-day basis, is also an aspect of

product delivery.

6.2.1.3.4. Product Discovery versus Design

Some of the most contentious discussions related to IT management and Agile come at the intersection

of software and systems engineering, especially when large investments are at stake. We call this the

“discovery versus design” problem.

Frequent criticisms of Lean Startup and its related digital practices are:

• They are relevant only for non-critical Internet-based products (e.g., Facebook and Netflix)

• Some IT products must fit much tighter specifications and do not have the freedom to “pivot” (e.g.,

control software written for aerospace and defense systems)

There are two very different product development worlds. Some product development ("cogs") is

constrained by the overall system it takes place within. Other product development ("flowers") has

more freedom to grow in different directions — to “discover” the customer.

The cog represents the world of classic systems engineering — a larger objective frames the effort, and

the component occupies a certain defined place within it. And yet, it may still be challenging to design

and build the component, which can be understood as a product in and of itself. Fast feedback is still

required for the design and development process, even when the product is only a small component

with a very specific set of requirements.

The flower represents the market-facing digital product that may “pivot”, grow, and adapt according to

conditions. It also is constrained, by available space and energy, but within certain boundaries has

greater adaptability.

Neither is better than the other, but they do require different approaches. In general, we are coming

from a world that viewed digital systems strictly as cogs. Subsequently, we are moving towards a world

in which digital systems are more flexible, dynamic, and adaptable.

When digital components have very well-understood requirements, usually we purchase them from

specialist providers (increasingly “as a service”). This results in increasing attention to the “flowers” of

digital product design since acquiring the “cogs” is relatively straightforward (more on this in the

section on sourcing).

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Digital Practitioner Body of Knowledge™ Standard 137

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Evidence of Notability

Product discovery techniques are widely discussed in the product management community and are

frequent topics of presentation at notable industry events such as Agile Alliance conferences.

Limitations

In organizations that are primarily purchasing software and not building it, product discovery

techniques may be less applicable. However, internal "products" understood as business capabilities

may still benefit from a design/discovery approach, even if they are based on (for example) a SaaS

offering.

Related Topics

• Digital Value

• Application Delivery

• Product Roadmapping

• Product Backlog, Estimation, and Prioritization

• Investment Management

6.2.1.4. Scrum and Other Product Team Practices

Description

A solid foundation of team-level organization and practice is essential as an organization scales up.

Bad habits (like accepting too much work in the system, or tolerating toxic individuals) will be more

and more difficult to overcome as the organization grows.

6.2.1.4.1. The Concept of Collaboration

Team collaboration is one of the key values of Agile. The Agile Alliance states that:

A “team” in the Agile sense is a small group of people, assigned to the same project or effort, nearly all of

them on a full-time basis.

Teams are multi-skilled, share accountability, and individuals on the team may play multiple roles [9]:

Face-to-face interactions, usually enabled by giving the team its own space, are essential for

collaboration. While there are various approaches to Agile, all concur that tight-knit, collaborative

teams deliver the highest value outcomes. However, collaboration does not happen just because people

are fed pizzas and work in a room together. Google has established that the most significant predictor

of team performance is a sense of psychological safety. Research by Anita Woolley and colleagues

suggests that three factors driving team performance are [309]:

• Equal contribution to team discussions (no dominant individuals)

• Emotional awareness — being able to infer other team members' emotional states

6.2. Context II: Team Chapter 6. The Body of Knowledge

138 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• Teams with a higher proportion of women tend to perform better (the researchers inferred this

was due to women generally having higher emotional awareness)

Other research shows that diverse teams and organizations are more innovative and deliver better

results; such teams may tend to focus more on facts (as opposed to groupthink) [235]. Certainly, a sense

of psychological safety is critical to the success of diverse teams, who may come from different cultures

and backgrounds that don’t inherently trust each other.

IMPORTANT

The collective problem-solving talent of a diverse group of individuals who are

given space to self-organize and solve problems creatively is immense, and very

possibly the highest value resource known to the modern organization.

Two current schools of thought with much to say about collaboration are Lean UX and Scrum.

6.2.1.4.2. Lean UX

Lean UX is the practice of bringing the true nature of a product to light faster,

in a collaborative, cross-functional way that reduces the emphasis on thorough

documentation while increasing the focus on building a shared understanding

of the actual product experience being designed.

— Jeff Gothelf, Lean UX

Lean UX is a term coined by author and consultant Jeff Gothelf [114], which draws on three major

influences:

• Design thinking

• Agile software development

• Lean Startup

We briefly discussed Lean Startup in Section 6.1.1, “Digital Fundamentals”, and the history and

motivations for Agile software development in Section 6.1.3, “Application Delivery”. We will look in

more depth at product discovery techniques, and design and design thinking subsequently. However,

Lean UX has much to say about forming the product team, suggesting (among others) the following

principles for forming and sustaining teams:

• Dedicated, cross-functional teams

• Outcome (not deliverable/output) focus

• Cultivating a sense of shared understanding

• Avoiding toxic individuals (so-called “rockstars, gurus, and ninjas”)

• Permission to fail

(Other Lean UX principles such as small batch sizes and visualizing work will be discussed elsewhere;

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Digital Practitioner Body of Knowledge™ Standard 139

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

there is significant overlap between Lean UX and other schools of thought covered in this document).

Lean UX is an influential work among digital firms and summarizes modern development practices

well, especially for small, team-based organizations with minimal external dependencies. It is a broad

and conceptual, principles-based framework open for interpretation in multiple ways. We continue

with more “prescriptive” methods and techniques, such as Scrum.

6.2.1.4.3. Scrum

Scrum is a lightweight framework designed to help small, close-knit teams of

people develop complex products.

— Chris Sims/Hillary L. Johnson, Scrum: A Breathtakingly Brief and Agile Introduction

There Are No Tasks; There Are Only Stories.

— Jeff Sutherland, Scrum: The Art of Doing Twice the Work in Half the Time

One of the first prescriptive Agile methodologies you are likely to encounter as a practitioner is Scrum.

There are many books, classes, and websites where you can learn more about this framework; [260] is

a good brief introduction, and [243] is well suited for more in-depth study.

NOTE

“Prescriptive” means detailed and precise. A doctor’s prescription is specific as to what

medicine to take, how much, and when. A prescriptive method is similarly specific.

“Agile software development” is not prescriptive, as currently published by the Agile

Alliance; it is a collection of principles and ideas you may or may not choose to use.

By comparison, Scrum is prescriptive; it states roles and activities specifically, and

trainers and practitioners, in general, seek to follow the method completely and

accurately.

Scrum is appropriate to this Competency Area, as it is product-focused. It calls for the roles of:

• Product owner

• Scrum master

• Team member

and avoids further elaboration of roles.

The Scrum product owner is responsible for holding the product vision and seeing that the team

executes the highest value work. As such, the potential features of the product are maintained in a

“backlog” that can be re-prioritized as necessary (rather than a large, fixed-scope project). The product

owner also defines acceptance criteria for the backlog items. The Scrum master, on the other hand,

acts as a team coach, “guiding the team to ever-higher levels of cohesiveness, self-organization, and

performance” [260]. To quote Roman Pichler:

6.2. Context II: Team Chapter 6. The Body of Knowledge

140 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

The product owner and Scrum master roles complement each other: The product owner is primarily

responsible for the “what" - creating the right product. The Scrum master is primarily responsible for the

“how" - using Scrum the right way [219 p. 9].

Scrum uses specific practices and artifacts such as sprints, standups, reviews, the above-mentioned

concept of backlog, burndown charts, and so forth. We will discuss some of these further in Section

6.2.2, “Work Management” and Section 6.3.1, “Coordination and Process” along with Kanban, another

popular approach for executing work.

In Scrum, there are three roles:

• The product owner sets the overall direction

• The Scrum master coaches and advocates for the team

• The development team is defined as those who are committed to the development work

There are seven activities:

• The “Sprint” is a defined time period, typically two to four weeks, in which the development team

executes on an agreed scope

• Backlog Grooming is when the product backlog is examined and refined into increments that can

be moved into the sprint backlog

• Sprint Planning is where the scope is agreed

• The Daily Scrum is traditionally held standing up, to maintain focus and ensure brevity

• Sprint Execution is the development activity within the sprint

• Sprint Review is the “public end of the sprint” when the stakeholders are invited to view the

completed work

• The Sprint Retrospective is held to identify lessons learned from the sprint and how to apply them

in future work

There are a number of artifacts:

• The product backlog is the overall “to-do” list for the product

• The sprint backlog is the to-do list for the current sprint

• Potentially Shippable Increment (PSI) is an important concept used to decouple the team’s

development activity from downstream business planning; a PSI is a cohesive unit of functionality

that could be delivered to the customer, but doing so is the decision of the product owner

Scrum is well grounded in various theories (process control, human factors), although Scrum team

members do not need to understand theory to succeed with it. Like Lean UX, Scrum emphasizes high-

bandwidth collaboration, dedicated multi-skilled teams, a product focus, and so forth.

The concept of having an empowered product owner readily available to the team is attractive,

especially for Digital Practitioners who may have worked on teams where the direction was unclear.

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Digital Practitioner Body of Knowledge™ Standard 141

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Roman Pichler identifies a number of common mistakes, however, that diminish the value of this

approach [219 pp. 17-20]:

• Product owner lacks authority

• Product owner is overworked

• Product ownership is split across individuals

• Product owner is “distant” — not co-located or readily available to team

Scrum and Shu-ha-ri

In the Japanese martial art of aikido, there is the concept of shu-ha-ri, a form of learning progression.

• Shu: the student follows the rules of a given method precisely, without addition or alteration

• Ha: the student learns theory and principle of the technique

• Ri: the student creates own approaches and adapts technique to circumstance

Scrum at its most prescriptive can be seen as a shu-level practice; it gives detailed guidance that has

been shown to work.

See [104] and [65 pp. 17-18]

6.2.1.4.4. More on Product Team Roles

Boundaries are provided by the product owner and often come in the form of

constraints, such as: "I need it by June", "We need to reduce the per-unit cost by

half", "It needs to run at twice the speed", or "It can use only half the memory

of the current version".

— Mike Cohn, Succeeding with Agile Software Development Using Scrum

Marty Cagan suggests that the product team has three primary concerns, requiring three critical roles

[53]:

• Value: Product Owner/Manager

• Feasibility: Engineering

• Usability: User Experience Design

Jeff Patton represents these concepts as a Venn diagram (see Figure 48, “The Three Views of the

Product Team”, similar to [217]).

6.2. Context II: Team Chapter 6. The Body of Knowledge

142 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 48. The Three Views of the Product Team

Finally, a word on the product manager. Scrum is prescriptive around the product owner role, but

does not identify a role for product manager. This can lead to two people performing product

management: a marketing-aligned “manager” responsible for high-level requirements, with the Scrum

“product owner” attempting to translate them for the team. Marty Cagan warns against this approach,

recommending instead that the product manager and owner be the same person, separate from

marketing [53 pp. 7-8].

In a subsequent section, we will consider the challenge of product discovery — at a product level, what

practices do we follow to generate the creative insights that will result in customer value?

Evidence of Notability

Product team structure and practices are widely debated and discussed in the industry, particularly in

the Agile community. Notable conferences include Agile Alliance and Global Scrum Gathering. Many

books are published on Scrum and related product team organization topics; e.g., [243, 114, 273],

Limitations

Product team structure and practices are only relevant when there is a concept of product. Some

digital work may be framed as projects, where structures are temporary and objectives are more

constrained.

Related Topics

• Digital Value

• Application Delivery

• Product Backlog, Estimation, and Prioritization

• Work Management

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Digital Practitioner Body of Knowledge™ Standard 143

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• Organization and Culture

6.2.1.5. Product Planning

Description

6.2.1.5.1. Product Roadmapping and Release Planning

Creating effective plans in complex situations is challenging. Planning a new product is one of the most

challenging endeavors, one in which failure is common. The historically failed approach (call it the "

planning fallacy”) is to develop overly detailed (sometimes called “rigorous”) plans and then assume

that achieving them is simply a matter of “correct execution” (see Figure 49, “Planning Fallacy”).

Figure 49. Planning Fallacy

Contrast the planning fallacy with Lean Startup approaches, which emphasize ongoing confirmation of

product direction through experimentation. In complex efforts, ongoing validation of assumptions and

direction is essential, which is why overly plan-driven approaches are falling out of favor. However,

some understanding of timeframes and mapping goals against the calendar is still important. Exactly

how much effort to devote to such forecasting remains a controversial topic with DPM professionals,

one we will return to throughout this document.

Minimally, a high-level product roadmap is usually called for: without at least this, it may be difficult to

secure the needed investment to start product work. Roman Pichler recommends the product roadmap

contains:

• Major versions

6.2. Context II: Team Chapter 6. The Body of Knowledge

144 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• Their projected launch dates

• Target customers and needs

• Top three to five features for each version [219 p. 41]

More detailed understanding is left to the product backlog, which is subject to ongoing “grooming”;

that is, re-evaluation in light of feedback.

6.2.1.5.2. Backlog, Estimation, and Prioritization

The product discovery and roadmapping activity ultimately generates a more detailed view or list of

the work to be done. As we previously mentioned, in Scrum and other Agile methods this is often

termed a backlog. Both Mike Cohn and Roman Pichler use the DEEP acronym to describe backlog

qualities [68 p. 243, 219 p. 48]:

• Detailed appropriately

• Estimated

• Emergent (feedback such as new or changed stories are readily accepted)

• Prioritized

Figure 50. Backlog Granularity and Priority

The backlog should receive ongoing “grooming” to support these qualities, which means several things:

• Addition of new items

• Re-prioritization of items

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Digital Practitioner Body of Knowledge™ Standard 145

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• Elaboration (decomposition, estimation, and refinement)

When “detailed appropriately”, items in the backlog are not all the same scale. Scrum and Agile

thinkers generally agree on the core concept of "story”, but stories vary in size (see Figure 50, “Backlog

Granularity and Priority”, similar to [219]), with the largest stories often termed “epics”. The backlog is

ordered in terms of priority (what will be done next) but, critically, it is also understood that the lower-

priority items, in general, can be larger-grained. In other words, if we visualize the backlog as a stack,

with the highest priority on the top, the size of the stories increases as we go down. (Don Reinertsen

terms this progressive specification; see [229 pp. 176-177] for a detailed discussion.)

Estimating user stories is a standard practice in Scrum and Agile methods more generally. Agile

approaches are wary of false precision and accept the fact that estimation is an uncertain practice at

best. However, without some overall estimate or roadmap for when a product might be ready for use,

it is unlikely that the investment will be made to create it. It is difficult to establish the economic value

of developing a product feature at a particular time if you have no idea of the cost and/or effort

involved to bring it to market.

At a more detailed level, it is common practice for product teams to estimate detailed stories using

“points”. Mike Cohn emphasizes: “Estimate size, derive duration” ([67], p.xxvii). Points are a relative

form of estimation, valid within the boundary of one team. Story point estimating strives to avoid false

precision, often restricting the team’s estimate of the effort to a modified Fibonacci sequence, or even

T-shirt or dog sizes [67 p. 37] as shown in Table 6, “Agile Estimating Scales” (similar to [67 p. 37]).

Mike Cohn emphasizes that estimates are best done by the teams performing the work [67 p. 51]. We

will discuss the mechanics of maintaining backlogs in Section 6.2.2, “Work Management”.

Table 6. Agile Estimating Scales

Story point T-Shirt Dog

1 XXS Chihauha

2 XS Dachshund

3 S Terrier

5 M Border Collie

8 L Bulldog

13 XL Labrador Retriever

20 XXL Mastiff

40 XXXL Great Dane

Backlogs require prioritization. In order to prioritize, we must have some kind of common

understanding of what we are prioritizing for. Mike Cohn, in Agile Estimating and Planning, proposes

that there are four major factors in understanding product value:

• The financial value of having the features

6.2. Context II: Team Chapter 6. The Body of Knowledge

146 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• The cost of developing and supporting the features

• The value of the learning created by developing the features

• The amount of risk reduced by developing the features [67 p. 80]

In Section 6.2.2, “Work Management” we will discuss additional tools for managing and prioritizing

work, and we will return to the topic of estimation in Section 6.3.2, “Investment and Portfolio”.

Evidence of Notability

Product roadmaps are one of the first steps towards investment management and strategic planning.

There are robust debates around estimation and planning in the Agile community.

Limitations

Roadmaps are uncertain at best. They are prone to false precision and the planning fallacy.

Related Topics

• Digital Value

• Work Management

• Investment and Portfolio

6.2.2. Work Management

Area Description

When a team or a startup hires its first employees, and increases in size from two people to three or

four, it is confronted with the fundamental issue of how work is tracked. The product team is now

getting feedback from users calling for prioritization, the allocation of resources, and the tracking of

effort and completion. These are the critical day-to-day questions for any business larger than a couple

of co-founders:

• What do we need to do?

• In what order?

• Who is doing it?

• Do they need help?

• Do they need direction?

• When will they be done?

• What do we mean by done?

People have different responsibilities and specialties, yet there is a common vision for delivering an IT-

based product of some value. How is the work tracked towards this end? Perhaps the team is still

primarily in the same location, but people sometimes are off-site or keeping different hours. Beyond

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Digital Practitioner Body of Knowledge™ Standard 147

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

product strategy, the team is getting support calls that result in fixes and new features. The initial signs

of too much work-in-progress (slow delivery of final results, multi-tasking, and more) may be starting

to appear.

The team has a product owner. They now institute Scrum practices of a managed backlog, daily

standups, and sprints. They may also use Kanban-style task boards or card walls (to be described in

this Competency Area), which are essential for things like support or other interrupt-driven work. The

relationship of these to your Scrum practices is a matter of ongoing debate. In general the team does

not yet need full-blown project management (covered in Context III). The concept of "ticketing” will

likely arise at this point. How this relates to your Scrum/Kanban approach is a question.

Furthermore, while Agile principles and practices were covered in previous Competency Areas, there

was limited discussion of why they work. This Competency Area covers Lean theory of product

management that provides a basis for Agile practices; in particular, the work of Don Reinertsen.

The Competency Area title “Work Management” reflects earlier stages of organizational growth. At this

point, neither formal project management, nor a fully realized process framework is needed, and the

organization may not see a need to distinguish precisely between types of work processes. “It’s all just

work” at this stage.

6.2.2.1. Work Management and Lean

Description

Product development drives a wide variety of work activities. As your product matures, you encounter

both routine and non-routine work. Some of the work depends on other work getting done. Sometimes

you do not realize this immediately. All of this work needs to be tracked.

Work management may start with verbal requests, emails, even postal mail. If you ask your colleague

to do one thing, and she doesn’t have anything else to do, it is likely that the two of you will remember.

If you ask her to do four things over a few days, you might both still remember. But if you are asking

for new things every day, it is likely that some things will get missed. You each might start keeping your

own “to do” list, and this mechanism can handle a dozen or two dozen tasks. Consider an example of

three people, each with their own to do list (see Figure 51, “Work Flowing Across Three To-Do Lists”).

Figure 51. Work Flowing Across Three To-Do Lists

6.2. Context II: Team Chapter 6. The Body of Knowledge

148 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

In this situation, each person has their own “mental model” of what needs to be done, and their own

tracking mechanism. We don’t know how the work is being transmitted: emails, phone calls, hallway

conversations. ("Say, Joe, there is an issue with Customer X’s bill, can you please look into it?”)

But what happens when there are three of you? Mary asks Aparna to do something, and in order to

complete it, she needs something from Joe, whom Mary is also asking to complete other tasks. As an

organization scales, this can easily lead to confusion and “dropped balls”.

At some point, you need to formalize your model of the work, how it is described, and how it flows.

This is such a fundamental problem in human society that many different systems, tools, and processes

have been developed over the centuries to address it.

Probably the most important is the shared task reference point. What does this mean? The “task” is

made “real” by associating it with a common, agreed artifact.

For example, a “ticket” may be created, or a "work order”. Or a “story”, written down on a sticky note.

At our current level of understanding, there is little difference between these concepts. The important

thing they have in common is an independent existence. That is, Mary, Aparna, and Joe might all

change jobs, but the artifact persists independently of them. Notice also that the artifact — the ticket,

the post-it note — is not the actual task, which is an intangible, consensus concept. It is a representation

of this intangible “intent to perform”. We will discuss these issues of representation further in Section

6.4.2, “Information Management”.

A complex IT-based system is not needed if you are all in the same room! (Nor for that matter a

complex process framework, such as ITIL or COBIT®. There is a risk in using such frameworks at this

stage of evolution — they add too much overhead for your level of growth.) It is also still too early for

formal project management. The “project team” would be most or all of the organization, so what

would be the point? A shared white board in a public location might be all that is needed (see Figure

52, “Common List”). This gives the team a “shared mental model” of who is doing what.

Figure 52. Common List

The design of the task board above has some issues, however. After the team gets tired of erasing and

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Digital Practitioner Body of Knowledge™ Standard 149

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

rewriting the tasks and their current assignments, they might adopt something more like this:

Figure 53. Simple Task Board

The board itself might be a white board or a cork bulletin board with push pins (see Figure 53, “Simple

Task Board”). The notes could be sticky, or index cards. There are automated solutions as well. The tool

doesn’t really matter. The important thing is that, at a glance, the entire team can see its flow of work

and who is doing what.

This is sometimes called a “Kanban board”, although David Anderson (originator of the Kanban

software method [20]) himself terms the basic technique a "card wall”. It also has been called a "Scrum

Board”. The board at its most basic is not specific to either methodology. The term “Kanban” itself

derives from Lean manufacturing principles; we will cover this in-depth in the next section. The basic

board is widely used because it is a powerful artifact. Behind its deceptive simplicity are considerable

industrial experience and relevant theory from operations management and human factors. However,

it has scalability limitations. What if the team is not all in the same room? We will cover this and

related issues in Context III.

The card wall or Kanban board is the first channel we have for demand management. Demand

management is a term meaning “understanding and planning for required or anticipated services or

work”. Managing day-to-day incoming work is a form of demand management. Capturing and

assessing ideas for next year’s project portfolio (if you use projects) is also demand management at a

larger scale.

6.2.2.1.1. Lean Background

To understand Kanban we should start with Lean. Lean is a term invented by American researchers

who investigated Japanese industrial practices and their success in the 20th century. After the end of

World War II, no-one expected the Japanese economy to recover the way it did. The recovery is

6.2. Context II: Team Chapter 6. The Body of Knowledge

150 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

credited to practices developed and promoted by Taiichi Ohno and Shigeo Shingo at Toyota [212].

These practices included:

• Respect for people

• Limiting work-in-process

• Small batch sizes (driving towards “single piece flow”)

• Just-in-time production

• Decreased cycle time

Credit for Lean is also sometimes given to US thinkers such as W. Edwards Deming, Peter Juran, and

the theorists behind the Training Within Industry methodology, each of whom played influential roles

in shaping the industrial practices of post-war Japan.

Kanban is a term originating from Lean and the Toyota Production System. Originally, it signified a

“pull” technique in which materials would only be transferred to a given workstation on a definite

signal that the workstation required the materials. This was in contrast to “push” approaches where

work was allowed to accumulate on the shop floor, on the (now discredited) idea that it was more

“efficient” to operate workstations at maximum capacity.

Factories operating on a “push” model found themselves with massive amounts of inventory (work-in-

process) in their facilities. This tied up operating capital and resulted in long delays in shipment.

Japanese companies did not have the luxury of large amounts of operating capital, so they started

experimenting with "single-piece flow”. This led to a number of related innovations, such as the ability

to re-configure manufacturing machinery much more quickly than US factories were capable of.

David J. Anderson was a product manager at Microsoft who was seeking a more effective approach to

managing software development. In consultation with Don Reinertsen (introduced below) he applied

the original concept of Kanban to his software development activities [20].

Scrum (covered in the previous chapter) is based on a rhythm with its scheduled sprints; for example,

every two weeks (this is called cadence). In contrast, Kanban is a continuous process with no specified

rhythm. Work is “pulled” from the backlog into active attention as resources are freed from previous

work. This is perhaps the most important aspect of Kanban — the idea that work is not accepted until

there is capacity to perform it.

You may have a white board covered with sticky notes, but if they are stacked on top of each other

with no concern for worker availability, you are not doing Kanban. You are accepting too much work-

in-process, and you are likely to encounter a “high-queue state” in which work becomes slower and

slower to get done. (More on queues below.)

6.2.2.1.2. The Theory of Constraints

Eliyahu Moshe Goldratt was an Israeli physicist and management consultant, best known for his

pioneering work in management theory, including The Goal, which is a best-selling business novel

frequently assigned in MBA programs. It and Goldratt’s other novels have had a tremendous effect on

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Digital Practitioner Body of Knowledge™ Standard 151

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

industrial theory and, now, digital management. One of the best known stories in The Goal centers

around a Boy Scout march. Alex, the protagonist struggling to save his manufacturing plant, takes a

troop of Scouts on a ten-mile hike. The troop has hikers of various speeds, yet the goal is to arrive

simultaneously. As Alex tries to keep the Scouts together, he discovers that the slowest, most

overweight scout (Herbie) also has packed an unusually heavy backpack. The contents of Herbie’s pack

are redistributed, speeding up both Herbie and the troop.

This story summarizes the Goldratt approach: finding the “constraint” to production (his work as a

whole is called the Theory of Constraints). In Goldratt’s view, a system is only as productive as its

constraint. At Alex’s factory, it is found that the “constraint” to the overall productivity issues is the

newest computer-controlled machine tool — one that could (in theory) perform the work of several

older models but was now jeopardizing the entire plant’s survival. The story in this novelization draws

important parallels with actual Lean case studies on the often-negative impact of such capital-intensive

approaches to production.

6.2.2.1.3. The Shared Mental Model of the Work to be Done

Joint activity depends on interpredictability of the participants’ attitudes and

actions. Such interpredictability is based on common ground — pertinent

knowledge, beliefs, and assumptions that are shared among the involved

parties. [167]

— Gary Klein et al., “Common Ground and Coordination in Joint Activity"

The above quote reflects one of the most critical foundations of team collaboration: a common ground,

a base of “knowledge, beliefs, and assumptions” enabling collaboration and coordination. Common

ground is an essential quality of successful teamwork, and we will revisit it throughout the book. There

are many ways in which common ground is important, and we will discuss some of the deeper aspects

in terms of information in Section 6.4.2, “Information Management”. Whether you choose Scrum,

Kanban, or choose not to label your work management at all, the important thing is that you are

creating a shared mental model of the work: its envisioned form and content, and your progress

towards it.

Below, we will discuss:

• Visualization of work

• The concept of Andon

• The definition of done

• Time and space shifting

Visualization is a good place to introduce the idea of common ground.

6.2. Context II: Team Chapter 6. The Body of Knowledge

152 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.2.2.1.4. Visualization

As simple as the white board is, it makes work-in-progress continuously

visible, it enforces work-in-progress constraints, it creates synchronized daily

interaction, and it promotes interactive problem solving. Furthermore, teams

evolve methods of using white boards continuously, and they have high

ownership in their solution. In theory, all this can be replicated by a computer

system. In practice, I have not yet seen an automated system that replicates the

simple elegance and flexibility of a manual system.

— Don Reinertsen, Principles of Product Development Flow

Why are shared visual representations important? Depending on how you measure, between 40% to as

much as 80% of the human cortex is devoted to visual processing. Visual processing dominates mental

activity, consuming more neurons than the other four senses combined [252]. Visual representations

are powerful communication mechanisms, well suited to our cognitive abilities.

This idea of common ground, a shared visual reference point, informing the mental model of the team,

is an essential foundation for coordinating activity. This is why card walls or Kanban boards located in

the same room are so prevalent. They communicate and sustain the shared mental model of a human

team. A shared card wall, with its two dimensions and tasks on cards or sticky notes, is more

informative than a simple to-do list (e.g., in a spreadsheet). The cards occupy two-dimensional space

and are moved over time to signify activity, both powerful cues to the human visual processing system.

Similarly, monitoring tools for systems operation make use of various visual clues. Large monitors may

be displayed prominently on walls so that everyone can understand operational status. Human visual

orientation is also why Enterprise Architecture persists. People will always draw to communicate. (See

also visualization and Enterprise Architecture.)

Card walls and publicly displayed monitors are both examples of information radiators. The

information radiator concept derives from the Japanese concept of Andon, important in Lean thinking.

6.2.2.1.5. Andon, and the Andon Cord

The Andon cord (not to be confused with Andon in the general sense) is another well-known concept in

Lean manufacturing. It originated with Toyota, where line workers were empowered to stop the

production line if any defective materials or assemblies were encountered. Instead of attempting to

work with the defective input, the entire line would shut down, and all concerned would establish

what had happened and how to prevent it. The concept of Andon cord concisely summarizes the Lean

philosophy of employee responsibility for quality at all levels [212]. Where Andon is a general term for

information radiator, the Andon cord implies a dramatic response to the problems of flow — all

progress is stopped, everywhere along the line, and the entire resources of the production line are

marshaled to collaboratively solve the issue so that it does not happen again. As Toyota thought leader

Taiichi Ohno states:

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Digital Practitioner Body of Knowledge™ Standard 153

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Stopping the machine when there is trouble forces awareness on everyone.

When the problem is clearly understood, improvement is possible. Expanding

this thought, we establish a rule that even in a manually operated production

line, the workers themselves should push the stop button to halt production if

any abnormality appears.

— Taiichi Ohno

Andon and information radiators provide an important stimulus for product teams, informing

priorities and prompting responses. They do not prescribe what is to be done; they simply indicate an

operational status that may require attention.

6.2.2.1.6. Definition of Done

As work flows through the system performing it, understanding its status is key to managing it. One of

the most important mechanisms for doing this is to define what is meant by “done simply”. The Agile

Alliance states:

“The team agrees on, and displays prominently somewhere in the team room, a list of criteria which

must be met before a product increment, often a user story, is considered “done” [9]. Failure to meet

these criteria at the end of a sprint normally implies that the work should not be counted toward that

sprint’s velocity.” There are various patterns for defining “done”; for example, Thoughtworks

recommends that the business analyst and developer both must agree that some task is complete (it is

not up to just one person). Other companies may require peer code reviews [206]. The important point

is that the team must agree on the criteria.

This idea of defining “done” can be extended by the team to other concepts such as “blocked”. The

important thing is that this is all part of the team’s shared mental model, and is best defined by the

team and its customers. (However, governance and consistency concerns may arise if teams are too

diverse in such definitions.)

6.2.2.1.7. Time and Space Shifting

At some point, your team will be faced with the problems of time and/or space shifting. People will be

on different schedules, or in different locations, or both. There are two things we know about such

working relationships. First, they lead to sub-optimal team communications and performance. Second,

they are inevitable.

The need for time and space shifting is one of the major drivers for more formalized IT systems. It is

difficult to effectively use a physical Kanban board if people aren’t in the office. The outcome of the

daily standup needs to be captured for the benefit of those who could not be there.

However, acceptance of time and space shifting may lead to more of it, even when it is not absolutely

required. Constant pressure and questioning are recommended, given the superior bandwidth of face-

to-face communication in the context of team collaboration.

6.2. Context II: Team Chapter 6. The Body of Knowledge

154 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

But not all work requires the same degree of collaboration. While we are still not ready for full-scale

process management, at this point in our evolution, we likely will encounter increasing needs to track

customer or user service interactions, which can become quite numerous even for small, single-team

organizations. Such work is often more individualized and routine, not requiring the full bandwidth of

team collaboration. We will discuss this further with the topic of the help or service desk, later in this

Competency Area.

6.2.2.1.8. Queues and Limiting Work-in-Process

Even at this stage of our evolution, with just one co-located collaborative team, it is important to

consider work-in-process and how to limit it. One topic we will emphasize throughout the rest of this

document is queuing.

A queue, intuitively, is a collection of tasks to be done, being serviced by some worker or resource in

some sequence; for example:

• Feature “stories” being developed by a product team

• Customer requests coming into a service desk

• Requests from a development team to an infrastructure team for services (e.g., network or server

configuration, consultations, etc.)

Queuing theory is an important branch of mathematics used extensively in computing, operations

research, networking, and other fields. It is a topic getting much attention of late in the Agile and

related movements, especially as it relates to digital product team productivity.

The amount of time that any given work item spends in the queue is proportional to how busy the

servicing resource is. The simple formula, known as Little’s Law, is:

Wait time = (% Busy)/(% Idle)

In other words, if you divide the percentage of busy time for the resource by its idle time, you see the

average wait time. So, if a resource is busy 40% of the days, but idle 60% of the days, the average time

you wait for the resource is:

0.4/0.6= 0.67 hours (2/3 of a day)

Conversely, if a resource is busy 95% of the time, the average time you will wait is:

0.95/0.05 = 5.67 (19 days!)

If you use a graphing calculator, you see the results in Figure 54, “Time in Queue Increases

Exponentially with Load”.

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Digital Practitioner Body of Knowledge™ Standard 155

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 54. Time in Queue Increases Exponentially with Load

Notice how the wait time approaches infinity as the queue utilization approaches 100%. And yet, full

utilization of resources is often sought by managers in the name of “efficiency”. These basic principles

are discussed by Gene Kim et al. in The Phoenix Project [165], Chapter 23, and more rigorously by Don

Reinertsen in The Principles of Product Development Flow [230], Chapter 3. A further complication is

when work must pass through multiple queues; wait times for work easily expand to weeks or months.

Such scenarios are not hypothetical, they are often seen in the real world and are a fundamental cause

of IT organizations getting a bad name for being slow and unresponsive. Fortunately, Digital

Practitioners are gaining insight into these dynamics and matters are improving across the industry.

Understanding queuing behavior is critical to productivity. Reinertsen suggests that poorly managed

queues contribute to:

• Longer cycle time

• Increased risk

• More variability

• More overhead

• Lower quality

• Reduced motivation

6.2. Context II: Team Chapter 6. The Body of Knowledge

156 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

These issues were understood by the pioneers of Lean manufacturing, an important movement

throughout the 20th century. One of its central principles is to limit work-in-process. Work-in-process is

obvious on a shop floor because physical raw materials (inventory) are quite visible.

Don Reinertsen developed the insight that product design and development had an invisible inventory

of “work-in-process” that he called design-in-process. Just as managing physical work-in-process on the

factory floor is key to a factory’s success, so correctly understanding and managing design-in-process is

essential to all kinds of R&D organizations — including digital product development; e.g., building

software(!). In fact, because digital systems are largely invisible even when finished, understanding

their work-in-process is even more challenging.

It is easy and tempting for a product development team to accumulate excessive amounts of work-in-

process. And, to some degree, having a rich backlog of ideas is an asset. But, just as some inventory

(e.g., groceries) is perishable, so are design ideas. They have a limited time in which they might be

relevant to a customer or a market. Therefore, accumulating too many of them at any point in time can

be wasteful.

What does this have to do with queuing? Design-in-progress is one form of queue seen in the digital

organization. Other forms include unplanned work (incidents and defects), implementation work, and

many other concepts we will discuss in this chapter.

Regardless of whether it is a “requirement”, a “user story”, an “epic”, “defect", “issue”, or “service

request”, you should remember it is all just work. It needs to be logged, prioritized, assigned, and

tracked to completion. Queues are the fundamental concept for doing this, and it is critical that digital

management specialists understand this.

6.2.2.1.9. Multi-Tasking

Multi-tasking (in this context) is when a human attempts to work on diverse activities simultaneously;

for example, developing code for a new application while also handling support calls. There is broad

agreement that multi-tasking destroys productivity, and even mental health [57]. Therefore, minimize

multi-tasking. Multi-tasking in part emerges as a natural response when one activity becomes blocked

(e.g., due to needing another team’s contribution). Approaches that enable teams to work without

depending on outside resources are less likely to promote multi-tasking. Queuing and work-in-process

therefore become even more critical topics for management concern as activities scale up.

6.2.2.1.10. Scrum, Kanban, or Both?

So, do you choose Scrum, Kanban, both, or neither? We can see in comparing Scrum and Kanban that

their areas of focus are somewhat different:

• Scrum is widely adopted in industry and has achieved a level of formalization, which is why Scrum

training is widespread and generally consistent in content

• Kanban is more flexible but this comes at the cost of more management overhead; it requires more

interpretation to translate to a given organization’s culture and practices

• As Scrum author Ken Rubin notes: “Scrum is not well suited to highly interrupt-driven work” [

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Digital Practitioner Body of Knowledge™ Standard 157

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

243]; Scrum on the service desk doesn’t work (but if your company is too small, it may be difficult

to separate out interrupt-driven work; we will discuss the issues around interrupt-driven work

further in Section 6.2.3, “Operations Management”)

• Finally, hybrids exist (Ladas' “Scrumban” [172])

Ultimately, instead of talking too much about “Scrum” or “Kanban”, the student is encouraged to look

more deeply into their fundamental differences. We will return to this topic in the section on Lean

Product Development.

6.2.2.1.11. Lean Guidelines

• Finish what you start, if you can, before starting anything else - when you work on three things at

once, the multi-tasking wastes time, and it takes you three times longer to get any one of the things

done (more on multi-tasking in this chapter)

• Infinitely long to-do lists (backlog) sap motivation - consider limiting backlog as well as work-in-

process

• Visibility into work-in-process is important for the collective mental model of the team

There are deeper philosophical and cultural qualities to Kanban beyond workflow and queuing.

Anderson and his colleagues continue to evolve Kanban into a more ambitious framework. Mike

Burrows [48] identifies the following key principles:

• Start with what you do now

• Agree to pursue evolutionary change

• Initially, respect current processes, roles, responsibilities, and job titles

• Encourage acts of leadership at every level in your organization — from individual contributor to

senior management

• Visualize

• Limit work-in-progress

• Manage flow

• Make policies explicit

• Implement feedback loops

• Improve collaboratively, evolve experimentally (using models and the scientific method)

Evidence of Notability

Work and task management is a fundamental problem in human organizations. It is the foundation of

workflow and BPM. Lean generally is one of the most significant currents of thought in modern

management [212, 307, 308, 239, 238]. Kanban is widely discussed at Agile and DevOps conferences.

Using a lightweight, generalized task tracking tool, often physical, is seen in digital organizations

worldwide.

6.2. Context II: Team Chapter 6. The Body of Knowledge

158 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Limitations

Kanban’s generalized workflow does not scale to complex processes with many steps and decision

points. This will be covered further in the section on workflow management. Not all activities reduce

well to a list of tasks. Some are more intangible and outcome-focused. As Bjarne Stroustrup, the

inventor of C+, stated: "The idea of software development as an assembly line manned by semi-skilled

interchangeable workers is fundamentally flawed and wasteful" +[271]. It is critical to distinguish Lean

as applied to digital systems development (as a form of applied R&D) versus Lean in its manufacturing

aspects. Reinertsen’s contributions ([229, 230]) are unique and notable in this regard and are discussed

in the next section.

Related Topics

• Product Team Practices

• Lean Product Development

• Operational Response

• Coordination and Process

• Organizational Structure

• Governance Elements

6.2.2.2. Lean Product Development

Description

One of the challenges with applying Lean to IT (as noted previously) is that many IT professionals

(especially software developers) believe that manufacturing is a “deterministic” field, whose lessons

don’t apply to developing technical products. “Creating software is like creating art, not being on an

assembly line”, is one line of argument.

The root cause of this debate is the distinction between product development and production. It is true

that an industrial production line - for example, producing forklifts by the thousands - may be

repetitive. But how did the production line come to be? How was the forklift invented, or developed? It

was created as part of a process of product development. It took mechanical engineering, electrical

engineering, chemistry, materials science, and more. Combining fundamental engineering principles

and techniques into a new, marketable product is not a repetitive process; it is a highly variable,

creative process, and always has been.

One dead end that organizations keep pursuing is the desire to make R&D more “predictable"; that is,

to reduce variation and predictably create innovation. This never works well; game-changing

innovations are usually complex responses to complex market systems dynamics, including customer

psychology, current trends, and many other factors. The process of innovating cannot, by its very

nature, be made repeatable.

Developing innovative products and services drives the enterprise’s growth. The future enterprise’s

performance is largely determined by the quality of product development. Products and services that

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Digital Practitioner Body of Knowledge™ Standard 159

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

fit market needs generate more profitable growth. Designing efficient product delivery processes

determines up to 70% of your run or production costs.

Lean Product and Process Development (or LPPD) is not just applying Lean tools from the

manufacturing floor to the LPPD environment. It is a unique set of principles, methods, and tools that

build on the experience of enterprises such as Toyota, Ford, or Harley-Davidson.

(This section based on [200, 215, 201, 295].)

The key characteristics of LPPD are:

• Clear definition of value from a customer perspective to inform product development from start to

finish

• Chief Engineer system that integrates cross-functional expertise to architect a product that delivers

value to customers and contributes to the economic success of the enterprise

• Front-loading the development process to explore thoroughly alternative solutions while there is

maximum design space

• Set-Based Concurrent Engineering (SBCE) to facilitate the smooth integration of products'

components

• High degree of teamwork facilitated by the Obeya process

• Knowledge and responsibility-based approach with planned learning cycles

• Levelled workload through Cadence, Pull, and Flow

6.2.2.2.1. Define Value from a Customer Perspective

One of the Lean Product Development practices is "Go & See". Instead of relying on secondary

information such as market studies or marketing reports (as also discussed in Product Discovery),

product team members are encouraged to experience first hand customers' needs, problems, and

emotions. For example, one of the Toyota Chief Engineers rented a car in Canada and drove for several

months in the winter time to understand the unique needs of the Canadian driver. Design thinking

possibly combined with anthropological approaches help understand value from a customer’s

perspective.

6.2.2.2.2. The Chief Engineer System

Toyota’s Chief Engineers are not program managers who focus on controlling and reporting

development activities. They are leaders who create and communicate a compelling and feasible

vision. They define a clear and logical architecture for the product and value stream. Their T-shaped

profile gives them enough understanding of the various disciplines at play so they can help solve cross-

disciplinary problems. Chief Engineers are accountable for the economic success of their products.

Last but not the least, their leadership skills help them inspire excellent engineers. The Chief Engineer

does not have formal authority on the teams that develop the product. Team members report to

functional department heads. New Agile at scale organizational models such as the Spotify model are

similar with teams members reporting to chapters or guilds and not squad leaders. The Product Owner

6.2. Context II: Team Chapter 6. The Body of Knowledge

160 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

plays a role comparable to the Chief Engineer’s one at a smaller scale.

6.2.2.2.3. Front Load the Development Process

Poor decisions made early in the development process have negative consequences that increase

exponentially over time because reversing them later in the lifecycle becomes more and more difficult.

Amazon CEO Jeff Bezos classifies decisions into type 1 and type 2 categories [35]. Type 1 decisions are

not reversible, and you have to be very careful making them. Type 2 decisions are like walking through

a door — if you don’t like the decision, you can always go back. Because type 1 decisions are difficult to

reverse, alternatives should be thoroughly explored before the final decision is made. This tendency to

front load the development process could slow the development process.

6.2.2.2.4. Set-Based Concurrent Engineering

Set-Based Concurrent Engineering or SBCE makes front loading compatible with short product

development lead times. Instead of focusing on the rapid completion of individual component designs

in isolation, SBCE looks at how individual designs will interact within a system before the design is

complete. The focus is on system integration before individual design completion. The concurrent

nature of the design process contributes to shortening product development lead time while front

loading combined with the integration focus helps minimize bad design decisions which would at the

end slow the development process and increase "non-quality". A good metaphor for SBCE is

doodle.com which offers a much better way of scheduling a meeting compared to the old iterative

"point-based" way of finding a time that works for all.

6.2.2.2.5. The Obeya Process

We introduced the concept of Andon previously. Lean Product Development has a similar practice,

Obeya. The Obeya process begins with the entire team posting in a physical room visual artifacts

representing the product’s components. Product component owners are responsible for posting status

information such as timing, issues, key design questions, etc. Because the information is shared in a

transparent manner, useful conversations are elicited. When problems are identified they are

analyzed using problem solving approaches such as PDCA and A3. Collocation greatly intensifies

communication and helps solve problems earlier. One of the advantages of the Obeya process is that it

does not force the enterprise to change its departmental organization or to co-locate hundreds of

engineers. When an Obeya room cannot be set up at the same place, virtual ones can be created using

specialized collaborative software. The Obeya process proved to be a critical element of the Toyota

product development system helping radically reduce lead time.

6.2.2.2.6. Knowledge and Responsibility-Based

Traditional task-based project management is based on tasks completed and not on technical results.

Because project managers do not understand the reality that hides behind the Gantt chart, problems

can remain hidden for a long time. In contrast, the Chief Engineer defines integrating events at fixed

dates. Required results are communicated to responsible engineers who are free to plan and organize

as needed to meet these dates and deliver expected results. Top-down detailed planning and control is

replaced by top-down objectives, the detailed planning and execution being delegated to autonomous

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Digital Practitioner Body of Knowledge™ Standard 161

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

teams. The responsibility style helps develop a learning development organization. Bureaucracy is

eliminated and the creation of useful knowledge encouraged.

6.2.2.2.7. Levelled Workload through Cadence, Pull, and Flow

Unevenness (Mura) and overburden (Muri) are root causes of waste (Muda) in both production and

development value streams. In the context of LPPD work should be released in the organization on a

regular cadence in order to level the workload. Integrating events gives freedom to developers to plan

their work to meet those events. In this way development work is pulled (as covered in the Kanban

discussion) rather than scheduled. Similarly information is pulled by developers based on what they

need to know rather than being pushed according to some centrally planned schedule. Don Reinertsen,

the author of The Principles of Product Development Flow, proposes a method to maximize the

economic benefit of a portfolio of projects. The key idea is that the sequencing of projects should

consider both the cost of delay of each project and the amount of time that the project will block scarce

development resources. This approach is known as a Weighted Shortest Job First (WSJF) queueing

discipline. It has influenced the Agile community; SAFe specifies WSJF to prioritize backlogs.

6.2.2.2.8. Reinertsen’s Product Flow Model

In IT, simply developing software for a new problem (or even new software for an old problem) is an

R&D problem, not a production line problem. It is iterative, uncertain, and risky, just like other forms

of product development. That does not mean it is completely unmanageable, or that its creation is a

mysterious, artistic process. It is just a more variable process with a higher chance of failure, and with

a need to incorporate feedback quickly to reduce the risk of open-loop control failure. These ideas are

well known to the Agile community and its authors. However, there is one thought leader who stands

out in this field: an ex-Naval officer and nuclear engineer named Donald Reinertsen who was

introduced in our previous discussions on beneficial variability in product discovery and queuing.

Reinertsen’s work dates back to 1991, and (originally as a co-author with Preston G. Smith) presaged

important principles of the Agile movement [263], from the general perspective of product

development. Reinertsen’s influence is well documented and notable. He was partnering with David

Anderson when Anderson created the “software Kanban” approach. He wrote the introduction to

Leffingwell’s Agile Software Requirements, the initial statement of SAFe. His influence is pervasive in

the Agile community. His work is deep and based on fundamental mathematical principles such as

queueing theory. His work can be understood as a series of interdependent principles:

• The flow or throughput of product innovation is the primary driver of financial success (notice that

innovation must be accepted by the market — simply producing a new product is not enough)

• Product development is essentially the creation of information

• The creation of information requires fast feedback

• Feedback requires limiting work-in-process

• Limiting work-in-process in product design contexts requires rigorous prioritization capabilities

• Effective, economical prioritization requires understanding the cost of delay for individual product

features

6.2. Context II: Team Chapter 6. The Body of Knowledge

162 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• Understanding cost of delay requires smaller batch sizes, consisting of cohesive features, not large

projects (this supporting point to Reinertsen’s work was introduced by Josh Arnold [22])

These can be summarized as in Figure 55, “Lean Product Development Hierarchy of Concerns”.

Figure 55. Lean Product Development Hierarchy of Concerns

If a company wishes to innovate faster than competitors, it requires fast feedback on its experiments

(whether traditionally understood, laboratory-based experiments, or market-facing validation as in

Lean Startup. In order to achieve fast feedback, work-in-process must be reduced in the system,

otherwise high-queue states will slow feedback down.

But how do we reduce work-in-process? We have to prioritize. Do we rely on the HiPPO, or do we try

something more rational? This brings us to the critical concept of cost of delay.

6.2.2.2.9. Cost of Delay

Don Reinertsen is well known for advocating the concept of “cost of delay” in understanding product

economics. The term is intuitive; it represents the loss experienced by delaying the delivery of some

value. For example, if a delayed product misses a key trade show, and therefore its opportunity for a

competitive release, the cost of delay might be the entire addressable market. Understanding cost of

delay is part of a broader economic emphasis that Reinertsen brings to the general question of product

development. He suggests that product developers, in general, do not understand the fundamental

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Digital Practitioner Body of Knowledge™ Standard 163

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

economics of their decisions regarding resources and work-in-process.

In order to understand the cost of delay, it is first necessary to think in terms of a market-facing

product (such as a smartphone application). Any market-facing product can be represented in terms of

its lifecycle revenues and profits (see Table 7, “Product Lifecycle Economics by Year”, Figure 56,

“Product Lifecycle Economics, Charted”).

Table 7. Product Lifecycle Economics by Year

Year Annual Cost Annual Revenue Annual Profit Cumulative Profit

Year 1 100 0 –100 –100

Year 2 40 80 40 –60

Year 3 30 120 90 30

Year 4 25 150 125 155

Year 5 25 90 65 220

Year 6 20 60 40 260

Figure 56. Product Lifecycle Economics, Charted

The numbers above represent a product lifecycle, from R&D through production to retirement. The

first year is all cost, as the product is being developed, and net profits are negative. In year 2, a small

net profit is shown, but cumulative profit is still negative, as it remains in year 3. Only into year 3 does

the product break even, ultimately achieving lifecycle net earnings of 175. But what if the product’s

introduction into the market is delayed? The consequences can be severe.

Simply delaying delivery by a year, all things being equal in our example, will reduce lifecycle profits

by 30% (see Table 8, “Product Lifecycle, Simple Delay”, Figure 57, “Product Lifecycle, Simple Delay,

Charted”).

6.2. Context II: Team Chapter 6. The Body of Knowledge

164 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Table 8. Product Lifecycle, Simple Delay

Year Annual Cost Annual Revenue Annual Profit Cumulative Profit

Year 1 100 0 –100 –100

Year 2 40 0 –40 –140

Year 3 30 80 50 –90

Year 4 25 120 95 5

Year 5 25 150 125 130

Year 6 20 90 70 200

Figure 57. Product Lifecycle, Simple Delay, Charted

But all things are not equal. What if, in delaying the product for a year, we allow a competitor to gain a

superior market position? That could depress our sales and increase our per-unit costs — both bad (see

Table 9, “Product Lifecycle, Aggravated Delay”, Figure 58, “Product Lifecycle, Aggravated Delay,

Charted”).

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Digital Practitioner Body of Knowledge™ Standard 165

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Table 9. Product Lifecycle, Aggravated Delay

Year Annual Cost Annual Revenue Annual Profit Cumulative Profit

Year 1 100 0 –100 –100

Year 2 40 0 –40 –140

Year 3 35 70 35 –105

Year 4 30 100 70 –35

Year 5 30 120 90 55

Year 6 25 80 55 110

Figure 58. Product Lifecycle, Aggravated Delay, Charted

The advanced cost of delayed analysis argues that different product lifecycles have different

characteristics. Josh Arnold of Black Swan Farming has visualized these as a set of profiles [22]. See

Figure 59, “Simple Cost of Delay” (similar to [22]) for the simple delay profile.

6.2. Context II: Team Chapter 6. The Body of Knowledge

166 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 59. Simple Cost of Delay

In this delay curve, while profits and revenues are lost due to late entry, it is assumed that the product

will still enjoy its expected market share. We can think of this as the “iPhone versus Android” profile,

as Android was later but still achieved market parity. The aggravated cost of delay profile, however,

looks like Figure 60, “Aggravated Cost of Delay” (similar to [22]).

Figure 60. Aggravated Cost of Delay

In this version, the failure to enter the market in a timely way results in long-term loss of market share.

We can think of this as the “Amazon Kindle™ versus Barnes & Noble Nook” profile, as the Nook has not

achieved parity, and does not appear likely to. There are other delay curves imaginable, such as delay

curves for tightly time-limited products (e.g., such as found in the fashion industry) or cost of delay

that is only incurred after a specific date (such as in complying with a regulation).

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Digital Practitioner Body of Knowledge™ Standard 167

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Reinertsen observes that product managers may think that they intuitively understand cost of delay,

but when he asks them to estimate the aggregate cost of (for example) delaying their product’s delivery

by a given period of time, the estimates provided by product team participants in a position to delay

delivery may vary by up to 50:1. This is powerful evidence that a more quantitative approach is

essential, as opposed to relying on “gut feel” or the HiPPO.

Finally, Josh Arnold notes that cost of delay is much easier to assess on small batches of work. Large

projects tend to attract many ideas for features, some of which have stronger economic justifications

than others. When all these features are lumped together, it makes understanding the cost of delay a

challenging process, because it then becomes an average across the various features. But since

features, ideally, can be worked on individually, understanding the cost of delay at that level helps with

the prioritization of the work.

The combination of product roadmapping, a high-quality DEEP backlog, and cost of delay is a solid

foundation for digital product development. It is essential to have an economic basis for making the

prioritization decision. Clarifying the economic basis is a critical function of the product roadmap.

Through estimation of story points, we can understand the team’s velocity. Estimating velocity is key to

planning, which we will discuss further in Section 6.3.2, “Investment and Portfolio”. Through

understanding the economics of product availability to the market or internal users, the cost of delay

can drive backlog prioritization.

Evidence of Notability

Lean influences on software development and the management of digital systems are the subject of

conference talks, books, and articles, and much other evidence demonstrating an engaged community

of interest. Notable works include [165, 20, 221, 27, 230].

Limitations

Lean has broad applicability but the nature of the digital work must be understood carefully. Classic

Lean applies well to less-variable operational work in digital systems. Developing new digital systems

requires Lean Product Development principles, and some aspects of classic Lean (e.g., always reducing

variability) are less applicable or may even be harmful. See, for example, [230] for further discussion

(Chapter 4, "The Economics of Product Development Variability").

Related Topics

• Application Delivery

• Product Team Practices

• Lean Management

• Coordination and Process

• Organizational Structure

6.2. Context II: Team Chapter 6. The Body of Knowledge

168 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.2.2.3. Work Management Capabilities and Approaches

Description

As a digital product starts to gain a user base, and as a company matures and grows, there emerges a

need for human-to-human support. This is typically handled by a help desk or service desk, serving as

the human face of IT when the IT systems are not meeting people’s expectations. We were first briefly

introduced to the concept in our Service Lifecycle (see Figure 11, “The Essential States of the Digital

Product”).

The service desk is an interrupt-driven, task-oriented capability. It serves as the first point of contact

for IT services that require some human support or intervention. As such, its role can become broad

from provisioning access to assisting users in navigation and usage, to serving as an alert channel for

outage reporting. The service desk ideally answers each user’s request immediately, requiring no

follow-up. If follow-up is required, a “ticket” is “issued”.

As a “help desk”, it may be focused on end-user assistance and reporting incidents. As a “service desk”,

it may expand its purview to accepting provisioning or other requests of various types (and referring

and tracking those requests). Note that in some approaches, service request and incident are

considered to be distinct processes.

The term "ticket” dates to paper-based industrial processes, where the “help desk” might actually be a

physical desk, where a user seeking services might be issued a paper ticket. Such “tickets” were also

used in field services.

In IT-centric domains, tickets are virtual; they are records in databases, not paper. The user is given a

ticket “ID” or “number” for tracking (e.g., so they can inquire about the request’s status). The ticket

may be “routed” to someone to handle, but again in a virtual world what really happens is that the

person it is routed to is directed to look at the record in the database. (In paper-based processes, the

ticket might well be moved physically to various parties to perform the needed work.)

A service desk capability needs:

• Channels for accepting contacts (e.g., telephone, email, chat)

• Staffing appropriate to the volume and nature of those requests

• Robust workflow capabilities to track their progress

• Routing and escalation mechanisms, since clarifying the true nature of contacts and getting them

serviced by the most appropriate means are non-trivial challenges

Work management in practice has divided between development and operations practices and tools.

However, DevOps and Kanban are forcing a reconsideration and consolidation. Historically, here are

some of the major tools and channels through which tasks and work are managed on both sides:

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Digital Practitioner Body of Knowledge™ Standard 169

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Table 10. Dev versus Ops Tooling

Development Operations

User story tracking system Service or help desk ticketing system

Issue/risk/action item log Incident management system

Defect tracker Change management system

All of these systems have common characteristics. All can (or should) be able to:

• Register a new task

• Describe the work to be done (development or break/fix/remediate)

• Represent the current status of the work

• Track who is currently accountable for it (individual and/or team)

• Indicate the priority of the work, at least in terms of a simple categorization such as

high/medium/low

More advanced systems may also be able to:

• Link one unit of work to another (either as parent/child or peer-to-peer)

• Track the effort spent on the work

• Prioritize and order work

• Track the referral or escalation trail of the work, if it is routed to various parties

• Link to communication channels such as conference bridges and paging systems

The first automated system (computer-based) you may find yourself acquiring along these lines is a

help desk system. You may be a small company, but when you start to build a large customer base,

keeping them all happy requires more than a manual, paper-based card wall or Kanban board.

6.2.2.4. Towards Process Management

The Kanban board has started to get complicated (see Figure 61, “Medium-Complex Kanban Board”,

loosely based on Image from [171]). We are witnessing an increasing amount of work that needs to

follow a sequence, or checklist, for the sake of consistency.

6.2. Context II: Team Chapter 6. The Body of Knowledge

170 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 61. Medium-Complex Kanban Board

Process management is when we need to start managing:

• Multiple

• Repeatable

• Measurable sequences of activity

• Considering their interdependencies

• Perhaps using common methods to define them

• And even common tooling to support multiple processes

6.2.2.4.1. Process Basics

We have discussed some of the factors leading to the need for process management, but we have not

yet come to grips with what it is. To start, think of a repeatable series of activities, such as when a new

employee joins (see Figure 62, “Simple Process Flow”).

Figure 62. Simple Process Flow

Process management can represent conditional logic (see Figure 63, “Conditionality”).

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Digital Practitioner Body of Knowledge™ Standard 171

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 63. Conditionality

Process models can become extremely intricate, and can describe both human and automated activity.

Sometimes, the process simply becomes too complicated for humans to follow. Notice how different the

process models are from the card wall or Kanban board. In Kanban, everything is a work item, and the

overall flow is some simple version of “to do, doing, done”. This can become complex when the flow

gets more elaborate (e.g., various forms of testing, deployment checks, etc.). In a process model, the

activity is explicitly specified on the assumption it will be repeated. The boxes representing steps are

essentially equivalent to the columns on a Kanban board, but since sticky notes are not being used,

process models can become very complex — like a Kanban board with dozens or hundreds of columns!

Process management as a practice is discussed extensively in Context III. However, before we move on,

two simple variations on process management are:

• Checklists

• Case Management

6.2.2.4.2. The Checklist Manifesto

The Checklist Manifesto is the name of a notable book by author/surgeon Atul Gawande [109]. The title

can be misleading; the book in no way suggests that all work can be reduced to repeatable checklists.

Instead, it is an in-depth examination of the relationship between standardization and complexity. Like

Case Management, it addresses the problem of complex activities requiring professional judgment.

Unlike Case Management (discussed below), it explores more time-limited and often urgent activities

such as flight operations, large-scale construction, and surgery. These activities, as a whole, cannot be

reduced to one master process; there is too much variation and complexity. However, within the

overall bounds of flight operations, or construction, or surgery, there are critical sequences of events

that must be executed, often in a specific order. Gawande discusses the airline industry as a key

exemplar of this. Instead of one “master checklist” there are specific, clear, brief checklists for a wide

variety of scenarios, such as a cargo hold door becoming unlatched.

There are similarities and differences between core BPM approaches and checklists. Often, BPM is

employed to describe processes that are automated and whose progress is tracked in a database.

Checklists, on the other hand, may be more manual, intended for use in a closely collaborative

environment (such as an aircraft cockpit or operating room), and may represent a briefer period of

time.

Full process management specifies tasks and their flow in precise detail. We have not yet got to that

point with our Kanban board, but when we start adding checklists, we are beginning to differentiate

the various processes at a detailed level. We will revisit Gawande’s work in Context III with the

6.2. Context II: Team Chapter 6. The Body of Knowledge

172 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

coordination technique of the submittal schedule.

6.2.2.4.3. Case Management

Figure 64. Process Management versus Case Management

NOTE Do not confuse “Case” here with Computer Assisted Software Engineering.

Case Management is a concept used in medicine, law, and social services. Case Management can be

thought of as a high-level process supporting the skilled knowledge worker applying their professional

expertise. Cases are another way of thinking about the relationship between the Kanban board and

process management (see Figure 64, “Process Management versus Case Management”).

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Digital Practitioner Body of Knowledge™ Standard 173

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Workflow Management Coalition on Case Management

Business Process Modeling and Case Management are useful for different kinds of business

situations:

• Highly predictable and highly repeatable business situations are best supported with BPM

◦ For example, signing up for a cell phone service: it happens thousands of times a day, and

the process is essentially fixed

• Unpredictable and unrepeatable business situations are best handled with Case Management

◦ For example, investigation of a crime will require following up on various clues, down

various paths, which are not predictable beforehand; there are various tests and

procedures to use, but they will be called only when needed

[299], via [94]

IT consultant and author Rob England contrasts “Case Management” with “Standard Process” in his

book Plus! The Standard+Case Approach: See Service Response in a New Light [94]. Some processes are

repeatable and can be precisely standardized, but it is critical for anyone working in complex

environments to understand the limits of a standardized process. Sometimes, a large “case” concept is

sufficient to track the work. The downside may be that there is less visibility into the progress of the

case — the person in charge of it needs to provide a status that can’t be represented as a simple report.

We will see process management again in Section 6.2.3, “Operations Management” in our discussion of

operational process emergence.

Evidence of Notability Workflow management in the basic emergent sense is a key precursor to full

BPM. See, for example, [255].

Limitations Not all work can or should be reduced to a procedural paradigm. Higher-touch, more

variable services and R&D work require different approaches, such as Case Management.

Related Topics

• Product Team Practices

• Lean Management

• Lean Product Development

• Operational Response

• Coordination and Process

• Organizational Structure

• Governance Elements

6.2. Context II: Team Chapter 6. The Body of Knowledge

174 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.2.2.5. Systems Thinking and Feedback

Description

So, what is a system? A system is a set of things - people, cells, molecules, or

whatever - interconnected in such a way that they produce their own pattern

of behavior over time. The system may be buffeted, constricted, triggered, or

driven by outside forces. But the system’s response to these forces is

characteristic of itself, and that response is seldom simple in the real world.

— Donella Meadows, Thinking in Systems

Systems thinking, and systems theory, are broad topics extending far beyond IT and the digital

profession. Meadows defines a system as: “an interconnected set of elements that is coherently

organized in a way that achieves something” [1]. Systems are more than the sum of their parts; each

part contributes something to the greater whole, and often the behavior of the greater whole is not

obvious from examining the parts of the system.

Systems thinking is an important influence on digital management. Digital systems are complex, and

when the computers and software are considered as a combination of the people using them, we have

a sociotechnical system. Digital systems management seeks to create, improve, and sustain these

systems.

A digital management capability is itself a complex system. While the term “Information Systems (IS)”

was widely replaced by “Information Technology (IT)” in the 1990s, do not be fooled. Enterprise IT is a

complex sociotechnical system, that delivers the digital services to support a myriad of other complex

sociotechnical systems.

The Merriam-Webster dictionary defines a system as: “a regularly interacting or interdependent group

of items forming a unified whole". These interactions and relationships quickly take center stage as the

focus moves from individual work to team efforts. Consider that while a two-member team only has

one relationship to worry about, a ten-member team has 45, and a 100-person team has 4,950!

6.2.2.5.1. A Brief Introduction to Feedback

The harder you push, the harder the system pushes back.

— Peter Senge, The Fifth Discipline

As the Senge quote implies, brute force does not scale well within the context of a system. One of the

reasons for systems stability is feedback. Within the bounds of the system, actions lead to outcomes,

which in turn affect future actions. This is a positive thing, as it is required to keep a complex

operation on course.

Feedback is a problematic term. We hear terms like positive feedback and negative feedback and

associate such usage with performance coaching and management discipline. That is not the sense of

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Digital Practitioner Body of Knowledge™ Standard 175

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

feedback in this document. The definition of feedback as used in this document is based on

engineering and control theory.

Figure 65, “Reinforcing Feedback Loop” illustrates the classic illustration of a reinforcing feedback

loop.

Figure 65. Reinforcing Feedback Loop

For example (as in Figure 66, “Reinforcing (Positive?) Feedback, with Rabbits”), “rabbit reproduction”

can be considered as a process with a reinforcing feedback loop.

Figure 66. Reinforcing (Positive?) Feedback, with Rabbits

The more rabbits, the faster they reproduce, and the more rabbits. This is sometimes called a “positive”

feedback loop, although the local gardener may not agree. This is why feedback experts (e.g., [268])

prefer to call this “reinforcing” feedback because there is not necessarily anything “positive” about it.

We can also consider feedback as the relationship between two processes (see Figure 67, “Feedback

Between Two Processes”).

6.2. Context II: Team Chapter 6. The Body of Knowledge

176 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 67. Feedback Between Two Processes

In the example, what if Process B is fox reproduction; that is, the birth rate of foxes (who eat rabbits)

(see Figure 68, “Balancing (Negative?) Feedback, with Rabbits and Foxes”)?

Figure 68. Balancing (Negative?) Feedback, with Rabbits and Foxes

More rabbits equal more foxes (notice the “+” symbol on the line) because there are more rabbits to

eat! But what does this do to the rabbits? It means fewer rabbits (the “--” on the line). Which, ultimately,

means fewer foxes, and at some point, the populations balance. This is classic negative feedback.

However, the local gardeners and foxes don’t see it as negative. That is why feedback experts prefer to

call this “balancing” feedback. Balancing feedback can be an important part of a system’s overall

stability.

6.2.2.5.2. What does Systems Thinking Have to do with IT?

In an engineering sense, positive feedback is often dangerous and a topic of concern. A recent example

of bad positive feedback in engineering is the London Millennium Bridge. On opening, the Millennium

Bridge started to sway alarmingly, due to resonance and feedback which caused pedestrians to walk in

cadence, increasing the resonance issues. The bridge had to be shut down immediately and retro-fitted

with $9 million worth of tuned dampers [75].

As with bridges, at a technical level, reinforcing feedback can be a very bad thing in IT systems. In

general, any process that is self-amplified without any balancing feedback will eventually consume all

available resources, just like rabbits will eat all the food available to them. So, if you create a process

(e.g., write and run a computer program) that recursively spawns itself, it will sooner or later crash the

computer as it devours memory and CPU. See runaway processes.

Balancing feedback, on the other hand, is critical to making sure you are “staying on track”. Engineers

use concepts of control theory; for example, damping, to keep bridges from falling down.

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Digital Practitioner Body of Knowledge™ Standard 177

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Section 6.1.1, “Digital Fundamentals” covered the user’s value experience, and also how services

evolve over time in a lifecycle. In terms of the dual-axis value chain, there are two primary digital

value experiences:

• The value the user derives from the service (e.g., account lookups, or a flawless navigational

experience)

• The value the investor derives from monetizing the product, or comparable incentives (e.g., non-

profit missions)

Additionally, the product team derives career value. This becomes more of a factor later in the game.

We will discuss this further in Section 6.3.1, “Coordination and Process” — on organization — and

Context IV, on architecture lifecycles and technical debt.

The product team receives feedback from both value experiences. The day-to-day interactions with the

service (e.g., help desk and operations) are understood, and (typically on a more intermittent basis) the

portfolio investor also feeds back the information to the product team (the boss’s boss comes for a

visit).

Balancing feedback in a business and IT context takes a wide variety of forms:

• The results of a product test in the marketplace; for example, users' preference for a drop down

box versus checkboxes on a form

• The product owner clarifying for developers their user experience vision for the product, based on

a demonstration of developer work-in-process

• The end users calling to tell you the “system is slow” (or down)

• The product owner or portfolio sponsor calling to tell you they are not satisfied with the system’s

value

In short, we see these two basic kinds of feedback:

• Positive/reinforcing, “do more of that”

• Negative/balancing, “stop doing that”, “fix that”

The following should be considered:

• How you are accepting and executing on feedback signals?

• How is the feedback relationship with investors evolving, in terms of your product direction?

• How is the feedback relationship with users evolving, in terms of both operational criteria and

product direction?

One of the most important concepts related to feedback, one we will keep returning to, is that product

value is based on feedback. We have discussed Lean Startup, which represents a feedback loop

intended to discover product value. Don Reinertsen has written extensively on the importance of fast

feedback to the product discovery process.

6.2. Context II: Team Chapter 6. The Body of Knowledge

178 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.2.2.5.3. Reinforcing Feedback: The Special Case Investors Want

At a business level, there is a special kind of reinforcing feedback that defines the successful business

(see Figure 69, “The Reinforcing Feedback Businesses Want”).

Figure 69. The Reinforcing Feedback Businesses Want

This is reinforcing feedback and positive for most people involved: investors, customers, employees. At

some point, if the cycle continues, it will run into balancing feedback:

• Competition

• Market saturation

• Negative externalities (regulation, pollution, etc.)

But those are problems that indicate a level of scale the business wants to have.

6.2.2.5.4. Open versus Closed-Loop Systems

Finally, we should talk briefly about open-loop versus closed-loop systems.

• Open-loop systems have no regulation, no balancing feedback

• Closed-loop systems have some form of balancing feedback

In navigation terminology, the open-loop attempt to stick to a course without external information

(e.g., navigating in the fog, without radar or communications) is known as "dead reckoning", in part

because it can easily get you dead!

A good example of an open-loop system is the children’s game “pin the tail on the donkey” (see Figure

70, “Pin the Tail on the Donkey”
[4]

). In “pin the tail on the donkey”, a person has to execute a process

(pinning a paper or cloth “tail” onto a poster of a donkey — no live donkeys are involved!) while

blindfolded, based on their memory of their location (and perhaps after being deliberately disoriented

by spinning in circles). Since they are blindfolded, they have to move across the room and pin the tail

without the ongoing corrective feedback of their eyes. (Perhaps they are getting feedback from their

friends, but perhaps their friends are not reliable.)

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Digital Practitioner Body of Knowledge™ Standard 179

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 70. Pin the Tail on the Donkey

Without the blindfold, it would be a closed-loop system. The person would rise from their chair and,

through the ongoing feedback of their eyes to their central nervous system, would move towards the

donkey and pin the tail in the correct location. In the context of a children’s game, the challenges of

open-loop may seem obvious, but an important aspect of IT management over the past decades has

been the struggle to overcome open-loop practices. Reliance on open-loop practices is arguably an

indication of a dysfunctional culture. An IT team that is designing and delivering without sufficient

corrective feedback from its stakeholders is an ineffective, open-loop system. Mark Kennaley [164]

applies these principles to software development in much greater depth, and is recommended.

Engineers of complex systems use feedback techniques extensively. Complex systems do not work

without them.

6.2.2.5.5. OODA

After the Korean War, the US Air Force wished to clarify why its pilots had performed in a superior

manner to the opposing pilots who were flying aircraft viewed as more capable. A colonel named John

Boyd was tasked with researching the problem. His conclusions are based on the concept of feedback

cycles, and how fast humans can execute them. Boyd determined that humans go through a defined

process in building their mental model of complex and dynamic situations. This has been formalized

in the concept of the OODA loop (see Figure 71, “OODA Loop”
[5]

).

6.2. Context II: Team Chapter 6. The Body of Knowledge

180 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 71. OODA Loop

OODA stands for:

• Observe

• Orient

• Decide

• Act

Because the US fighters were lighter, more maneuverable, and had better visibility, their pilots were

able to execute the OODA loop more quickly than their opponents, leading to victory. Boyd and others

have extended this concept into various other domains including business strategy. The concept of the

OODA feedback loop is frequently mentioned in presentations on Agile methods. Tightening the OODA

loop accelerates the discovery of product value and is highly desirable.

6.2.2.5.6. The DevOps Consensus as Systems Thinking

We covered continuous delivery and introduced DevOps in Competency Area 3. Systems theory

provides us with powerful tools to understand these topics more deeply.

Figure 72. Change versus Stability

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Digital Practitioner Body of Knowledge™ Standard 181

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

One of the assumptions we encounter throughout digital management is the idea that change and

stability are opposing forces. In systems terms, we might use a diagram like Figure 72, “Change versus

Stability” (see [33] for original exploration]). As a Causal Loop Diagram (CLD), it is saying that change

and stability are opposed — the more we have of one, the less we have of the other. This is true, as far

as it goes — most systems issues occur as a consequence of change; systems that are not changed in

general do not crash as much.

Figure 73. Change Vicious Cycle

The trouble with viewing change and stability as diametrically opposed is that change is inevitable. If

simple delaying tactics are put in, these can have a negative impact on stability, as in Figure 73,

“Change Vicious Cycle”. What is this diagram telling us? If the owner of the system tries to prevent

change, a larger and larger backlog will accumulate. This usually results in larger and larger-scale

attempts to clear the backlog (e.g., large releases or major version updates). These are riskier activities

which increase the likelihood of change failure. When changes fail, the backlog is not cleared and

continues to increase, leading to further temptation for even larger changes.

How do we solve this? Decades of thought and experimentation have resulted in continuous delivery

and DevOps, which can be shown in terms of system thinking in Figure 74, “The DevOps Consensus”.

6.2. Context II: Team Chapter 6. The Body of Knowledge

182 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 74. The DevOps Consensus

To summarize a complex set of relationships:

• As change occurs more frequently, it enables smaller change sizes

• Smaller change sizes are more likely to succeed (as change size goes up, change success likelihood

goes down; hence, it is a balancing relationship)

• As change occurs more frequently, organizational learning happens (change capability); this

enables more frequent change to occur, as the organization learns

◦ This has been summarized as: “if it hurts, do it more” (Martin Fowler in [92]).

• The improved change capability, coupled with the smaller perturbations of smaller changes,

together result in improved change success rates

• Improved change success, in turn, results in improved system stability and availability, even with

frequent changes; evidence supporting this de facto theory is emerging across the industry and can

be seen in cases presented at the DevOps Enterprise Summit and discussed in The DevOps

Handbook [166]

Notice the reinforcing feedback loop (the “R” in the looped arrow) between change frequency and

change capability. Like all diagrams, this one is incomplete. Just making changes more frequently will

not necessarily improve the change capability; a commitment to improving practices such as

monitoring, automation, and so on is required, as the organization seeking to release more quickly will

discover.

Evidence of Notability

Discussions of systems thinking, feedback, and OODA occur repeatedly throughout IT and digital

management literature; e.g., ITIL’s Service Strategy volume [282] and The DevOps Handbook [166].

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Digital Practitioner Body of Knowledge™ Standard 183

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Limitations

Systems thinking is an advanced and somewhat theoretical topic, and discussions of it should carefully

consider the audience.

Related Topics

• Lean Management

• Lean Product Development

• Operational Response

• Coordination and Process

• Governance

6.2.3. Operations Management

NOTE

Although this Competency Area is titled “operations management” it also brings in

infrastructure engineering at a higher level, assuming that the product is continuing to

scale up. This is consistent with industry usage.

Area Description

As the digital product gains more use, running it becomes a distinct concern from building it. For all

their logic, computers are still surprisingly unreliable. Servers running well-tested software may

remain “up” for weeks, and then all of a sudden hang and have to be rebooted. Sometimes it is clear

why (for example, a log file filled up that no-one expected) and in other cases, there just is no

explanation.

Engineering and operating complex IT-based distributed systems is a significant challenge. Even with

Infrastructure as Code and automated continuous delivery pipelines, operations as a class of work is

distinct from software development per se. The work is relatively more interrupt-driven, as compared

to the “heads-down” focus on developing new features. Questions about scalability, performance,

caching, load balancing, and so forth usually become apparent first through feedback from the

operations perspective — whether or not there is a formal operations “team”.

The assumption here is still just one team with one product, but with this last Competency Area of

Context II, the assumption is that there is considerable use of the product. With today’s technology,

correctly deployed and operated, even a small team can support large workloads. This does not come

easily, however. Systems must be designed for scale and ease of operations. They need to be monitored

and managed for performance and capacity. The topic of configuration management will be covered

further at a more advanced level.

The evolution of infrastructure was covered in Digital Infrastructure and applications development in

Section 6.1.3, “Application Delivery”, and the DPBoK Standard will continue to build on those

foundations. The practices of change, incident, and problem management have been employed in the

industry for decades and are important foundations for thinking about operations. Finally, the concept

6.2. Context II: Team Chapter 6. The Body of Knowledge

184 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

of SRE is an important new discipline emerging from the practices of companies such as Google and

Facebook.

6.2.3.1. Defining Operations Management

6.2.3.1.1. Defining Operations

Description

Operations management is a broad topic in management theory, with whole programs dedicated to it

in both business and engineering schools. Companies frequently hire Chief Operations Officers to run

the organization. We started to cover operations management in Section 6.2.2, “Work Management”, as

we examined the topic of “work management” — in traditional operations management, the question

of work and who is doing it is critical. For the Digital Practitioner, “operations” tends to have a more

technical meaning than the classic business definition, being focused on the immediate questions of

systems integrity, availability and performance, and feedback from the user community (i.e., the

service or help desk). We see such a definition from Limoncelli et al.:

… operations is the work done to keep a system running in a way that meets or exceeds operating

parameters specified by a Service-Level Agreement (SLA). Operations includes all aspects of a service’s

lifecycle: from initial launch to the final decommissioning and everything in between [178 p. 147].

Operations often can mean “everything but development” in a digital context. In the classic model,

developers built systems and “threw them over the wall” to operations. Each side had specialized

processes and technology supporting their particular concerns. However, recall our discussion of

design thinking — the entire experience is part of the product. This applies to both those consuming it

as well as running it. Companies undergoing Digital Transformation are experimenting with many

different models; as we will see in Context III, up to and including the complete merging of

Development and Operations-oriented skills under common product management.

IMPORTANT In a digitally transformed enterprise, operations is part of the product.

Figure 75. Operations Supports the Digital Moment of Truth

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Digital Practitioner Body of Knowledge™ Standard 185

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Since this document has a somewhat broader point of view covering all of digital management, it uses

the following definition of operations:

Operations is the direct facilitation and support of the digital value experience. It tends to be less variable,

more repeatable, yet more interrupt-driven than product development work. It is more about restoring a

system to a known state, and less about creating new functionality.

What do we mean by this? In terms of our dual-axis value chain, operations supports the day-to-day

delivery of the digital “moment of truth” (see Figure 75, “Operations Supports the Digital Moment of

Truth”).

The following are examples of “operations” in an IT context. Some are relevant to a “two pizza product

team” scenario; some might be more applicable to larger environments:

• Systems operators are sitting in 24x7 operations centers, monitoring system status and responding

to alerts

• Help desk representatives answering phone calls from users requiring support

◦ They may be calling because a system or service they need is malfunctioning. They may also be

calling because they do not understand how to use the system for the value experience they

have been led to expect from it. Again, this is part of their product experience.

• Developers and engineers serving “on call” on a rotating basis to respond to systems outages

referred to them by the operations center

• Data center staff performing routine work, such as installing hardware, granting access, or running

or testing backups; such routine work may be scheduled, or it may be on request (e.g., ticketed)

• Field technicians physically dispatched to a campus or remote site to evaluate and if necessary

update or fix IT hardware and/or software - install a new PC, fix a printer, service a cell tower

antenna

• Security personnel ensuring security protocols are followed; e.g., access controls

As above, the primary thing that operations does not do is develop new systems functionality.

Operations is process-driven and systematic and tends to be interrupt-driven, whereas R&D fails the

“systematic” part of the definition (review the definitions in process, product, and project

management). However, new functionality usually has operational impacts. In manufacturing and

other traditional industries, product development was a minority of work, while operations was where

the bulk of work happened. Yet when an operational task involving information becomes well defined

and repetitive, it can be automated with a computer.

This continuous cycle of innovation and commoditization has driven closer and closer ties between

“development” and “operations”. This cycle has also driven confusion around exactly what is meant by

“operations”. In many organizations there is an “Infrastructure and Operations” (I&O) function. Pay

close attention to the naming. A matrix may help because we have two dimensions to consider here

(see Table 11, “Application, Infrastructure, Development, Operations”).

Table 11. Application, Infrastructure, Development, Operations

6.2. Context II: Team Chapter 6. The Body of Knowledge

186 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Development Phase Operations Phase

Application Layer Application developers. Handle

demand, proactive and reactive,

from product and operations.

Never under I&O.

Help desk. Application support

and maintenance (provisioning,

fixes not requiring software

development). Often under I&O.

Infrastructure Layer Engineering team. Infrastructure

platform engineering and

development (design and build

typically of externally sourced

products). Often under I&O.

Operations center. Operational

support, including monitoring

system status. May monitor both

infrastructure and application

layers. Often under I&O.

Notice that we distinguish carefully between the application and infrastructure layers. This document

using the following pragmatic definitions:

• Applications are consumed by people who are not primarily concerned with IT

• Infrastructure is consumed by people who are primarily concerned with IT

Infrastructure services and/or products, as discussed in Digital Infrastructure, need to be designed and

developed before they are operated, just like applications. This may all seem obvious, but there is an

industry tendency to lump three of the four cells in the table into the I&O function when, in fact, each

represents a distinct set of concerns.

6.2.3.1.2. The Concept of “Service Level”

Either a digital system is available and providing a service, or it isn’t. The concept of "service level” was

mentioned above by Limoncelli. A level of service is typically defined in terms of criteria such as:

• What percentage of the time will the service be available?

• If the service suffers an outage, how long until it will be restored?

• How fast will the service respond to requests?

A Service-Level Agreement, or SLA, is a form of contract between the service consumer and service

provider, stating the above criteria in terms of a business agreement. When a service’s performance

does not meet the agreement, this is sometimes called a “breach” and the service provider may have to

pay a penalty (e.g., the customer gets a 5% discount on that month’s services). If the service provider

exceeds the SLA, perhaps a credit will be issued.

SLAs drive much operational behavior. They help prioritize incidents and problems, and the risk of

proposed changes are understood in terms of the SLAs.

6.2.3.1.3. State and Configuration

In all of IT (whether “infrastructure” or “applications”) there is a particular concern with managing

state. IT systems are remarkably fragile. One incorrect bit of information — a “0” instead of a “1” —

can completely alter a system’s behavior, to the detriment of business operations depending on it.

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Digital Practitioner Body of Knowledge™ Standard 187

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Therefore, any development of IT — starting with the initial definition of the computing platform —

depends on the robust management state.

The following are examples of state:

• The name of a particular server

• The network address of that server

• The software installed on that server, in terms of the exact version and bits that comprise it

State also has more transient connotations:

• The current processes listed in the process table

• The memory allocated to each process

• The current users logged into the system

Finally, we saw in the previous section some server/application/business mappings. These are also a

form of state.

It is therefore not possible to make blanket statements like “we need to manage state”. Computing

devices go through myriads of state changes with every cycle of their internal clock. (Analog and

quantum computing are out of scope for this document.)

The primary question in managing state is “what matters”? What aspects of the system need to persist,

in a reliable and reproducible manner? Policy-aware tools are used extensively to ensure that the

system maintains its configuration, and that new functionality is constructed (to the greatest degree

possible) using consistent configurations throughout the digital pipeline.

6.2.3.1.4. Environments

“Production” is a term that new IT recruits rapidly learn has forbidding connotations. To be “in

production” means that the broader enterprise value stream is directly dependent on that asset. How

do things get to be “in production”? What do we mean by that?

Consider the fundamental principle that there is an IT system delivering some “moment of truth” to

someone. This system can be of any scale, but as above we are able to conceive of it having a “state”.

When we want to change the behavior of this system, we are cautious. We reproduce the system at

varying levels of fidelity (building “lower” environments with Infrastructure as Code techniques) and

experiment with potential state changes. This is called development. When we start to gain confidence

in our experiments, we increase the fidelity and also start to communicate more widely that we are

contemplating a change to the state of the system. We may increase the fidelity along a set of

traditional names (see Figure 76, “Example Environment Pipeline”):

• Development

• Build & Test

• Quality Assurance (QA)

6.2. Context II: Team Chapter 6. The Body of Knowledge

188 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• Performance (or load) testing

• Integration

• Patch

• Production

The final state, where value is realized, is “production”. Moving functionality in smaller and smaller

batches, with increasing degrees of automation, is called continuous delivery.

Figure 76. Example Environment Pipeline

The fundamental idea that new system functionality sequentially moves (“promotes”) through a series

of states to gain confidence before finally changing the state of the production system is historically

well established. You will see many variations, especially at scale, on the environments listed above.

However, the production state is notoriously difficult to reproduce fully, especially in highly

distributed environments. While Infrastructure as Code has simplified the problem, lower

environments simply can’t match production completely in all its complexity, especially interfaced

interactions with other systems or when large, expensive pools of capacity are involved. Therefore

there is always risk in changing the state of the production system. Mitigating strategies include:

• Extensive automated test harnesses that can quickly determine if system behavior has been

unfavorably altered

• Ensuring that changes to the production system can be easily and automatically reversed; for

example, code may be deployed but not enabled until a "feature toggle” is set - this allows quick

shutdown of that code if issues are seen

• Increasing the fidelity of lower environments with strategies such as service virtualization to make

them behave more like production

• Hardening services against their own failure in production, or the failure of services on which they

depend

• Reducing the size (and therefore complexity and risk) of changes to production (a key DevOps/

continuous delivery strategy); variations here include:

◦ Small functional changes (“one line of code”)

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Digital Practitioner Body of Knowledge™ Standard 189

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

◦ Small operational changes (deploying a change to just one node out of 100, and watching it,

before deploying to the other 99 nodes)

• Using policy-aware infrastructure management tools

Another important development in environmental approaches is A/B testing or canary deployments. In

this approach, the “production” environment is segregated into two or more discrete states, with

different features or behaviors exposed to users in order to assess their reactions. Netflix uses this as a

key tool for product discovery, testing the user reaction to different user interface techniques, for

example. Canary deployments are when a change is deployed to a small fraction of the user base, as a

pilot.

6.2.3.1.5. Environments as Virtual Concepts

The concept of “environment” can reinforce functional silos and waterfall thinking, and potentially the

waste of fixed assets. Performance environments (that can emulate production at scale) are

particularly in question.

Instead, in a digital infrastructure environment (private or public), the kind of test you want to

perform is defined and that capacity is provisioned on-demand.

6.2.3.1.6. “Development is Production”

It used to be that the concept of “testing in production” was frowned upon. Now, with these mitigating

strategies, and the recognition that complex systems cannot ever be fully reproduced, there is more

tolerance for the idea. But with older systems that may lack automated testing, incremental

deployment, or easy rollback, it is strongly recommended to retain existing promotion strategies, as

these are battle-tested and known to reduce risk. Often, their cycle time can be decreased.

On the other hand, development systems must never be treated casually.

• The development pipeline itself represents a significant operational commitment

• The failure of a source code repository, if not backed up, could wipe out a company (see [188])

• The failure of a build server or package repository could be almost as bad

• In the digital economy, dozens or hundreds of developers out of work represents a severe

operational and financial setback, even if the “production” systems continue to function

It is, therefore, important to treat “development” platforms with the same care as production systems.

This requires nuanced approaches: with Infrastructure as Code, particular virtual machines or

containers may represent experiments, expected to fail often and be quickly rebuilt. No need for

burdensome change processes when virtual machine base images and containers are being set up and

torn down hundreds of times each day! However, the platforms supporting the instantiation and

teardown of those virtual machines are production platforms, supporting the business of new systems

development.

6.2. Context II: Team Chapter 6. The Body of Knowledge

190 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Evidence of Notability

Operations management is a broad topic in management and industrial theory, with dedicated courses

of study and postgraduate degrees. The intersection of operations management and digital systems has

been a topic of concern since the first computers were developed and put into use for military,

scientific, and business applications.

Limitations

Operations is repeatable, interrupt-driven, and concerned with maintaining a given state of

performance. It is usually rigorously distinguished from R&D.

Related Topics

• Digital Value

• Digital Stack

• Digital Lifecycle

• Digital Infrastructure

• Work Management

• Coordination

• Governance

6.2.3.2. Monitoring and Telemetry

Description

Computers run in large data centers, where physical access to them is tightly controlled. Therefore, we

need telemetry to manage them. The practice of collecting and initiating responses to telemetry is

called monitoring.

6.2.3.2.1. Monitoring Techniques

Limoncelli et al. define monitoring as follows:

Monitoring is the primary way we gain visibility into the systems we run. It is the process of observing

information about the state of things for use in both short-term and long-term decision-making. [178].

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Digital Practitioner Body of Knowledge™ Standard 191

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 77. Simple Monitoring

But how do we “observe” computing infrastructure? Monitoring tools are the software that watches

the software (and systems more broadly).

A variety of techniques are used to monitor computing infrastructure. Typically these involve

communication over a network with the device being managed. Often, the network traffic is on the

same network carrying the primary traffic of the computers. Sometimes, however, there is a distinct

“out-of-band” network for management traffic. A simple monitoring tool will interact on a regular

basis with a computing node, perhaps by “pinging” it periodically, and will raise an alert if the node

does not respond within an expected timeframe (see Figure 77, “Simple Monitoring”).

6.2. Context II: Team Chapter 6. The Body of Knowledge

192 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 78. Extended Monitoring

More broadly, these tools provide a variety of mechanisms for monitoring and controlling operational

IT systems; they may monitor:

• Computing processes and their return codes

• Performance metrics (e.g., memory and CPU utilization)

• Events raised through various channels

• Network availability

• Log file contents (searching the files for messages indicating problems)

• A given component’s interactions with other elements in the IT infrastructure; this is the domain of

application performance monitoring tools, which may use highly sophisticated techniques to trace

transactions across components of distributed infrastructure - see also the OpenTracing standard

• And more (see Figure 78, “Extended Monitoring”)

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Digital Practitioner Body of Knowledge™ Standard 193

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 79. User Experience Monitoring

Some monitoring covers low-level system indicators not usually of direct interest to the end user.

Other simulates end-user experience; SLAs are often defined in terms of the response time as

experienced by the end user (see Figure 79, “User Experience Monitoring”). See [178], Chapters 16-17.

All of this data may then be forwarded to a central console and be integrated, with the objective of

supporting the organization’s SLAs in priority order. Enterprise monitoring tools are notorious for

requiring agents (small, continuously running programs) on servers; while some things can be

detected without such agents, having software running on a given computer still provides the richest

data. Since licensing is often agent-based, this gets expensive.

NOTE
Monitoring systems are similar to source control systems in that they are a critical

point at which metadata diverges from the actual system under management.

6.2. Context II: Team Chapter 6. The Body of Knowledge

194 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 80. Configuration, Monitoring, and Element Managers

Related to monitoring tools is the concept of an element manager (see Figure 80, “Configuration,

Monitoring, and Element Managers”). Element managers are low-level tools for managing various

classes of digital or IT infrastructure. For example, Cisco provides software for managing network

infrastructure, and EMC provides software for managing its storage arrays. Microsoft provides a

variety of tools for managing various Windows components. Notice that such tools often play a dual

role, in that they can both change the infrastructure configuration as well as report on its status. Many,

however, are reliant on graphical user interfaces, which are falling out of favor as a basis for

configuring infrastructure.

6.2.3.2.2. Specialized Monitoring

Monitoring tools, out of the box, can provide ongoing visibility to well-understood aspects of the digital

product: the performance of infrastructure, the capacity utilized, and well-understood, common

failure modes (such as a network link being down). However, the digital product or application also

needs to provide its own specific telemetry in various ways (see Figure 81, “Custom Software Requires

Custom Monitoring”). This can be done through logging to output files, or in some cases through

raising alerts via the network.

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Digital Practitioner Body of Knowledge™ Standard 195

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 81. Custom Software Requires Custom Monitoring

A typical way to enable custom monitoring is to first use a standard logging library as part of the

software development process. The logging library provides a consistent interface for the developer to

create informational and error messages. Often, multiple “levels” of logging are seen, some more

verbose than others. If an application is being troublesome, a more verbose level of monitoring may be

turned on. The monitoring tool is configured to scan the logs for certain information. For example, if

the application writes:

APP-ERR-SEV1-946: Unresolvable database consistency issues detected, terminating application.

Into the log, the monitoring tool can be configured to recognize the severity of the message and

immediately raise an alert.

Finally, as the quote at the beginning of this section suggests, it is critical that the monitoring discipline

is based on continuous improvement. (More to come on continuous improvement in Section 6.3.1,

“Coordination and Process”.) Keeping monitoring techniques current with your operational challenges

is a never-ending task. Approaches that worked well yesterday, today generate too many false

positives, and your operations team is now overloaded with all the noise. Ongoing questioning and

improvement of your approaches are essential to keeping your monitoring system optimized for

managing business impact as efficiently and effectively as possible.

6.2. Context II: Team Chapter 6. The Body of Knowledge

196 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.2.3.2.3. Aggregation and Operations Centers

Figure 82. Aggregated Monitoring

It is not possible for a 24x7 operations team to access and understand the myriads of element

managers and specialized monitoring tools present in the large IT environment. Instead, these teams

rely on aggregators of various kinds to provide an integrated view of the complexity (see Figure 82,

“Aggregated Monitoring”). These aggregators may focus on status events, or specifically on

performance aspects related either to the elements or to logical transactions flowing across them. They

may incorporate dependencies from configuration management to provide a true “business view” into

the event streams. This is directly analogous to the concept of Andon board from Lean practices or the

idea of “information radiator” from Agile principles.

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Digital Practitioner Body of Knowledge™ Standard 197

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

NOTE 24x7 operations means operations conducted 24 hours a day, 7 days a week.

A monitoring console may present a rich and detailed set of information to an operator. Too detailed,

in fact, as systems become large. Raw event streams must be filtered for specific events or patterns of

concern. Event de-duplication starts to become an essential capability, which leads to distinguishing

the monitoring system from the event management system. Also, for this reason, monitoring tools are

often linked directly to ticketing systems; on certain conditions, a ticket (e.g., an incident) is created

and assigned to a team or individual.

Enabling a monitoring console to auto-create tickets, however, needs to be carefully considered and

designed. A notorious scenario is the “ticket storm”, where a monitoring system creates multiple

(perhaps thousands) of tickets, all essentially in response to the same condition.

6.2.3.2.4. Understanding Business Impact

At the intersection of event aggregation and operations centers is the need to understand business

impact. It is not, for example, always obvious what a server is being used for. This may be surprising to

new students, and perhaps those with experience in smaller organizations. However, in many large

“traditional” IT environments, where the operations team is distant from the development

organization, it is not necessarily easy to determine what a given hardware or software resource is

doing or why it is there. Clearly, this is unacceptable in terms of security, value management, and any

number of other concerns. However, from the start of distributed computing, the question “what is on

that server?” has been all too frequent in large IT shops.

In mature organizations, this may be documented in a Configuration Management Database or System

(CMDB/CMS). Such a system might start by simply listing the servers and their applications:

Table 12. Applications and Servers

Application Server

Quadrex SRV0001

PL-Q SRV0002

Quadrex DBSRV001

TimeTrak SRV0003

HR-Portal SRV0003

etc. etc.

(Imagine the above list, 25,000 rows long.)

This is a start, but still doesn’t tell us enough. A more elaborate mapping might include business unit

and contact:

6.2. Context II: Team Chapter 6. The Body of Knowledge

198 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Table 13. Business Units, Contacts, Applications, Servers

BU Contact Application Server

Logistics Mary Smith Quadrex SRV0001

Finance Aparna Chaudry PL-Q SRV0002

Logistics Mary Smith Quadrex DBSRV001

Human Resources William Jones TimeTrak SRV0003

Human Resources William Jones HR-Portal SRV0003

etc. etc. etc. etc.

The above lists are very simple examples of what can be extensive record-keeping. But the key user

story is implied: if we can’t ping SRV0001, we know that the Quadrex application supporting Logistics

is at risk, and we should contact Mary Smith ASAP if she hasn’t already contacted us. (Sometimes, the

user community calls right away; in other cases, they may not, and proactively contacting them is a

positive and important step.)

The above approach is relevant to older models still reliant on servers (whether physical or virtual) as

primary units of processing. The trend to more dynamic forms of computing such as containers and

serverless computing is challenging these traditional practices, and what will replace them is currently

unclear.

6.2.3.2.5. Capacity and Performance Management

Capacity and performance management are closely related, but not identical terms encountered as IT

systems scale up and encounter significant load.

A capacity management system may include large quantities of data harvested from monitoring and

event management systems, stored for long periods of time so that history of the system utilization is

understood and some degree of prediction can be ventured for upcoming utilization.

The classic example of significant capacity utilization is the Black Friday/Cyber Monday experience of

retailers. Both physical store and online e-commerce systems are placed under great strain annually

around this time, with the year’s profits potentially on the line.

Performance management focuses on the responsiveness (e.g., speed) of the systems being used.

Responsiveness may be related to capacity utilization, but some capacity issues don’t immediately

affect responsiveness. For example, a disk drive may be approaching full. When it fills, the system will

immediately crash, and performance is severely affected. But until then, the system performs fine. The

disk needs to be replaced on the basis of capacity reporting, not performance trending. On the other

hand, some performance issues are not related to capacity. A misconfigured router might badly affect a

website’s performance, but the configuration simply needs to be fixed — there is no need to handle as

a capacity-related issue.

At a simpler level, capacity and performance management may consist of monitoring CPU, memory,

and storage utilization across a given set of nodes, and raising alerts if certain thresholds are

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Digital Practitioner Body of Knowledge™ Standard 199

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

approached. For example, if a critical server is frequently approaching 50% CPU utilization (leaving

50% “headroom”), engineers might identify that another server should be added. Abbot and Fisher

suggest: “As a general rule … we like to start at 50% as the ideal usage percentage and work up from

there as the arguments dictate” [4 p. 204].

So, what do we do when a capacity alert is raised, either through an automated system or through the

manual efforts of a capacity analyst? There are a number of responses that may follow:

• Acquire more capacity

• Seek to use existing capacity more efficiently

• Throttle demand somehow

Capacity analytics at its most advanced (i.e., across hundreds or thousands of servers and services) is a

true Big Data problem domain and starts to overlap with IT asset management, capital planning, and

budgeting in significant ways. As your organization scales up and you find yourself responding more

frequently to the kinds of operational issues described in this section, you might start asking yourself

whether you can be more proactive. What steps can you take when developing or enhancing your

systems, so that operational issues are minimized? You want systems that are stable, easily upgraded,

and that can scale quickly on-demand.

Evidence of Notability

Monitoring production systems is the subject of extensive discussion and literature in digital and IT

management. See, for example, [14, 178, 34].

Limitations

Monitoring provides immediate insight via automated management of telemetry. It cannot tell

responders what to do, in general.

Related Topics

• Digital Stack

• Digital Lifecycle

• Digital Infrastructure

• Operations

• Operational Response

• Security

6.2.3.3. Operational Response

Description

Monitoring communicates the state of the digital systems to the professionals in charge of them. Acting

on that telemetry involves additional tools and practices, some of which we will review in this section.

6.2. Context II: Team Chapter 6. The Body of Knowledge

200 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.2.3.3.1. Communication Channels

When signals emerge from the lower levels of the digital infrastructure, they pass through a variety of

layers and cause assorted, related behavior among the responsible Digital Practitioners. The

accompanying illustration shows a typical hierarchy, brought into action as an event becomes

apparently more significant (see Figure 83, “Layered Communications Channels”).

Figure 83. Layered Communications Channels

The digital components send events to the monitoring layer, which filters them for significant

concerns; for example, a serious application failure. The monitoring tool might automatically create a

ticket, or perhaps it first provides an alert to the system’s operators, who might instant message each

other, or perhaps join a chatroom.

If the issue can’t be resolved operationally before it starts to impact users, an Incident ticket might be

created, which has several effects:

• First, the situation is now a matter of record, and management may start to pay attention

• Accountability for managing the incident is defined, and expectations are that responsible parties

will start to resolve it

• If assistance is needed, the incident provides a common point of reference (it is a common

reference point), in terms of work management

Depending on the seriousness of the incident, further communications by instant messaging, chat, cell

phone, email, and/or conference bridge may continue. Severe incidents in regulated industries may

require recording of conference bridges.

ChatOps is the tight integration of instant communications with operational execution. In a chatroom,

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Digital Practitioner Body of Knowledge™ Standard 201

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

a virtual agent or "bot" is enabled and monitors the human-to-human interactions. The human beings

can issue certain commands to the bot, such as code deployments, team notifications, server restarts,

or more [256].

Properly configured ChatOps provides a low-friction collaborative environment, enabling a powerful

and immediate collective mental model of the situation and what is being done. It also provides a rich

audit trail of who did what, when, and who else was involved. Fundamental governance objectives of

accountability can be considered fulfilled in this way, on a par with paper or digital forms routed for

approval (and without their corresponding delays).

6.2.3.3.2. Operational Process Emergence

Process is what makes it possible for teams to do the right thing, again and

again.

— Limoncelli/Chalup/Hogan

Limoncelli, Chalup, and Hogan, in their excellent Cloud Systems Administration, emphasize the role of

the “oncall” and “onduty” staff in the service of operations [178]. Oncall staff have a primary

responsibility of emergency response, and the term oncall refers to their continuous availability, even

if they are not otherwise working (e.g., they are expected to pick up phone calls and alerts at home and

dial into emergency communications channels). Onduty staff are responsible for responding to non-

critical incidents and maintaining current operations.

What is an emergency? It’s all a matter of expectations. If a system (by its SLA) is supposed to be

available 24 hours a day, 7 days a week, an outage at 3 AM Saturday morning is an emergency. If it is

only supposed to be available from Monday through Friday, the outage may not be as critical (although

it still needs to be fixed in short order, otherwise there will soon be an SLA breach!).

IT systems have always been fragile and prone to malfunction. “Emergency” management is

documented as a practice in “data processing” as early as 1971 [87 pp. 188-189]. In Competency Area 5,

we discussed how simple task management starts to develop into process management. Certainly,

there is a concern for predictability when the objective is to keep a system running, and so process

management gains strength as a vehicle for structuring work. By the 1990s, a process terminology was

increasingly formalized, by vendors such as IBM (in their “Yellow Book” series), the UK’s IT

Infrastructure Library (ITIL), and other guidance such as the Harris Kern library (popular in the US

before ITIL gained dominance). These processes include:

• Request management

• Incident management

• Problem management

• Change management

Even as a single-product team, these processes are a useful framework to keep in mind as operational

work increases. See Table 14, “Basic Operational Processes” for definitions of the core processes

6.2. Context II: Team Chapter 6. The Body of Knowledge

202 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

usually first implemented.

Table 14. Basic Operational Processes

Process Definition

Request management Respond to routine requests such as providing

systems access.

Incident management Identify service outages and situations that could

potentially lead to them, and restore service

and/or mitigate immediate risk.

Problem management Identify the causes of one or more incidents and

remedy them (on a longer-term basis).

Change management Record and track proposed alterations to critical

IT components. Notify potentially affected parties

and assess changes for risk; ensure key

stakeholders exercise approval rights.

These processes have a rough sequence to them:

• Give the user access to the system

• If the system is not functioning as expected, identify the issue and restore service by any means

necessary - don’t worry about why it happened yet

• Once service is restored, investigate why the issue happened (sometimes called a post-mortem) and

propose longer-term solutions

• Inform affected parties of the proposed changes, collect their feedback and approvals, and track

the progress of the proposed change through successful completion

At the end of the day, we need to remember that operational work is just one form of work. In a single-

team organization, these processes might still be handled through basic task management (although

user provisioning would need to be automated if the system is scaling significantly). It might be that

the simple task management is supplemented with checklists since repeatable aspects of the work

become more obvious. We will continue on the assumption of basic task management for the

remainder of this Competency Area, and go deeper into the idea of defined, repeatable processes as we

scale to a “team of teams” in Context III.

6.2.3.3.3. Post-Mortems, Blamelessness, and Operational Demand

We briefly mentioned problem management as a common operational process. After an incident is

resolved and services are restored, further investigation (sometimes called “root cause analysis”) is

undertaken as to the causes and long-term solutions to the problem. This kind of investigation can be

stressful for the individuals concerned and human factors become critical.

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Digital Practitioner Body of Knowledge™ Standard 203

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

NOTE

The term "root cause analysis” is viewed by some as misleading, as complex system

failures often have multiple causes. Other terms are post-mortems or simply causal

analysis.

We have discussed psychological safety previously. Psychological safety takes on an additional and

even more serious aspect when we consider major system outages, many of which are caused by

human error. There has been a long history of management seeking individuals to “hold accountable”

when complex systems fail. This is an unfortunate approach, as complex systems are always prone to

failure. Cultures that seek to blame do not promote a sense of psychological safety.

The definition of "counterfactual” is important. A “counterfactual” is seen in statements of the form “if

only Joe had not re-indexed the database, then the outage would not have happened”. It may be true

that if Joe had not done so, the outcome would have been different. But there might be other such

counterfactuals. They are not helpful in developing a continual improvement response. The primary

concern in assessing such a failure is "how was Joe put in a position to fail?". Put differently, how is it

that the system was designed to be vulnerable to such behavior on Joe’s part? How could it be designed

differently, and in a less sensitive way?

This is, in fact, how aviation has become so safe. Investigators with the unhappy job of examining

large-scale airplane crashes have developed a systematic, clinical, and rational approach for doing so.

They learned that if the people they were questioning perceived a desire on their part to blame, the

information they provided was less reliable. (This, of course, is obvious to any parent of a four-year

old.)

John Allspaw, CTO of Etsy, has pioneered the application of modern safety and incident investigation

practices in digital contexts and notably has been an evangelist for the work of human factors expert

and psychologist Sidney Dekker. Dekker summarizes attitudes towards human error as falling into

either the old or new views. He summarizes the old view as the Bad Apple theory:

• Complex systems would be fine, were it not for the erratic behavior of some unreliable people (Bad

Apples) in it

• Human errors cause accidents: humans are the dominant contributor to more than two thirds of

them

• Failures come as unpleasant surprises; they are unexpected and do not belong in the system - failures

are introduced to the system only through the inherent unreliability of people

Dekker contrasts this with the new view:

• Human error is not a cause of failure - human error is the effect, or symptom, of deeper trouble

• Human error is not random - it is systematically connected to features of people’s tools, tasks, and

operating environment

• Human error is not the conclusion of an investigation; it is the starting point [83]

Dekker’s principles are an excellent starting point for developing a culture that supports blameless

6.2. Context II: Team Chapter 6. The Body of Knowledge

204 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

investigations into incidents. We will talk more systematically of culture in Section 6.3.1, “Coordination

and Process”.

Finally, once a post-mortem or problem analysis has been conducted, what is to be done? If work is

required to fix the situation (and when is it not?), this work will compete with other priorities in the

organization. Product teams typically like to develop new features, not solve operational issues that

may call for reworking existing features. Yet serving both forms of work is essential from a holistic,

design thinking point of view.

In terms of queuing, operational demand is too often subject to the equivalent of queue starvation —

which as Wikipedia notes is usually the result of “naive scheduling algorithms”. If we always and only

work on what we believe to be the “highest priority” problems, operational issues may never get

attention. One result of this is the concept of technical debt, which we discuss in Context IV.

6.2.3.3.4. Drills, Game Days, and Chaos Engineering

As noted above, it is difficult to fully reproduce complex production infrastructures as “lower”

environments. Therefore, it is difficult to have confidence in any given change until it has been run in

production.

The need to emulate “real-world” conditions is well understood in the military, which relies heavily on

drill and exercises to ensure peak operational readiness. Analogous practices are emerging in digital

organizations, such as the concept of “Game Days” — defined periods when operational disruptions

are simulated and the responses assessed. A related set of tools is the Netflix Simian Army, a collection

of resiliency tools developed by the online video-streaming service Netflix. It represents a significant

advancement in digital risk management, as previous control approaches were too often limited by

poor scalability or human failure (e.g., forgetfulness or negligence in following manual process steps).

Chaos Monkey is one of a number of tools developed to continually “harden” the Netflix system,

including:

• Latency Monkey — introduces arbitrary network delays

• Conformity Monkey — checks for consistency with architectural standards, and shuts down non-

conforming instances

• Doctor Monkey — checks for longer-term evidence of instance degradation

• Janitor Monkey — checks for and destroys unused running capacity

• Security Monkey — an extension of Conformity Monkey, checks for correct security configuration

• 10-18 Monkey — checks internationalization

• Finally, Chaos Gorilla simulates the outage of an entire Amazon availability zone

On the whole, the Simian Army behaves much as antibodies do in an organic system. One notable

characteristic is that the monkeys as described do not generate a report (a secondary artifact) for

manual follow-up. They simply shut down the offending resources.

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Digital Practitioner Body of Knowledge™ Standard 205

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Such direct action may not be possible in many environments but represents an ideal to work toward.

It keeps the security and risk work “front and center” within the mainstream of the digital pipeline,

rather than relegating it to the bothersome “additional work” it can so easily be seen as.

A new field of chaos engineering is starting to emerge centered on these concepts.

6.2.3.3.5. Site Reliability Engineering

Site Reliability Engineering (SRE) is a new term for operations-centric work, originating from Google

and other large digital organizations. It is clearly an operational discipline; the SRE team is responsible

for the “availability, latency, performance, efficiency, change management, monitoring, emergency

response, and capacity planning of their service” [34 p. 7].

Google site reliability engineers have strong technical backgrounds, frequently computer science,

which is atypical for operations staff in the traditional IT industry. SREs are strongly incented to

automate as much as possible, avoiding “toil” (i.e., repetitive, non-value-add tasks). In other words, as

Benjamin Sloss says: “we want systems that are automatic, not just automated” [34].

Google has pioneered a number of innovative practices with its SRE team, including:

• A 50% cap on aggregate “ops” work — the other 50% is supposed to be spent on development

• The concept of an “error budget” as a control mechanism — teams are incented not for “zero

downtime” but rather to take the risk and spend the error budget

• “Release Engineer” as a specific job title for those focused on building and maintaining the delivery

pipeline

Evidence of Notability

Identifying the need for and marshaling operational response is an essential capability in managing

digital systems.

Limitations

Operational response is typically urgent and time-bound. It is not reflective nor, in general, creative or

innovative (except out of necessity).

Related Topics

• Digital Stack

• Digital Lifecycle

• Digital Infrastructure

• Operations

• Monitoring

• Process Management

6.2. Context II: Team Chapter 6. The Body of Knowledge

206 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• Security

6.2.3.4. Operations-Driven Product Demand

Description

Designing complex systems that can scale effectively and be operated efficiently is a challenging topic.

Many insights have been developed by the large-scale public-facing Internet sites, such as Google,

Facebook, Netflix, and others.

A reasonable person might question why systems design questions are appearing here in this

Competency Area on operations. We have discussed certain essential factors for system scalability

previously: cloud, Infrastructure as Code, version control, and continuous delivery. These are all

necessary, but not sufficient to scaling digital systems. Once a system starts to encounter real load,

further attention must go to how it runs, as opposed to what it does. It is not easy to know when to

focus on scalability. If product discovery is not on target, the system will never get the level of use that

requires scalability. Insisting that the digital product has a state-of-the-art and scalable design might be

wasteful if the team is still searching for an MVP (in Lean Startup terms). Of course, if you are doing

systems engineering and building a “cog”, not growing a “flower", you may need to be thinking about

scalability earlier.

Eventually, scale matters. Cloud computing abstracts many concerns, but as your IT service’s usage

increases, you will inevitably find that technical details such as storage and network architecture

increasingly matter. What often happens is that the system goes through various prototypes until

something with market value is found and, at that point, as use starts to scale up, the team scrambles

for a more robust approach. The implementation decisions made by the Digital Practitioner and their

service providers may become inefficient for the particular “workload” the product represents. The

brief technical writeup, Latency Numbers Every Programmer Should Know is recommended.

There are dozens of books and articles discussing many aspects of how to scale systems. In this section,

we will discuss two important principles: the CAP principle and the AKF scaling cube. If you are

interested in this topic in depth, consult the references in this Competency Area.

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Digital Practitioner Body of Knowledge™ Standard 207

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.2.3.4.1. The CAP Principle

Figure 84. CAP Principle

Scaling digital systems used to imply acquiring faster and more powerful hardware and software. If a

4-core server with 8 gigabytes of RAM isn’t enough, get a 32-core server with 256 gigabytes of RAM

(and upgrade your database software accordingly, for millions of dollars more). This kind of scaling is

termed “vertical” scaling. However, web-scale companies such as Facebook and Google determined

that this would not work indefinitely. Vertical scaling in an infinite capacity is not physically (or

financially) possible. Instead, these companies began to experiment aggressively with using large

numbers of inexpensive commodity computers.

The advantage to vertical scaling is that all your data can reside on one server, with fast and reliable

access. As soon as you start to split your data across servers, you run into the practical implications of

the CAP principle (see Figure 84, “CAP Principle”).

CAP stands for:

• Consistency

• Availability

• Partition-tolerance

and the CAP principle (or theorem) states that it is not possible to build a distributed system that

guarantees all three [106]. What does this mean? First, let’s define our terms.

Consistency means that all the servers (or “nodes”) in the system see the same data at the same time.

If an update is being processed, no node will see it before any other. This is often termed a

transactional guarantee, and it is the sort of processing relational databases excel at.

For example, if you change your flight, and your seat opens up, a consistent reservation application

will show the free seat simultaneously to anyone who inquires, even if the reservation information is

replicated across two or more geographically distant nodes. If the seat is reserved, no node will show it

6.2. Context II: Team Chapter 6. The Body of Knowledge

208 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

available, even if it takes some time for the information to replicate across the nodes. The system will

simply not show anyone any data until it can show everyone the correct data.

Availability means what it implies: that the system is available to provide data on request. If we have

many nodes with the same data on them, this can improve availability, since if one is down, the user

can still reach others.

Partition-tolerance is the ability of the distributed system to handle communications outages. If we

have two nodes, both expected to have the same data, and the network stops communicating between

them, they will not be able to send updates to each other. In that case, there are two choices: either

stop providing services to all users of the system (failure of availability) or accept that the data may not

be the same across the nodes (failure of consistency).

In the earlier years of computing, the preference was for strong consistency, and vendors such as

Oracle® profited greatly by building database software that could guarantee it when properly

configured. Such systems could be consistent and available, but could not tolerate network outages —

if the network was down, the system, or at least a portion of it, would also be down.

Companies such as Google and Facebook took the alternative approach. They said: “We will accept

inconsistency in the data so that our systems are always available”. Clearly, for a social media site such

as Facebook, a posting does not need to be everywhere at once before it can be shown at all. To verify

this, simply post to a social media site using your computer. Do you see the post on your phone, or your

friend’s, as soon as you submit it on your computer? No, although it is fast, you can see some delay.

This shows that the site is not strictly consistent; a strictly consistent system would always show the

same data across all the accessing devices.

The challenge with accepting inconsistency is how to do so. Eventually, the system needs to become

consistent, and if conflicting updates are made they need to be resolved. Scalable systems in general

favor availability and partition-tolerance as principles, and therefore must take explicit steps to restore

consistency when it fails. The approach taken to partitioning the system into replicas is critical to

managing eventual consistency, which brings us to the AKF scaling cube.

For further discussion, see [178], Section 1.5.

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Digital Practitioner Body of Knowledge™ Standard 209

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.2.3.4.2. The AKF Scaling Cube

Figure 85. AKF Scaling Cube

Another powerful tool for thinking about scaling systems is the AKF Scaling Cube (see Figure 85, “AKF

Scaling Cube”, similar to [4 p. 376]). AKF stands for Abbott, Keeven, and Fisher, authors of The Art of

Scalability [4]. The AKF cube is a visual representation of the three basic options for scaling a system:

• Replicate the complete system (x-axis)

• Split the system functionally into smaller layers or components (y-axis)

• Split the system’s data (z-axis)

A complete system replica is similar to the Point of Sale (POS) terminals in a retailer. Each is a self-

contained system with all the data it needs to handle typical transactions. POS terminals do not depend

on each other; therefore you can keep increasing the capacity of your store’s checkout lines by simply

adding more of them.

Functional splitting is when you separate out different features or components. To continue the retail

analogy, this is like a department store; you view and buy electronics, or clothes, in those specific

departments. The store “scales” by adding departments, which are self-contained in general; however,

in order to get a complete outfit, you may need to visit several departments. In terms of systems,

separating web and database servers is commonly seen — this is a component separation. E-commerce

sites often separate “show” (product search and display) from “buy” (shopping cart and online

checkout); this is a feature separation. Complex distributed systems may have large numbers of

features and components, which are all orchestrated together into one common web or smartphone

app experience.

Data splitting (sometimes termed "sharding”) is the concept of “partitioning” from the CAP

discussion, above. For example, consider a conference with check-in stations divided by alphabet

range; for example:

6.2. Context II: Team Chapter 6. The Body of Knowledge

210 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• A-H register here

• I-Q register here

• R-Z register here

This is a good example of splitting by data. In terms of digital systems, we might split data by region;

customers in Minnesota might go to the Kansas City data center, while customers in New Jersey might

go to a North Carolina data center. Obviously, the system needs to handle situations where people are

traveling or move.

There are many ways to implement and combine the three axes of the AKF scaling cube to meet the

CAP constraints (Consistency, Availability, and Partition-tolerance). With further study of scalability,

you will encounter discussions of:

• Load balancing architectures and algorithms

• Caching

• Reverse proxies

• Hardware redundancy

• Designing systems for continuous availability during upgrades

and much more. For further information, see [4, 178].

Evidence of Notability

Operational insights result in requirements for products to be changed. This is an important feedback

loop from the operations to the development phase, and a major theme in IT operations management

literature. See, for example, [178], "Part I Design: Building It".

Limitations

Operational demand focuses on how the system runs, not what it does. Both, however, are valid

concerns for product management.

Related Topics

• Digital Stack

• Digital Lifecycle

• Digital Infrastructure

• Application Basics

• DevOps

• Operations

Chapter 6. The Body of Knowledge 6.2. Context II: Team

Digital Practitioner Body of Knowledge™ Standard 211

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.2.4. Context II Conclusion

Context II covered the basic elements necessary for a collaborative product team to achieve success

while still at a manageable human scale.

The IT-centric team needed capabilities for evolving its product, managing its work, and operating its

product. In some cases, time and space shifting might drive the team to automate basic capabilities

such as work management and ticketing. However, the overall assumption was that, for the most part,

people are co-located and still can communicate with minimal friction.

Context II leads logically to Context III. There is a high-functioning team. But a single team cannot scale

indefinitely. The Digital Practitioner now has no choice but to organize as a team of teams.

6.2.4.1. Context II Architectural View

Figure 86. Architectural View

Further automation is required at the team context, as product management is formalized and

operational work such as provisioning and monitoring emerges. Suggested functional components are:

• Requirement component

• Test component

• Defect component

• Fulfillment Execution component

• Service Monitoring component

One area that the IT4IT approach does not address is a simple “work management” component. In

6.2. Context II: Team Chapter 6. The Body of Knowledge

212 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

collaborative team environments, Kanban-based tools are often used to manage the human work in an

undifferentiated flow (testing, defects, requirements, issues detected from monitoring).

Fulfillment Execution is included here to generically represent the digital product’s provisioning

capability. For a single digital product, provisioning may or may not be distinct from the product

architecture itself. At scale, it does become distinct and requires a more elaborate architecture.

Context II "Architectural View" Learning Objectives

• Identify the IT4IT components suitable for Context II

Related Topics

• Digital Lifecycle

• Documenting System Intent

• Test Automation

• Monitoring and Telemetry

6.3. Context III: Team of Teams

NOTE

Team of Teams

Team of Teams: New Rules of Engagement for a Complex World is the name of a 2015

book by General Stanley McChrystal, describing his experiences as the commander of

Joint Special Operations Command in the Iraq conflict. It describes how the US military

was being beaten by a foe with inferior resources, and its need to shift from a focus on

mechanical efficiency to more adaptable approaches. The title is appropriate for this

context, as moving from “team” to “team of teams” is one of the most challenging

transitions any organization can make.

Context Description

Context II, Section 6.2.3, “Operations Management” introduced the AKF scaling cube, and this context is

in part based on a related thought experiment. As the team-based company grew, it reached a crisis

point in scaling the digital product. One team could no longer cope as a single unit with the increasing

complexity and operational demands. In AKF scaling cube terms, the team is scaling along the y-axis,

the hardest but in some ways the most important dimension to know how to scale along.

The organization is now a “team of teams”, at a size where face-to-face communication is increasingly

supplemented by other forms of communication and coordination. Teams may get results but in

different ways. The organization needs some level of coordination, and not everyone is readily

accessible for immediate communication; people are no longer co-located, and there may be different

schedules involved.

Furthermore, the organization now has multiple products. As it scales up, it must now split its products

into features and components (the y-axis of the AKF scaling cube). Then as the organization moves

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 213

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

from your first product to adding more, further organizational evolution is required. The organization

may try to keep its products from developing unmanageable interdependencies, but this is an ongoing

challenge. Tensions between various teams are starting to emerge. Specialization in your organization

is increasing, along with the tendency of specialists to identify more with their field than with the

needs of customers. There is an increasing desire among stakeholders and executives for control and

predictability. Resources are limited and always in contention. Advisors and consultants suggest

various frameworks for managing the organization. As the organization scales, however, its leaders

need to remember that the highest value is found in fast-moving, committed, multi-skilled teams.

Losing sight of that value is a common problem for growing organizations.

As the individual becomes a manager of managers, their concerns again shift. In Context II, the leader

had to delegate product management (are they building the right thing?) and take concern for basic

work management and digital operations. Now, in this context, the leader is primarily a manager of

managers, concerned with providing the conditions for your people to excel:

• Defining how work is executed, in terms of decision rights, priorities, and conflicts

• Setting the organizational mission and goals that provide the framework for making investments in

products and projects

• Instituting labor, financial, supply chain, and customer management processes and systems

• Providing facilities and equipment to support digital delivery

• Resolving issues and decisions escalated from lower levels in the organization

New employees are bringing in their perspectives, and the more experienced ones seem to assume that

the company will use “projects” and “processes” to get work done. There is no shortage of contractors

and consultants who advocate various flavors of the process and project management; while some

advocate older approaches and “frameworks”, others propose newer Agile and Lean perspectives.

However, the ideas of process and project management are occasionally called into question by both

employees and various “thought leaders”. In short, it’s all very confusing.

Welcome to the coordination problem. This overall context will cover where these ideas came from,

how they relate to each other, and how they are evolving in a digitally transforming world.

Note on Learning Progression

The structure of Context III may be counter-intuitive. Usually, we think in terms of “plan, then

execute”. However, this can lead to waterfall and deterministic assumptions. Starting the

discussion with execution reflects the fact that a scaling company does not have time to “stop

and plan”. Rather, planning emerges on top of the ongoing execution of the firm, in the interest

of controlling and directing that execution across broader timeframes and larger scopes of work.

Digital Practitioners use a number of approaches to defining and managing work at various scales. Our

initial progression from the product, to work, to operations management, can be seen as one

dimension. We consider a couple of other dimensions as a basis for ordering Context III.

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

214 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Here is an overview of Context III’s structure:

Competency Area: Coordination and Process

Going from one to multiple teams is hard. No matter how things are structured, there are

dependencies requiring coordination. How to ensure that broader goals are met when teams must act

jointly? Some suggest project management, while others argue that you don’t need it any more — it’s

all about continuous flow through loosely-coupled product organizations. But the most ambitious ideas

require some kind of choreography and products and projects need certain resources and services

delivered predictably. When is work repeatable? When is it unique? Understanding the difference is

essential to the organization’s success. Is variability in the work always bad? These are questions that

have preoccupied management thinkers for a long time.

Competency Area: Investment and Portfolio

Each team also represents an investment decision. There is now a portfolio of features, and/or

products. The organization needs a strategy for choosing among options and planning — at least at a

high level — in terms of costs and benefits. Some may be using project management to help manage

investments. Vendor relationships continue to expand; they are another form of strategic investment,

and the practitioner needs to deepen their understanding of matters like cloud contracts and software

licensing.

NOTE

In terms of classic project methodology, Section 6.3.2, “Investment and Portfolio”

includes project initiating and planning. Execution, monitoring, and control of day-to-

day work are covered in Section 6.3.1, “Coordination and Process”. The seemingly

backwards order is deliberate, in keeping with the scaling model.

Competency Area: Organization and Culture

The organization is getting big. In order to keep growing, it has had to divide into increasingly complex

structures. How is it formally structured? How are people grouped, and to whom do they report, with

what kind of expectations? Finally, what is the approach to bringing new people into the organization?

What are the unspoken assumptions that underlie the daily work — in other words, what is the

culture? Does the culture support high performance, or the opposite? How can such a thing be

measured and known?

Context III "Team of Teams" High-Level Dimensions

• Identify key drivers for the transition from a unitary team to a "team of teams"

• Identify basics of the coordination problem and how to solve it, including the pros and cons of

traditional process management

• Identify the investment and portfolio consequences of a multi-team structure

• Identify the basic product/function spectrum of organizational forms

• Identify important cultural factors and concepts of measuring and changing culture

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 215

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.3.1. Coordination and Process

Area Description

The digital team been executing its objectives since its earliest existence. Execution is whenever we

meet demand with supply. An idea for a new feature, to deliver some digital value, is demand. The

time spent implementing the feature is supply. The two combined is execution. Sometimes it goes well;

sometimes it doesn’t. Maintaining a tight feedback loop to continually assess execution is essential.

As the organization grows into multiple teams and multiple products, it has more complex execution

problems, requiring coordination. The fundamental problem is the “D-word": dependency.

Dependencies are why the organization must coordinate (work with no dependencies can scale nicely

along the AKF x-axis). But when there are dependencies (and there are various kinds) the organization

needs a wider range of techniques. One Kanban board is not sufficient to the task.

The practitioner must consider the delivery models, as well (the “3 Ps": product, project, process, and

now we have added program management). Decades of industry practice mean that people will tend to

think in terms of these models and unless there is clarity about the nature of our work the

organization can easily get pulled into non-value-adding arguments. To help understanding, this

Competency Area will take a deeper look at process management, continuous improvement, and their

challenges.

6.3.1.1. Coordination Principles and Techniques

Description

As an organization scales, there is an increasing span in its time horizon and the scope of work it

considers and executes. Evolving from the immediate, “hand-to-mouth” days of a startup, it now must

concern itself with longer and longer timeframes: contracts, regulations, and the company’s strategy as

it grows all demand this.

Granularity

The terminology used to describe work also becomes more diverse, reflecting in some ways the

broader time horizons the organization is concerned with. Requests, changes, incidents, work orders,

releases, stories, features, problems, major incidents, epics, refreshes, products, programs, strategies;

there is a continuum of terminology from small to large. Mostly, the range of work seems tied to how

much planning time is available, but there are exceptions: disasters take a lot of work, but don’t

provide much advance warning! So the size of work is independent of the planning horizon.

This is significantly evolved since the earlier discussion of work management. By the time the

organization started to formalize operations, work was tending to differentiate. Still, regardless of the

label put on a given activity, it represents some set of tasks or objectives that real people are going to

take the time to perform, and expect to be compensated for. It is all demand, requiring management.

Remembering this is essential to digital management.

And, as organizations scale, dependencies proliferate: the central topic of this Competency Area.

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

216 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.3.1.1.1. Example: Scaling One Product

Good team structure can go a long way toward reducing dependencies but will

not eliminate them.

— Mike Cohn, Succeeding with Agile

What’s typically underestimated is the complexity and indivisibility of many

large-scale coordination tasks.

— Gary Hamel, Preface to the Open Organization: Igniting Passion and Performance

Figure 87. Multiple Feature Teams, One Product

With the move to team of teams, the organization is now executing in a more complex environment; it

has started to scale along the AKF scaling cube y-axis, and has either multiple teams working on one

product and/or multiple products. Execution becomes more than just “pull another story off the

Kanban board”. As multiple teams are formed (see Figure 87, “Multiple Feature Teams, One Product”),

dependencies arise, and we need coordination. The term "architecture” is likely emerging through

these discussions. (We will discuss organizational structure directly in Section 6.3.3.1, “Structuring the

Organization: Product and Function”, and architecture in Section 6.4.3, “Architecture”).

As noted in the discussion of Amazon’s product strategy, some needs for coordination may be

mitigated through the design of the product itself. This is why APIs and microservices are popular

architecture styles. If the features and components have well-defined protocols for their interaction

and clear contracts for matters like performance, development on each team can move forward with

some autonomy.

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 217

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

But at scale, complexity is inevitable. What happens when a given business objective requires a

coordinated effort across multiple teams? For example, an online e-commerce site might find itself

overwhelmed by business success. Upgrading the site to accommodate the new demand might require

distinct development work to be performed by multiple teams (see Figure 88, “Coordinated Initiative

Across Timeframes”).

As the quote from Gary Hamel above indicates, a central point of coordination and accountability is

advisable. Otherwise, the objective is at risk. (It becomes “someone else’s problem”.) We will return to

the investment and organizational aspects of multi-team and multi-product scaling in Section 6.3.2,

“Investment and Portfolio” and Section 6.3.3, “Organization and Culture”. For now, we will focus on

dependencies and operational coordination.

Figure 88. Coordinated Initiative Across Timeframes

6.3.1.1.2. A Deeper Look at Dependencies

Coordination can be seen as the process of managing dependencies among

activities.

— Malone and Crowston

What is a "dependency"? We need to think carefully about this. According to the definition above (from

[187]), without dependencies, we do not need coordination. (We will look at other definitions of

coordination in the next two Competency Areas.) Diane Strode and her associates [269] have described

a comprehensive framework for thinking about dependencies and coordination, including a

dependency taxonomy, an inventory of coordination strategies, and an examination of coordination

effectiveness criteria.

To understand dependencies, Strode et al. [270] propose the framework shown in Table 15,

“Dependency Taxonomy (from Strode)” (adapted from [270]).

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

218 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Table 15. Dependency Taxonomy (from Strode)

Type Dependency Description

Knowledge. A knowledge

dependency occurs when a form

of information is required in

order for progress.

Requirement Domain knowledge or a

requirement is not known and

must be located or identified.

Expertise Technical or task information is

known only by a particular

person or group.

Task allocation Who is doing what, and when, is

not known.

Historical Knowledge about past decisions

is needed.

Task. A task dependency occurs

when a task must be completed

before another task can proceed.

Activity An activity cannot proceed until

another activity is complete.

Business process An existing business process

causes activities to be carried out

in a certain order.

Resource. A resource

dependency occurs when an

object is required for progress.

Entity A resource (person, place or

thing) is not available.

Technical A technical aspect of

development affects progress,

such as when one software

component must interact with

another software component.

We can see examples of these dependencies throughout digital products. In the next section, we will

talk about coordination techniques for managing dependencies.

6.3.1.1.3. Organizational Tools and Techniques

Our previous discussion of work management was a simple, idealized flow of uniform demand (new

product functionality, issues, etc.). Tasks, in general, did not have dependencies, or dependencies were

handled through ad hoc coordination within the team. We also assumed that resources (people) were

available to perform the tasks; resource contention, while it certainly may have come up, was again

handled through ad hoc means. However, as we scale, simple Kanban and visual Andon are no longer

sufficient, given the nature of the coordination we now require. We need a more diverse and

comprehensive set of techniques.

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 219

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

IMPORTANT

The discussion of particular techniques is always hazardous. People will tend to

latch on to a promising approach without full understanding. As noted by Craig

Larman, the risk is one of cargo cult thinking in your process adoption [175

p. 44]. In Section 6.3.3, “Organization and Culture” we will discuss the Mike

Rother book Toyota Kata. Toyota does not implement any procedural change

without fully understanding the “target operating condition” — the nature of

the work and the desired changes to it.

Sidebar: Cargo cult thinking

Processes and practices are always at risk of being used without full understanding. This is

sometimes called cargo cult thinking. What is a cargo cult?

During World War II, South Pacific native peoples had been exposed abruptly to modern

technological society with the Japanese and US occupations of their islands. Occupying forces

would often provide food, tobacco, and luxuries to the natives to ease relations. After the war,

various tribes were observed creating simulated airports and airplanes, and engaging in various

rituals that superficially looked like air traffic signaling and other operations associated with a

military air base.

On further investigation, it became clear that the natives were seeking more “cargo” and had

developed a magical understanding of how goods would be delivered. By imitating the form of

what they had seen, they hoped to recreate it.

In 1974, the noted physicist Richard Feynman gave a speech at Caltech in which he coined the

phrase “cargo cult science” [97]. His intent was to caution against activities which appear to

follow the external form of science, but lack the essential understanding at its core. Similar

analogies are seen in business and IT management, as organizations adopt tools and techniques

because they have seen others do so, without having fundamental clarity about the problems

they are trying to solve and how a given technique might specifically help.

As with many stories of this kind, there are questions about the accuracy of the original

anthropological accounts and Western interpretations and mythmaking around what was seen.

However, there is no question that “cargo cult thinking” is a useful cautionary metaphor, and

one often encountered in discussions of digital management practices.

As we scale up, we see that dependencies and resource management have become defining concerns.

However, we retain our Lean Product Development concerns for fast feedback and adaptability, as

well as a critical approach to the idea that complex initiatives can be precisely defined and simply

executed through open-loop approaches. In this section, we will discuss some of the organizational

responses (techniques and tools) that have emerged as proven responses to these emergent issues.

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

220 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

NOTE

The table Table 16, “Coordination Taxonomy (from Strode)” uses the concept of artifact,

which we introduced in Section 6.2.2, “Work Management”. For our purposes here, an

artifact is a representation of some idea, activity, status, task, request, or system.

Artifacts can represent or describe other artifacts. Artifacts are frequently used as the

basis of communication.

Strode et al. also provide a useful framework for understanding coordination mechanisms, excerpted

and summarized into Table 16, “Coordination Taxonomy (from Strode)” (adapted from [269]).

Table 16. Coordination Taxonomy (from Strode)

Strategy Component Definition

Structure Proximity Physical closeness of individual

team members.

Availability Team members are continually

present and able to respond to

requests for assistance or

information.

Substitutability Team members are able to

perform the work of another to

maintain time schedules.

Synchronization Synchronization activity Activities performed by all team

members simultaneously that

promote a common

understanding of the task,

process, and/or expertise of

other team members.

Synchronization artifact An artifact generated during

synchronization activities.

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 221

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Strategy Component Definition

Boundary spanning Boundary spanning activity Activities (team or individual)

performed to elicit assistance or

information from some unit or

organization external to the

project.

Boundary spanning artifact An artifact produced to enable

coordination beyond the team

and project boundaries.

Coordinator role A role taken by a project team

member specifically to support

interaction with people who are

not part of the project team but

who provide resources or

information to the project.

The following sections expand the three strategies (structure, synchronization, boundary spanning)

with examples.

Structure

Don Reinertsen proposes “The Principle of Colocation” which asserts that “Colocation improves almost

all aspects of communication” [230 p. 230]. In order to scale this beyond one team, we logically need

what Mike Cohn calls “The Big Room” [68 p. 346].

In terms of communications, this has significant organizational advantages. Communications are as

simple as walking over to another person’s desk or just shouting out over the room. It is also easy to

synchronize the entire room, through calling for everyone’s attention. However, there are limits to

scaling the “Big Room” approach:

• Contention for key individuals' attention

• “All hands” calls for attention that actually interests only a subset of the room

• Increasing ambient noise in the room

• Distracting individuals from intellectually demanding work requiring concentration, driving multi-

tasking and context-switching, and ultimately interfering with their personal sense of flow — a

destructive outcome (see [77] for more on flow as a valuable psychological state)

The tension between team coordination and individual focus will likely continue. It is an ongoing topic

in facilities design.

Synchronization

If the team cannot work all the time in one room, perhaps they can at least be gathered periodically.

There is a broad spectrum of synchronization approaches:

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

222 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• Ad hoc chats (in person or virtual)

• Daily standups (e.g., from Scrum)

• Weekly status meetings

• Coordination meetings (e.g., Scrum of Scrums, see below)

• Release kickoffs

• Quarterly “all-hands” meetings

• Cross-organizational advisory and review boards

• Open Space inspired “unmeetings” and “unconferences”

All of them are essentially similar in approach and assumption: build a shared understanding of the

work, objectives, or mission among smaller or larger sections of the organization, through limited-time

face-to-face interaction, often on a defined time interval.

Cadenced Approaches

When a synchronization activity occurs on a timed interval, this can be called a cadence. Sometimes,

cadences are layered; for example, a daily standup, a weekly review, and a monthly Scrum of Scrums.

Reinertsen calls this harmonic cadencing [230 pp. 190-191]. Harmonic cadencing (monthly, quarterly,

and annual financial reporting) has been used in financial management for a long time.

Boundary Spanning

Examples of boundary-spanning liaison and coordination structures include:

• Shared team members

• Integration teams

• Coordination roles

• Communities of practice

• Scrum of Scrums

• Submittal schedules

• API standards

• RACI/ECI decision rights

Shared team members are suggested when two teams have a persistent interface requiring focus and

ownership. When a product has multiple interfaces that emerge as a problem requiring focus, an

integration team may be called for. Coordination roles can include project and program managers,

release train conductors, and the like. Communities of practice will be introduced in Section 6.3.3,

“Organization and Culture” when we discuss the Spotify model. Considered here, they may also play a

coordination role as well as a practice development/maturity role.

Finally, the idea of a Scrum of Scrums is essentially a representative or delegated model, in which

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 223

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

each Scrum team sends one individual to a periodic coordination meeting where matters of cross-team

concern can be discussed and decisions made [68], Chapter 17.

Cohn cautions: “A Scrum of Scrums meeting will feel nothing like a daily Scrum despite the similarities

in names. The daily Scrum is a synchronization meeting: individual team members come together to

communicate about their work and synchronize their efforts. The Scrum of Scrums, on the other hand,

is a problem-solving meeting and will not have the same quick, get-in-get-out tone of a daily Scrum [68

p. 342].”

Another technique mentioned in The Checklist Manifesto [109] is the submittal schedule. Some work,

while detailed, can be planned to a high degree of detail (i.e., the “checklists” of the title). However,

emergent complexity requires a different approach — no checklist can anticipate all eventualities. In

order to handle all the emergent complexity, the coordination focus must shift to structuring the right

communications. In examining modern construction industry techniques, Gawande noted the concept

of the “submittal schedule”, which “didn’t specify construction tasks; it specified communication tasks”

(p.65, emphasis supplied). With the submittal schedule, the project manager tracks that the right

people are talking to each other to resolve problems — a key change in focus from activity-centric

approaches.

We have previously discussed APIs in terms of Amazon's product strategy. They are also important as a

product scales into multiple components and features; API standards can be seen as a boundary-

spanning mechanism.

The above discussion is by no means exhaustive. A wealth of additional techniques relevant for Digital

Practitioners is to be found in [175, 68]. New techniques are continually emerging from the front lines

of the digital profession; the interested student should consider attending industry conferences such as

those offered by the Agile Alliance.

In general, the above approaches imply synchronized meetings and face-to-face interactions. When the

boundary-spanning approach is based on artifacts (often a requirement for larger, decentralized

enterprises), we move into the realms of process and project management. Approaches based on

routing artifacts into queues often receive criticism for introducing too much latency into the product

development process. When artifacts such as work orders and tickets are routed for action by

independent teams, prioritization may be arbitrary (not based on business value; e.g., cost of delay).

Sometimes the work must flow through multiple queues in an uncoordinated way. Such approaches

can add dangerous latency to high-value processes, as we warned in Section 6.2.2, “Work

Management”. We will look in more detail at process management in a later section.

6.3.1.1.4. Coordination Effectiveness

Diane Strode and her colleagues propose that coordination effectiveness can be understood as the

following taxonomy:

• Implicit

◦ Knowing why (shared goal)

◦ Know what is going on and when

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

224 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

◦ Know what to do and when

◦ Know who is doing what

◦ Know who knows what

• Explicit

◦ Right place

◦ Right thing

◦ Right time

Coordinated execution means that teams have a solid common ground of what they are doing and why,

who is doing it, when to do it, and where to go for information. They also have the material outcomes

of the right people being in the right place doing the right thing at the right time. These coordination

objectives must be achieved with a minimum of waste, and with a speed supporting an OODA loop

tighter than the competition’s. Indeed, this is a tall order!

Evidence of Notability

The emergence of coordination concerns in response to organizational scaling is a common topic in the

Agile literature. See, for example, [175, 68].

Limitations

Coordination introduces overhead. Beyond a certain point, it becomes infeasible to coordinate across

all dependencies.

Related Topics

• Product Team

• Work Management

• Operations Basics

• Operational Response

• Coordination Models

• Process Management

• Organizational Structure

6.3.1.2. Coordination, Execution, and the Delivery Models

Description

If we take the strategies proposed by Strode et al. and think of them as three, orthogonal dimensions,

we can derive another useful three-dimensional figure (see Figure 89, “Cube Derived from Strode”):

• Projects often are used to create and deploy processes; a large system implementation (e.g., of an

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 225

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Enterprise Resource Planning (ERP) module such as Human Resources Management) will often be

responsible for process implementation including training

• As environments mature, product, and/or project teams require process support

Figure 89. Cube Derived from Strode

• At the origin point, we have practices like face-to-face meetings at various scales

• Geographically distant, immediate coordination is achieved with messaging and other forms of

telecommunications

• Co-located but asynchronous coordination is achieved through shared artifacts like Kanban boards

• Distant and asynchronous coordination again requires some kind of telecommunications

The Z-axis is particularly challenging, as it represents scaling from a single to multiple and increasingly

organizationally distant teams. Where a single team may be able to maintain a good sense of common

ground even when geographically distant, or working asynchronously, adding the third dimension of

organizational boundaries is where things get hard. Larger-scale coordination strategies include:

• Operational digital processes (Section 6.2.3, “Operations Management”)

◦ Change management

◦ Incident management

◦ Request management

◦ Problem management

◦ Release management

• Specified decision rights

• Projects and project managers (Section 6.3.2, “Investment and Portfolio”)

• Shared services and expertise (Section 6.3.2, “Investment and Portfolio”)

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

226 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• Organization structures (Section 6.3.3, “Organization and Culture”)

• Cultural norms (Section 6.3.3, “Organization and Culture”)

• Architecture standards (Section 6.4.2, “Information Management” and Section 6.4.3, “Architecture”)

All of these coping mechanisms risk compromising to some degree the effectiveness of co-located,

cross-functional teams. Remember that the high-performing product team is likely the highest-value

resource known to the modern organization. Protecting the value of this resource is critical as the

organization scales up. The challenge is that models for coordinating and sustaining complex digital

services are not well understood. IT organizations have tended to fall back on older supply-chain

thinking, with waterfall-derived ideas that work can be sequenced and routed between teams of

specialists. (More on this to come in Section 6.3.3, “Organization and Culture”.)

NOTE
We recommend you review the definitions of the “3 Ps": product, project, and process

management.

6.3.1.2.1. Product Management Release Trains

Where project and process management are explicitly coordination-oriented, product management is

broader and focused on outcomes. As noted previously, it might use either project or a process

management to achieve its outcomes, or it might not.

Release management was introduced in Context I, and has remained a key concept we will return to

now. Release management is a common coordination mechanism in product management, even in

environments that don’t otherwise emphasize processes or projects. At scale, the concept of a “release

train” is seen. SAFe considers it the “primary value delivery construct” [245].

The train is a cadenced synchronization strategy. It “departs the station” on a reliable schedule. As with

Scrum, date and quality are fixed, while the scope is variable. SAFe emphasizes that “being on the

train” in general is a full-time responsibility, so the train is also a temporary organizational or

programmatic concept. The release train “engineer” or similar role is an example of the coordinator

role seen in the Strode coordination tools and techniques matrix.

The release train is a useful concept for coordinating large, multi-team efforts, and is applicable in

environments that have not fully adopted Agile approaches. As author Joanna Rothman notes: “You

can de-scope features from a particular train, but you can never allow a train to be late. That helps the

project team focus on delivering value and helps your customer become accustomed to taking the

product on a more frequent basis” [240].

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 227

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.3.1.2.2. Project Management as Coordination

NOTE

We will talk about project management as an investment strategy in a future section. In

this Competency Area, we look at it as a coordination strategy. Project management

adds concerns of task ordering and resource management, for efforts typically

executed on a one-time basis. Project management groups together a number of

helpful coordination tools which is why it is widely used. These tools include:

• Sequencing tasks

• Managing task dependencies

• Managing resource dependencies of tasks

• Managing overall risk of interrelated tasks

• Planning complex activity flows to complete at a given time

However, project management also has a number of issues:

• Projects are by definition temporary, while products may last as long as there is market demand

• Project management methodology, with its emphasis on predictability, scope management, and

change control, often conflicts with the product management objective of discovering information

(see the discussion of Lean Product Development)

(But not all large management activities involve the creation of new information! Consider the

previous example of upgrading the RAM in 80,000 POS terminals in 2,000 stores.)

The project paradigm has a benefit in its explicit limitation of time and money, and the sense of

urgency this creates. In general, scope, execution, limited resources, deadlines, and dependencies exist

throughout the digital business. A product manager with no understanding of these issues, or tools to

deal with them, will likely fail. Product managers should, therefore, be familiar with the basic concepts

of project management. However, the way in which project management is implemented, the degree of

formality, will vary according to need.

A project manager may still be required, to facilitate discussions, record decisions, and keep the team

on track to its stated direction and commitments. Regardless of whether the team considers itself

“Agile”, people are sometimes bad at taking notes or being consistent in their usage of tools such as

Kanban boards and standups.

It is also useful to have a third party who is knowledgeable about the product and its development, yet

has some emotional distance from its success. This can be a difficult balance to strike, but the existence

of the role of Scrum coach is indicative of its importance.

We will take another look at project management, as an investment management approach, in Section

6.3.2, “Investment and Portfolio”.

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

228 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.3.1.2.3. Decision Rights

Approvals are a particular form of activity dependency, and since approvals tend to flow upwards in

the organizational hierarchy to busy individuals, they can be a significant source of delay and, as

Reinertsen points out [229 p. 108], discovering “invisible electric fences” by trial and error is both slow

and also reduces human initiative. One boundary spanning coordination artifact an organization can

produce as a coordination response is a statement of decision rights; for example, a RACI analysis.

RACI stands for:

• Responsible

• Accountable (sometimes understood as Approves)

• Consulted

• Informed

A RACI analysis is often used when accountability must be defined for complex activities. It is used in

process management, and also is seen in project management and general organizational structure.

Table 17. RACI Analysis

Team Member Product Owner Chief Product Owner

Change interface

affecting two modules

Responsible Accountable Informed

Change interface

affecting more than two

modules

Responsible Informed Accountable

Hire new team member Consulted Responsible Accountable

Some Agile authors⁠
[6]

 call for an “ECI” matrix, with the “E” standing for empowered, defined as both

Accountable and Responsible.

6.3.1.2.4. Process Management as Coordination

We discussed the emergence of process management in Section 6.2.2, “Work Management”, and in

Section 6.2.3, “Operations Management” the basic digital processes of change, incident, problem, and

request management.

As we saw in the Strode dependency taxonomy, waiting on a business process is a form of dependency.

But business processes are more than just dependency sources and obstacles; they themselves are a

form of coordination. In Strode’s terms, they are a boundary spanning activity. It is ironic that a

coordination tool itself might be seen as a dependency and blockage to work; this shows at least the

risk of assuming that all problems can or should be solved by tightly specified business processes!

Like project management, process management is concerned with ordering, but less so with the

resource load (more on this to come), and more with repeatability and ongoing improvement. The

concept of process is often contrasted with that of function or organization. Process management’s

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 229

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

goal is to drive repeatable results across organizational boundaries. As we know from our discussion of

product management, developing new products is not a particularly repeatable process. The Agile

movement arose as a reaction to mis-applied process concepts of "repeatability” in developing

software. These concerns remain. However, this document covers more than development. We are

interested in the spectrum of digital operations and effort that spans from the unique to the highly

repeatable. There is an interesting middle ground of processes that are at least semi-repeatable.

Examples often found in the large digital organization include:

• Assessing, approving, and completing changes

• End-user equipment provisioning

• Resolving incidents and answering user inquiries

• Troubleshooting problems

We will discuss a variety of such processes, and the pros and cons of formalizing them, in the section

on industry frameworks. In Section 6.4.1, “Governance, Risk, Security, and Compliance”, we will

discuss IT governance in depth. The concept of “control” is critical to IT governance, and processes

often play an important role in terms of control.

Just as the traditional IT project is under pressure, there are similar challenges for the traditional IT

process. DevOps and continuous delivery are eroding the need for formal change management.

Consumerization is challenging traditional internal IT provisioning practices. And self-service help

desks are eliminating some traditional support activities. Nevertheless, any rumors of an “end to

process” are probably greatly exaggerated. Measurability remains a concern; the Lean philosophy

underpinning much Agile thought emphasizes measurement. There will likely always be complex

combinations of automated, semi-automated, and manual activity in digital organizations. Some of this

activity will be repeatable enough that the “process” construct will be applied to it.

6.3.1.2.5. Projects and Processes

Project management and process management interact in two primary ways as Figure 90, “Process and

Project” illustrates:

• Projects often are used to create and deploy processes - a large system implementation (e.g., of an

ERP module such as Human Resources Management) will often be responsible for process

implementation including training

• As environments mature, product and/or project teams require process support

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

230 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 90. Process and Project

As Richardson notes in Project Management Theory and Practice: “there are many organizational

processes that are needed to optimally support a successful project” [231]. For example, the project

may require predictable contractor hiring, or infrastructure provisioning, or security reviews. The

same is true for product teams that may not be using a “project” concept to manage their work. To the

extent these are managed as repeatable, optimized processes, the risk is reduced. The trouble is when

the processes require prioritization of resources to perform them. This can lead to long delays, as the

teams performing the process may not have the information to make an informed prioritization

decision. Many IT professionals will agree that the relationship between application and infrastructure

teams has been contentious for decades because of just this issue. One response has been increasing

automation of infrastructure service provisioning (private and external cloud).

Evidence of Notability

Coordination is a management fundamental. The basic models presented here (product management,

project management, and process management) all have extensive bodies of literature and

communities of practitioners.

Limitations

Coordination is costly, and the more that there are requirements for it to scale or be exactly precise,

the more expensive it is.

Related Topics

• Product Team

• Work Management

• Operations Basics

• Operational Response

• Coordination Basics

• Process Management

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 231

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• Organizational Structure

6.3.1.3. Process Management

Description

Dictionary.com defines process as “a systematic series of actions directed to some end … a continuous

action, operation, or series of changes taking place in a definite manner”. We saw the concept of

“process” start to emerge in Section 6.2.2, “Work Management”, as work become more specialized and

repeatable and our card walls got more complicated.

We have discussed work management, which is an important precursor of process management.

Work management is less formalized; a wide variety of activities are handled through flexible Kanban

-style boards or “card walls” based on the simplest “process” of:

• To do

• Doing

• Done

However, the simple card wall/Kanban board can easily become much more complex, with the

addition of swimlanes and additional columns, including holding areas for blocked work. As we

discussed in Section 6.2.2, “Work Management”, when tasks become more routine, repeatable, and

specialized, formal process management starts to emerge. Process management starts with the

fundamental capability for coordinated work management, and refines it much further.

Process, in terms of “business process”, has been a topic of study and field for professional

development for many years. Pioneering BPM authors such as Michael Hammer [121] and Geary

Rummler [244] have had an immense impact on business operations, with concepts such as Hammer’s

Business Process Re-engineering (BPR). BPR initiatives are intended to identify waste and streamline

processes, eliminating steps that no longer add value. BPR efforts often require new or enhanced

digital systems.

In the Lean world, value stream mapping represents a way of understanding the end-to-end flow of

value, typically in a manufacturing or supply chain operational context [239].

The Lean Enterprise Institute defines value stream as: “All of the actions, both value-creating and non-

value-creating, required to bring a product from concept to launch (also known as the development value

stream) and from order to delivery (also known as the operational value stream). These include actions to

process information from the customer and actions to transform the product on its way to the customer.”

Making value streams visible helps understand current conditions and identify issues and problems. A

Value Stream Map (VSM) is a simple diagram of every step involved in the material and information

flows needed to deliver value. The Lean Enterprise Institute indicates that: "Value Stream Maps can be

drawn for different points in time as a way to raise consciousness of opportunities for improvement. A

current state map follows a product’s path from order to delivery to determine the current conditions. A

future state map deploys the opportunities for improvement identified in the current state map to achieve

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

232 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

a higher level of performance at some future point".

Toyota considers a clear process vision, or “target condition”, to be the most fundamental objective for

improving operations [238], Chapters 5 and 6. Designing processes, improving them, and using them to

improve overall performance is an ongoing activity in most, if not all organizations. VSM is a powerful

tool that can help define a clear process vision.

In your company, work has been specializing. A simple card-based Kanban approach is no longer

sufficient. You are finding that some work is repetitive, and you need to remember to do certain things

in certain orders. For example, a new human resources manager was hired and decided that a sticky

note of “hire someone new for us” was not sufficient. As she pointed out to the team, hiring employees

was a regulated activity, with legal liability, requiring confidentiality, that needed to follow a defined

sequence of tasks:

• Establishing the need and purpose for the position

• Soliciting candidates

• Filtering the candidates

• Selecting a final choice

• Registering that new employee in the payroll system

• Getting the new employee set up with benefits providers (insurance, retirement, etc.)

• Getting the new employee working space, equipment, and access to systems

• Training the new employee in organizational policies, as well as any position-specific orientation

The sales, marketing, and finance teams have similarly been developing ordered lists of tasks that are

consistently executed as end-to-end sequences. And even in the core digital development and

operations teams, they are finding that some tasks are repetitive and need documentation so they are

performed consistently.

Your entire digital product pipeline may be called a “process”. From initial feature idea through

production, you seek a consistent means for identifying and implementing valuable functionality.

Sometimes this work requires intensive, iterative collaboration and is unpredictable (e.g., developing a

user interface); sometimes, the work is more repeatable (e.g., packaging and releasing tested

functionality).

You are hiring more specialized people with specialized backgrounds. Many of them enter your

organization and immediately ask process questions:

• What is your security process?

• What is your architecture process?

• What is your portfolio process?

You have not had these conversations before. What do they mean by these different “processes”? They

seem to have some expectation based on their previous employment, and if you say “we don’t have

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 233

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

one” they tend to be confused. You are becoming concerned that your company may be running some

risk, although you also are wary that “process” might mean slowing things down, and you can’t afford

that.

However, some team members are cautious of the word “process". The term "process police” arises in

an unhappy way.

“Are we going to have auditors tracking whether we filled out all our forms correctly?” one asks.

“We used to get these "process consultants" at my old company, and they would leave piles of three-

ring binders on the shelf that no-one ever looked at” another person says.

“I can’t write code according to someone’s recipe!” a third says with some passion, and to general

agreement from the developers in the room.

The irony is that digital products are based on process automation. The idea that certain tasks can be

done repeatably and at scale through digitization is fundamental to all use of computers. The digital

service is fundamentally an automated process, one that can be intricate and complicated. That is what

computers do. But, process management also spans human activities, and that’s where things get more

complex.

Processes are how we ensure consistency, repeatability, and quality. You get expected treatment at

banks, coffee shops, and dentists because they follow processes. IT systems often enable processes – a

mortgage origination system is based on IT software that enforces a consistent process. IT

management itself follows certain processes, for all the same reasons as above.

However, processes can cause problems. Like project management, the practice of process

management is under scrutiny in the new Lean and Agile-influenced digital world. Processes imply

queues, and in digital and other product development-based organizations, this means invisible work-

in-process. For every employee you hire who expects you to have processes, another will have bad

process experiences at previous employers. Nevertheless, process remains an important tool in your

toolkit for organization design.

Process is a broad concept used throughout business operations. The coverage here is primarily

about process as applied to the digital organization. There is a bit of a recursive paradox here; in

part, we are talking about the process by which business processes are analyzed and sometimes

automated. By definition, this overall “process” (you could call it a meta-process) cannot be made too

prescriptive or predictable.

The concept of “process” is important and will persist through Digital Transformation. We need a

robust set of tools to discuss it. This Competency Area will break the problem into a lifecycle of:

• Process conception

• Process content

• Process execution

• Process improvement

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

234 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Although we don’t preface these topics with “Agile” or “Lean”, bringing these together with related

perspectives is the intent of this Competency Category.

6.3.1.3.1. Process Conception

Processes can provoke reactions when their value is not understood, or has decayed. Such reactions

are commonplace in social media (and even well-regarded professional books), but we need a more

objective and rational approach to understand the pros and cons of processes. We have seen a number

of neutral concepts towards this end from authors such as Don Reinertsen and Diane Strode:

• Queues

• Dependencies

• Coordination

• Cadence and Synchronization

• Sequencing

A process is a technique, a tool, and no technique should be implemented without a thorough

understanding of the organizational context. Nor should any technique be implemented without

rigorous, disciplined follow-up as to its real effects, both direct and indirect. Many of the issues with

process come from a cultural failure to seek an understanding of the organization needs in objective

terms such as these. We will think about this cultural failure more in the discussion of Toyota Kata.

A skeptical and self-critical, “go and see” approach is, therefore, essential. Too often, processes are

instituted in reaction to the last crisis, imposed top-down, and rarely evaluated for effectiveness.

Allowing affected parties to lead a process re-design is a core Lean principle (kaizen). On the other

hand, uncoordinated local control of processes can also have destructive effects as discussed below.

6.3.1.3.2. Process Execution

Since our initial discussions in Section 6.2.2, “Work Management” on work management, we find

ourselves returning full circle. Despite the various ways in which work is conceived, funded, and

formulated, at the end “it’s all just work”. The digital organization must retain a concern for the

“human resources” (that is, people) who find themselves at the mercy of:

• Project fractional allocations driving multi-tasking and context-switching

• Processes imposed top-down with little demand analysis or evaluation of benefits

• Myriad demands that, although critical, do not seem to fit into either of the first two categories

The Lean movement manages through minimizing waste and over-processing. This means both

removing unnecessary steps from processes, and eliminating unnecessary processes completely

when required. Correspondingly, the processes that remain should have high levels of visibility. They

should be taken with the utmost seriousness, and their status should be central to most people’s

awareness. This is the purpose of Andon.

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 235

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

From workflow tools to collaboration and digital exhaust. One reason process tends to generate

friction and be unpopular is the poor usability of workflow tools. Older tools tend to present myriads

of data fields to the user and expect a high degree of training. Each state change in the process is

supposed to be logged and tracked by having someone sign in to the tool and update status manually.

By contrast, modern workflow approaches take full advantage of mobile platforms and integration

with technology like chatrooms and ChatOps. Mobile development imposes higher standards for User

Experience (UX) design, which makes tracking workflow somewhat easier. Integrated software

pipelines that integrate Application Lifecycle Management (ALM) and/or project management with

source control and build management are increasingly gaining favor. For example:

• A user logs a new feature request in the ALM tool

• When the request is assigned to a developer, the tool automatically creates a feature branch in the

source control system for the developer to work on

• The developer writes tests and associated code and merges changes back to the central repository

once tests are passed successfully

• The system automatically runs build tests

• The ALM tool is automatically updated accordingly with completion if all tests pass

See also the previous discussion of ChatOps, which similarly combines communication and execution

in a low-friction manner, while providing rich digital exhaust as an audit trail.

In general, the idea is that we can understand digital processes not through painful manual status

updates, but rather through their digital exhaust — the data byproducts of people performing the

value-add day-to-day work, at speed, and with the flow instead of constant delays for approvals and

status updates.

6.3.1.3.3. Measuring Process

One of the most important reasons for repeatable processes is so that they can be measured and

understood. Repeatable processes are measured in terms of:

• Speed

• Effort

• Quality

• Variation

• Outcomes

at the most general level and, of course, all of those measurements must be defined much more

specifically depending on the process. Operations (often in the form of business processes) generate

data, and data can be aggregated and reported on. Such reporting serves as a form of feedback for

management and even governance. Examples of metrics might include:

• Quarterly sales as a dollar amount

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

236 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• Percentage of time a service or system is available

• Number of successful releases or pushes of code (new functionality)

Measurement is an essential aspect of process management but must be carefully designed. Measuring

processes can have unforeseen results. Process participants will behave according to how the process

is measured. If a help desk operator is measured and rated on how many calls they process an hour,

the quality of those interactions may suffer. It is critical that any process “Key Performance Indicator”

(KPI) be understood in terms of the highest possible business objectives. Is the objective truly to

process as many calls as possible? Or is it to satisfy the customer so they need not turn to other

channels to get their answers?

A variety of terms and practices exist in process metrics and measurement, such as:

• The Balanced Scorecard

• The concept of a metrics hierarchy

• Leading versus lagging indicators

The Balanced Scorecard is a commonly seen approach for measuring and managing organizations.

First proposed by Kaplan and Norton [163] in the Harvard Business Review, the Balanced Scorecard

groups metrics into the following subject areas:

• Financial

• Customer

• Internal business processes

• Learning and growth

Metrics can be seen as “lower” versus “higher”-level. For example, the metrics from a particular

product might be aggregated into a hierarchy with the metrics from all products, to provide an overall

metric of product success. Some metrics are perceived to be of particular importance for business

processes, and thus may be termed KPIs. Metrics can indicate past performance (lagging), or predict

future performance (leading).

6.3.1.3.4. The Disadvantages of Process

Netflix CTO Reed Hastings, in an influential public presentation "Netflix Culture: Freedom and

Responsibility", presents a skeptical attitude towards process. In his view, process emerges as a result

of an organization’s talent pool becoming diluted with growth, while at the same time its operations

become more complex.

Hastings observes that companies that become overly process-focused can reap great rewards as long

as their market stays stable. However, when markets change, they also can be fatally slow to adapt.

The Netflix strategy is to focus on hiring the highest-performance employees and keeping processes

minimal. They admit that their industry (minimally regulated, creative, non-life-critical) is well suited

to this approach [126].

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 237

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

The Pitfall of Process “Silos”

One organization enthusiastically embraced process improvement, with good

reason: customers, suppliers, and employees found the company’s processes

slow, inconsistent, and error-prone. Unfortunately, they were so enthusiastic

that each team defined the work of their small group or department as a

complete process. Of course, each of these was, in fact, the contribution of a

specialized functional group to some larger, but unidentified, processes. Each

of these “processes” was “improved” independently, and you can guess what

happened.

Within the boundaries of each process, improvements were implemented that

made work more efficient from the perspective of the performer. However,

these mini-processes were efficient largely because they had front-end

constraints that made work easier for the performer but imposed a burden on

the customer or the preceding process. The attendant delay and effort meant

that the true business processes behaved even more poorly than they had

before. This is a common outcome when processes are defined too “small”.

Moral: Don’t confuse sub-processes or activities with business processes.

— Alex Sharp, Workflow Modeling

The above quote (from [255]) well illustrates the dangers of combining local optimization and process

management. Many current authors speak highly of self-organizing teams, but self-organizing teams

may seek to optimize locally. Process management was originally intended to overcome this problem,

but modeling techniques can be applied at various levels, including within specific departments. This

is where enterprise Business Architecture can assist, by identifying these longer, end-to-end flows of

value and highlighting the hand-off areas, so that the process benefits the larger objective.

Process Proliferation

Another pitfall we cover here is that of process proliferation. Process is a powerful tool. Ultimately it is

how value is delivered. However, too many processes can have negative results on an organization.

One thing often overlooked in process management and process frameworks is any attention to the

resource impacts of the process. This is a primary difference between project and process

management; in process management (both theory and frameworks), resource availability is in

general assumed.

More advanced forms of process modeling and simulation such as “discrete event simulation” [275]

can provide insight into the resource demands for processes. However, such techniques require

specialized tooling and are not part of the typical BPM practitioner’s skillset.

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

238 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Many enterprise environments have multiple cross-functional processes such as:

• Service requests

• Compliance certifications

• Asset validations

• Provisioning requests

• Capacity assessments

• Change approvals

• Training obligations

• Performance assessments

• Audit responses

• Expense reporting

• Travel approvals

These processes sometimes seem to be implemented on the assumption that enterprises can always

accommodate another process. The result can be a dramatic overburden for digital staff in complex

environments. A frequently-discussed responsibility of Scrum masters and product owners is to “run

interference” and keep such enterprise processes from eroding team cohesion and effectiveness. It is,

therefore, advisable to at least keep an inventory of processes that may impose demand on staff, and

understand both the aggregate demand as well as the degree of multi-tasking and context-switching

that may result (as discussed in Section 6.2.2, “Work Management”). Thorough automation of all

processes to the maximum extent possible can also drive value, to reduce latency, load, and multi-

tasking.

Rather than a simplistic view of "process bad" or "process good", it is better to view process as simply a

coordination approach. It is a powerful one with important disadvantages. It should be understood in

terms of coordination contexts such as time and space shifting and predictability.

It is also important to consider lighter-weight variations on process, such as case management,

checklists, and the submittal schedule.

Evidence of Notability

Process management has a long history across business and organizational management in general.

Notable works include Michael Hammer’s Re-engineering the Corporation [121] and Rummler and

Brache’s Improving Performance [244].

Limitations

Process management, like its earlier precursor (in this document) workflow management, is not well

suited for higher-variability, higher-touch tasks.

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 239

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Related Topics

• Work Management

• Operations Basics

• Operational Response

• Coordination Basics

• Governance Elements

• Digital Governance

• Architecture Practices

6.3.1.4. Process Control and Continuous Improvement

Description

NOTE
This is some of the most advanced material in this document, but critical to

understanding the foundations of Agile methods.

Once processes are measured, the natural desire is to use the measurements to improve them. Process

management, like project management, is a discipline unto itself and one of the most powerful tools in

your toolbox. The practitioner eventually starts to realize there is a process by which process itself is

managed — the process of continuous improvement. You remain concerned that work continues to

flow well, that you don’t take on too much work-in-process, and that people are not overloaded and

multi-tasking.

In this Competency Category, we take a deeper look at the concept of process and how processes are

managed and controlled. In particular, we will explore the concept of continuous (or continual)

improvement and its rich history and complex relationship to Agile.

You are now at a stage in your company’s evolution, or your career, where an understanding of

continuous improvement is helpful. Without this, you will increasingly find you don’t understand the

language and motivations of leaders in your organization, especially those with business degrees or

background.

The scope of the word “process” is immense. Examples include:

• The end-to-end flow of chemicals through a refinery

• The set of activities across a manufacturing assembly line, resulting in a product for sale

• The steps expected of a customer service representative in handling an inquiry

• The steps followed in troubleshooting a software-based system

• The general steps followed in creating and executing a project

• The overall flow of work in software development, from idea to operation

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

240 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

This breadth of usage requires us to be specific in any discussion of the word “process”. In particular,

we need to be careful in understanding the concepts of efficiency, variation, and effectiveness. These

concepts lie at the heart of understanding process control and improvement and how to correctly

apply it in the digital economy.

Companies institute processes because it has been long understood that repetitive activities can be

optimized when they are better understood, and if they are optimized, they are more likely to be

economical and even profitable. We have emphasized throughout this document that the process by

which complex systems are created is not repetitive. Such creation is a process of product

development, not production. And yet, the entire digital organization covers a broad spectrum of

process possibilities, from the repetitive to the unique. You need to be able to identify what kind of

process you are dealing with, and to choose the right techniques to manage it. (For example, an

employee provisioning process flow could be simple and prescriptive. Measuring its efficiency and

variability would be possible, and perhaps useful.)

There are many aspects of the movement known as “continuous improvement” that we won’t cover in

this brief section. Some of them (systems thinking, culture, and others) are covered elsewhere in this

document. This document is based in part on Lean and Agile premises, and continuous improvement is

one of the major influences on Lean and Agile, so in some ways, we come full circle. Here, we are

focusing on continuous improvement in the context of processes and process improvement. We will

therefore scope this to a few concerns: efficiency, variation, effectiveness, and process control.

6.3.1.4.1. History of Continuous Improvement

The history of continuous improvement is intertwined with the history of 20th century business itself.

Before the Industrial Revolution, goods and services were produced primarily by local farmers,

artisans, and merchants. Techniques were jealously guarded, not shared. A given blacksmith might

have two or three workers, who might all forge a pan or a sword in a different way. The term

“productivity” itself was unknown.

Then the Industrial Revolution happened.

As steam and electric power increased the productivity of industry, requiring greater sums of capital to

fund, a search for improvements began. Blacksmith shops (and other craft producers such as grain

millers and weavers) began to consolidate into larger organizations, and technology became more

complex and dangerous. It started to become clear that allowing each worker to perform the work as

they preferred was not feasible.

Enter the scientific method. Thinkers such as Frederick Taylor and Frank and Lillian Gilbreth (of

Cheaper by the Dozen fame,) started applying careful techniques of measurement and comparison, in

search of the “one best way” to dig ditches, forge implements, or assemble vehicles. Organizations

became much more specialized and hierarchical. An entire profession of industrial engineering was

established, along with the formal study of business management itself.

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 241

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.3.1.4.2. Frederick Taylor and Efficiency

Frederick Taylor (1856-1915) was a mechanical engineer and one of the first industrial engineers. In

1911, he wrote Principles of Scientific Management. One of Taylor’s primary contributions to

management thinking was a systematic approach to efficiency. To understand this, let’s consider some

fundamentals.

Human beings engage in repetitive activities. These activities consume inputs and produce outputs. It

is often possible to compare the outputs against the inputs, numerically, and understand how

“productive” the process is. For example, suppose you have two factories producing identical kitchen

utensils (such as pizza cutters). If one factory can produce 50,000 pizza cutters for $2,000, while the

other requires $5,000, the first factory is more productive.

Assume for a moment that the workers are all earning the same across each factory, and that both

factories get the same prices on raw materials. There is possibly a “process” problem. The first factory

is more efficient than the second; it can produce more, given the same set of inputs. Why?

There are many possible reasons. Perhaps the second factory is poorly laid out, and the work-in-

progress must be moved too many times in order for workers to perform their tasks. Perhaps the

workers are using tools that require more manual steps. Understanding the differences between the

two factories, and recommending the “best way”, is what Taylor pioneered, and what industrial

engineers do to this day.

As Peter Drucker, one of the most influential management thinkers, says of Frederick Taylor:

The application of knowledge to work explosively increased productivity. For hundreds of years,

there had been no increase in the ability of workers to turn out goods or to move goods. But

within a few years after Taylor began to apply knowledge to work, productivity began to rise at a

rate of 3.5 to 4% compound a year — which means doubling every 18 years or so. Since Taylor

began, productivity has increased some 50 fold in all advanced countries. On this unprecedented

expansion rest all the increases in both standard of living and quality of life in the developed

countries [89 pp. 37-38].

The history of industrial engineering is often controversial, however. Hard-won skills were analyzed

and stripped from traditional craftspeople by industrial engineers with clipboards, who now would

determine the “one best way”. Workers were increasingly treated as disposable. Work was reduced to

its smallest components of a repeatable movement, to be performed on the assembly line, hour after

hour, day after day until the industrial engineers developed a new assembly line. Taylor was known

for his contempt for the workers, and his methods were used to increase work burdens sometimes to

inhuman levels. Finally, some kinds of work simply can’t be broken into constituent tasks. High-

performing, collaborative, problem-solving teams do not use Taylorist principles, in general.

Eventually, the term "Taylorism” was coined, and today is often used more as a criticism than a

compliment.

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

242 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.3.1.4.3. W. Edwards Deming and Variation

The quest for efficiency leads to the long-standing management interest in variability and variation.

What do we mean by this?

If you expect a process to take five days, what do you make of occurrences when it takes seven days?

Four days? If you expect a manufacturing process to yield 98% usable product, what do you do when it

falls to 97%? 92%? In highly repeatable manufacturing processes, statistical techniques can be applied.

Analyzing such “variation” has been a part of management for decades, and is an important part of

disciplines such as Six Sigma. This is why Six Sigma is of such interest to manufacturing firms.

W. Edwards Deming (1900-1993) is noted for (among many other things) his understanding of variation

and organizational responses to it. Understanding variation is one of the major parts of his “System of

Profound Knowledge”. He emphasizes the need to distinguish special causes from common causes of

variation; special causes are those requiring management attention.

Deming, in particular, was an advocate of the control chart, a technique developed by Walter

Shewhart, to understand whether a process was within statistical control (see Figure 91, “Process

Control Chart”).

Figure 91. Process Control Chart

However, using techniques of this nature makes certain critical assumptions about the nature of the

process. Understanding variation and when to manage it requires care. These techniques were defined

to understand physical processes that in general follow normal distributions.

For example, let’s say you are working at a large manufacturer, in their IT organization, and you see

the metric of "variance from project plan”. The idea is that your actual project time, scope, and

resources should be the same, or close to, what you planned. In practice, this tends to become a

discussion about time, as resources and scope are often fixed.

The assumption is that, for your project tasks, you should be able to estimate to a meaningful degree of

accuracy. Your estimates are equally likely to be too low, or too high. Furthermore, it should be

somehow possible to improve the accuracy of your estimates. Your annual review depends on this, in

fact.

The problem is that neither of these is true. Despite heroic efforts, you cannot improve your

estimation. In process control jargon, there are too many causes of variation for “best practices” to

emerge. Project tasks remain unpredictable, and the variability does not follow a normal distribution.

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 243

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Very few tasks get finished earlier than you estimated, and there is a long tail to the right, of tasks that

take 2x, 3x, or 10x longer than estimated.

In general, applying statistical process control to variable, creative product development processes is

inappropriate. For software development, Steven Kan states: “Many assumptions that underlie control

charts are not being met in software data. Perhaps the most critical one is that data variation is from

homogeneous sources of variation.” That is, the causes of variation are knowable and can be

addressed. This is in general not true of development work [160].

Deming (along with Juran) is also known for “continuous improvement” as a cycle; e.g.,

"Plan/Do/Check/Act” or "Define/Measure/Analyze/Implement/Control”. Such cycles are akin to the

scientific method, as they essentially engage in the ongoing development and testing of hypotheses,

and the implementation of validated learning. We touch on similar cycles in our discussions of Lean

Startup, OODA, and Toyota Kata.

6.3.1.4.4. Problems in Process Improvement

There tended to be no big picture waiting to be revealed … there was only

process kaizen … focused on isolated individual steps … We coined the term

“kamikaze kaizen” … to describe the likely result: lots of commotion, many

isolated victories … [and] loss of the war when no sustainable benefits reached

the customer or the bottom line.

— Womack, and Jones

There are many ways that process improvement can go wrong:

• Not basing process improvement in an empirical understanding of the situation

• Process improvement activities that do not involve those affected

• Not treating process activities as demand in and of themselves

• Uncoordinated improvement activities, far from the bottom line

The solutions are to be found largely within Lean theory:

• Understand the facts of the process; do not pretend to understand based on remote reports; “go and

see”, in other words

• Respect people, and understand that best understanding of the situation is held by those closest to

it

• Make time and resources available for improvement activities; for example, assign them a problem

ticket and ensure there are resources specifically tasked with working it, who are given relief from

other duties

• Periodically review improvement activities as part of the overall portfolio; you are placing “bets”

on them just as with new features - do they merit your investment?

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

244 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.3.1.4.5. Lean Product Development and Cost of Delay

the purpose of controlling the process must be to influence economic

outcomes. There is no other reason to be interested in process control.

— Don Reinertsen, Managing the Design Factory

Discussions of efficiency usually focus on productivity that is predicated on a certain set of inputs.

Time can be one of those inputs. Everything else being equal, a company that can produce the pizza

cutters more quickly is also viewed as more efficient. Customers may pay a premium for early delivery,

and may penalize late delivery; such charges typically would be some percentage (say plus or minus

20%) of the final price of the finished goods.

However, the question of time becomes a game-changer in the “process” of new product development.

As we have discussed previously, starting with a series of influential articles in the early 1980s, Don

Reinertsen developed the idea of cost of delay for product development [229].

Where the cost of a delayed product shipment might be some percentage, the cost of delay for a

delayed product could be much more substantial. For example, if a new product launch misses a key

trade show where competitors will be presenting similar innovations, the cost to the company might

be millions of dollars of lost revenue or more — many times the product development investment.

This is not a question of “efficiency”; of comparing inputs to outputs and looking for a few percentage

points improvement. It is more a matter of effectiveness; of the company’s ability to execute on

complex knowledge work.

6.3.1.4.6. Scrum and Empirical Process Control

Ken Schwaber, inventor of the Scrum methodology (along with Jeff Sutherland), like many other

software engineers in the 1990s, experienced discomfort with the Deming-inspired process control

approach promoted by major software contractors at the time. Mainstream software development

processes sought to make software development predictable and repeatable in the sense of a defined

process.

As Schwaber discusses [250 pp. 24-25] defined processes are completely understood, which is not the

case with creative processes. Highly-automated industrial processes run predictably, with consistent

results. By contrast, complex processes that are not understood require an empirical model.

Empirical process control, in the Scrum sense, relies on frequent inspection and adaptation. After

exposure to Dupont process theory experts who clarified the difference between defined and empirical

process control, Schwaber went on to develop the influential Scrum methodology. As he notes:

During my visit to DuPont … I realized why [software development] was in such trouble and had such a

poor reputation. We were wasting our time trying to control our work by thinking we had an assembly

line when the only proper control was frequent and first-hand inspection, followed by immediate

adjustments. [250 p. 25].

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 245

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

In general, the idea of statistical process control for digital product development is thoroughly

discredited. However, this document covers not only digital product development (as a form of R&D). It

covers all of traditional IT management, in its new guise of the digitally transformed organization.

Development is only part of digital management.

Evidence of Notability

Continuous improvement is a widely recognized topic in management theory. Notable influences

include Shewhart, Deming, and Juran. Lean thinking is often noted for its relevance to continuous

improvement. Agile and DevOps are explicitly influenced by ideas from continuous improvement (see,

for example, cite:[Kim2016(32)).

Limitations

Like systems thinking, discussions of continuous improvement can appear theoretical and the

audience should be considered.

Related Topics

• The Digital Lifecycle

• Agile Development

• DevOps

• Work Management

• Process Management

• Digital Governance

• Analytics

6.3.2. Investment and Portfolio

Area Description

The decision to break an organization into multiple teams is in part an investment decision. The

organization is going to devote some resources to one team, and some to another team. Furthermore,

there will be additional spending still managed at a corporate level. If the results meet expectations,

the organization will then likely proceed with further investments managed by the same or similar

organization structure. How are these separate streams of investment decided on and managed? What

is the approach for structuring them? How does an organization ensure that they are returning the

desired results?

People are competitive. Multiple teams will start to contend for investment. This is unavoidable. They

will want their activities adequately supported, and their understanding of “adequate” may be

different from each other. They will be watching that the other teams don’t get “more than their share”

and are using their share effectively. The leader starts to see that the teams need to be constantly

reminded of the big picture, in order to keep their discussions and occasional disagreements

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

246 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

constructive.

There is now a dedicated, full-time Chief Financial Officer and the organization is increasingly subject

to standard accounting and budgeting rules. But annual budgeting seems to be opposed to how the

digital startup has run to date. What alternatives are there? The organization’s approach to financial

management affects every aspect of the company, including product team effectiveness.

The organization also begins to understand vendor relationships (e.g., your cloud providers) as a form

of investment. As the use of their products deepens, it becomes more difficult to switch from them, and

so the organization spends more time evaluating before committing. The organization establishes a

more formalized approach. Open source changes the software vendor relationship to some degree, but

it’s still a portfolio of commitments and relationships requiring management.

Project management is often seen as necessary for financial planning, especially regarding the efforts

most critical to the business. The reason it is seen as essential is because of the desire to coordinate,

manage, and plan. Having a vision isn’t worth much without some ability to forecast how long it will

take and what it will cost, and to monitor progress against the forecast in an ongoing way. Project

management is often defined as the execution of a given scope of work within constraints of time

and budget. But questions arise. The organization has long been executing work, without this concept

of “project”. This document discussed Scrum, Kanban, and various organizational levels and delivery

models in the introduction to Context III. This Competency Category will examine this idea of “scope”

in more detail. How can it be known in advance, so that the “constraints of time and budget” are

reasonable?

As seen in this document’s discussions of product management, in implementing truly new products,

(including digital products) estimating time and budget is challenging because the necessary

information is not available. In fact, creating information — which (per Lean Product Development)

requires tight feedback loops — is the actual work of the “project”. Therefore, in the new Agile world,

there is some uncertainty as to the role of and even need for traditional project management. This

Competency Category will examine some of the reasons for project management’s persistence and how

it is adapting to the new product-centric reality.

In the project management literature and tradition, much focus is given to the execution aspect of

project management — its ability to manage complex, interdependent work across resource

limitations. We discussed project management and execution in Section 6.3.1.2.2, “Project Management

as Coordination”. In this section, we are interested in the structural role of project management as a

way of managing investments. Project management may be institutionalized through establishing an

organizational function known as the Project Management Office (PMO), which may use a concept of

project portfolio as a means of constraining and managing the organization’s multiple priorities. What

is the relationship of the traditional PMO to the new, product-centric, digital world?

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 247

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.3.2.1. Financial Management of Digital and IT

Description

Financial health is an essential dimension of business health. And digital technology has been one of

the fastest-growing budget items in modern enterprises. Its relationship to enterprise financial

management has been a concern since the first computers were acquired for business purposes.

IMPORTANT

Financial management is a broad, complex, and evolving topic and its

relationship to IT and digital management is even more so. This brief section

can only cover a few basics. However, it is important for you to have an

understanding of the intersection of Agile and Lean IT with finance, as your

organization’s financial management approach can determine the effectiveness

of your digital strategy.

The objectives of IT finance include:

• Providing a framework for tracking and accounting for digital income and expenses

• Supporting financial analysis of digital strategies (business models and operating models, including

sourcing)

• Supporting the digital and IT-related aspects of the corporate budgetary and reporting processes,

including internal and external policy compliance

• Supporting (where appropriate) internal cost recovery from business units consuming digital

services

• Supporting accurate and transparent comparison of IT financial performance to peers and market

offerings (benchmarking)

A company scaling up today would often make different decisions from a company that scaled up 40

years ago. This is especially apparent in the matter of how to finance digital/IT systems development

and operations. The intent of this section is to explore both the traditional approaches to IT financial

management and the emerging Agile/Lean responses.

This section has the following outline:

• Historical IT financial practices

◦ Annual budgeting and project funding

◦ Cost accounting and chargeback

• Next-generation IT finance

◦ Lean Accounting & Beyond Budgeting

◦ Lean Product Development

◦ Internal “venture” funding

◦ Value stream orientation

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

248 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

◦ Internal market economics

◦ Service brokerage

6.3.2.1.1. Historic IT Financial Practices

Historically, IT financial management has been defined by two major practices:

• An annual budgeting cycle, in which project funding is decided

• Cost accounting, sometimes with associated internal transfers (chargebacks) as a primary tool for

understanding and controlling IT expenses

Both of these practices are being challenged by Agile and Lean IT thinking.

Annual Budgeting and Project Funding

IT organizations typically adhere to annual budgeting and planning cycles,

which can involve painful rebalancing exercises across an entire portfolio of

technology initiatives, as well as a sizeable amount of rework and waste. This

approach is anathema to companies that are seeking to deploy Agile at scale.

Some businesses in our research base are taking a different approach. Overall

budgeting is still done yearly, but roadmaps and plans are revisited quarterly

or monthly, and projects are reprioritized continually [69].

— Comella-Dorda et al., An Operating Model for Company-Wide Agile Development

In the common practice of the annual budget cycle, companies once a year embark on a detailed

planning effort to forecast revenues and how they will be spent. Much emphasis is placed on the

accuracy of such forecasts, despite its near-impossibility. (If estimating one large software project is

challenging, how much more challenging to estimate an entire enterprise’s income and expenditures?)

The annual budget has two primary components: capital expenditures and operating expenditures,

commonly called CAPEX and OPEX. The rules about what must go where are fairly rigid and

determined by accounting standards with some leeway for the organization’s preferences.

Software development can be capitalized, as it is an investment from which the company hopes to

benefit from in the future. Operations is typically expensed. Capitalized activities may be accounted for

over multiple years (therefore becoming a reasonable candidate for financing and multi-year

amortization). Expensed activities must be accounted for in-year.

One can only “go to the well” once a year. As such, extensive planning and negotiation traditionally

take place around the IT project portfolio. Business units and their IT partners debate the priorities for

the capital budget, assess resources, and finalize a list of investments. Project managers are identified

and tasked with marshaling the needed resources for execution.

This annual cycle receives much criticism in the Agile and Lean communities. From a Lean

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 249

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

perspective, projects can be equated to large “batches” of work. Using annual projects as a basis for

investment can result in misguided attempts to plan large batches of complex work in great detail so

that resource requirements can be known well in advance. The history of the Agile movement is in

many ways a challenge and correction of this thinking, as we have discussed throughout this

document.

The execution model for digital/IT acquisition adds further complexity. Traditionally, project

management has been the major funding vehicle for capital investments, distinct from the operational

expense. But with the rise of cloud computing and product-centric management, companies are

moving away from traditional capital projects. New products are created with greater agility, in

response to market need, and without the large capital investments of the past in physical hardware.

This does not mean that traditional accounting distinctions between CAPEX and OPEX go away. Even

with expensed cloud infrastructure services, software development may still be capitalized, as may

software licenses.

Cost Accounting and Chargeback

NOTE

The term “cost accounting” is not the same as just “accounting for costs”, which is

always a concern for any organization. Cost accounting is defined as “the techniques

for determining the costs of products, processes, projects, etc. in order to report the

correct amounts on the financial statements, and assisting management in making

decisions and in the planning and control of an organization … For example, cost

accounting is used to compute the unit cost of a manufacturer’s products in order to

report the cost of inventory on its balance sheet and the cost of goods sold on its

income statement. This is achieved with techniques such as the allocation of

manufacturing overhead costs and through the use of process costing, operations

costing, and job-order costing systems." [6]

IT is often consumed as a "shared service” which requires internal financial transfers. What does this

mean?

Here is a traditional example. An IT group purchases a mainframe computer for $1,000,000. This

mainframe is made available to various departments who are charged for it. Because the mainframe is

a shared resource, it can run multiple workloads simultaneously. For the year, we see the following

usage:

• 30% Accounting

• 40% Sales Operations

• 30% Supply Chain

In the simplest direct allocation model, the departments would pay for the portion of the mainframe

that they used. But things always are more complex than that.

• What if the mainframe has excess capacity? Who pays for that?

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

250 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• What if Sales Operations stops using the mainframe? Do Accounting and Supply Chain have to

make up the loss? What if Accounting decides to stop using it because of the price increase?

◦ In public utilities, this is known as a "death spiral" and the problem was noted as early as 1974

by Richard Nolan [210 p. 179].

• The mainframe requires power, floor space, and cooling - how are these incorporated into the

departmental charges?

• Ultimately, the Accounting organization (and perhaps Supply Chain) are back-office cost centers as

well

◦ Does it make sense for them to be allocated revenues from company income, only to have those

revenues then re-directed to the IT department?

Historically, cost accounting has been the basis for much IT financial management (see, for example,

ITIL Service Strategy, [283], p.202; [225]). Such approaches traditionally seek full absorption of unit

costs; that is, each “unit” of inventory ideally represents the total cost of all its inputs: materials, labor,

and overhead such as machinery and buildings.

In IT/digital service organizations, there are three basic sources of cost: “cells, atoms, and bits”. That is:

• People (i.e., their time)

• Hardware

• Software

However, these are “direct” costs — costs that, for example, a product or project manager can see in

their full amount.

Another class of cost is “indirect”. The IT service might be charged $300 per square foot for data center

space. This provides access to rack space, power, cooling, security, and so forth. This charge represents

the bills the Facilities organization receives from power companies, mechanicals vendors, security

services, and so forth — not to mention the mortgage!

Finally, the service may depend on other services. Perhaps instead of a dedicated database server, the

service subscribes to a database service that gives them a high-performance relational database, but

where they do not pay directly for the hardware, software, and support services on which the database

is based. Just to make things more complicated, the services might be external (public cloud) or

internal (private cloud or other offerings).

Those are the major classes of cost. But how do we understand the “unit of inventory” in an IT services

context? A variety of concepts can be used, depending on the service in question:

• Transactions

• Users

• Network ports

• Storage (e.g., gigabytes of disk)

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 251

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

In internal IT organizations (see "Defining consumer, customer, and sponsor") this cost accounting is

then used to transfer funds from the budgets of consuming organizations to the IT budget. Sometimes

this is done via simple allocations (marketing pays 30%, Sales pays 25%, etc.) and sometimes this is

done through more sophisticated approaches, such as defining unit costs for services.

For example, the fully absorbed unit cost for a customer account transaction might be determined to

be $0.25; this ideally represents the total cost of the hardware, software, and staff divided by the

expected transactions. Establishing the models for such costs, and then tracking them, can be a

complex undertaking, requiring correspondingly complex systems.

IT managers have known for years that overly detailed cost accounting approaches can result in

consuming large fractions of IT resources. As AT&T financial manager John McAdam noted:

“Utilizing an excessive amount of resources to capture data takes away resources that could be used

more productively to meet other customer needs. Internal processing for IT is typically 30-40% of the

workload. Excessive data capturing only adds to this overhead cost.” [191]

There is also the problem that unit costing of this nature creates false expectations. Establishing an

internal service pricing scheme implies that if the utilization of the service declines, so should the

related billings. But if:

• The hardware, software, and staff costs are already sunk, or relatively inflexible

• The IT organization is seeking to recover costs fully

the per-transaction cost will simply have to increase if the number of transactions goes down. James R.

Huntzinger discusses the problem of excess capacity distorting unit costs, and states “it is an absolutely

necessary element of accurate representation of the facts of production that some provisions be made

for keeping the cost of wasted time and resources separate from normal costs” [139]. Approaches for

doing this will be discussed below.

6.3.2.1.2. Next-Generation IT Finance

What accounting should do is produce an unadulterated mirror of the

business — an uncompromisable truth on which everyone can rely … Only an

informed team, after all, is truly capable of making intelligent decisions.

— Orest Fiume and Jean Cunningham, as quoted by James Huntzinger

Criticisms of traditional approaches to IT finance have increased as Digital Transformation accelerates

and companies turn to Agile operating models. Rami Sirkia and Maarit Laanti (in a paper used as the

basis for the SAFe's financial module) describe the following shortcomings:

• Long planning horizons, detailed cost estimates that must frequently be updated

• Emphasis on planning accuracy and variance analysis

• Context-free concern over budget overruns (even if a product is succeeding in the market,

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

252 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

variances are viewed unfavorably)

• Bureaucratic re-approval processes for project changes

• Inflexible and slow resource re-allocation [261]

What do critics of cost accounting, allocated chargebacks, and large batch project funding suggest as

alternatives to the historical approaches? There are some limitations evident in many discussions of

Lean Accounting, notably an emphasis on manufactured goods. However, a variety of themes and

approaches have emerged relevant to IT services, that we will discuss below:

• Beyond Budgeting

• Internal “venture” funding

• Value stream orientation

• Lean Accounting

• Lean Product Development

• Internal market economics

• Service brokerage

Beyond Budgeting

Setting a numerical target and controlling performance against it is the

foundation stone of the budget contract in today’s organization. But, as a

concept, it is fundamentally flawed. It is like telling a motor racing driver to

achieve an exact time for each lap … it cannot predict and control extraneous

factors, any one of which could render the target totally meaningless. Nor does

it help to build the capability to respond quickly to new situations. But, above

all, it doesn’t teach people how to win.

— Jeremy Hope and Robin Fraser, Beyond Budgeting Questions and Answers

Beyond Budgeting is the name of a 2003 book by Jeremy Hope and Robin Fraser. It is written in part as

an outcome of meetings and discussions between a number of large, mostly European firms

dissatisfied with traditional budgeting approaches. Beyond Budgeting’s goals are described as:

releasing capable people from the chains of the top-down performance contract and enabling them to use

the knowledge resources of the organization to satisfy customers profitably and consistently beat the

competition

In particular, Beyond Budgeting critiques the concept of the “budget contract”. A simple “budget” is

merely a “financial view of the future … [a] 'most likely outcome' given known information at the time

…”. A “budget contract” by comparison is intended to “delegate the accountability for achieving agreed

outcomes to divisional, functional, and departmental managers”. It includes concerns and mechanisms

such as:

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 253

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• Targets

• Rewards

• Plans

• Resources

• Coordination

• Reporting

and is intended to “commit a subordinate or team to achieving an agreed outcome.

Beyond Budgeting identifies various fallacies with this approach, including:

• The idea that fixed financial targets maximize profit potential

• Financial incentives build motivation and commitment (see discussion on motivation)

• Annual plans direct actions that maximize market opportunities

• Central resource allocation optimizes efficiency

• Central coordination brings coherence

• Financial reports provide relevant information for strategic decision-making

Beyond the poor outcomes that these assumptions generate, up to 20% to 30% of senior executives'

time is spent on the annual budget contract. Overall, the Beyond Budgeting view is that the budget

contract is:

a relic from an earlier age. It is expensive, absorbs far too much time, adds little value, and should be

replaced by a more appropriate performance management model [131 p. 4], emphasis added.

Readers of this textbook should at this point notice that many of the Beyond Budgeting concerns reflect

an Agile/Lean perspective. The fallacies of efficiency and central coordination have been discussed

throughout this document. However, if an organization’s financial authorities remain committed to

these as operating principles, the Digital Transformation will be difficult at best.

Beyond Budgeting proposes a number of principles for understanding and enabling organizational

financial performance. These include:

• Event-driven over annual planning

• On-demand resources over centrally allocated resources

• Relative targets (“beating the competition”) over fixed annual targets

• Team-based rewards over individual rewards

• Multi-faceted, multi-level, forward-looking analysis over analyzing historical variances

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

254 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Internal “Venture” Funding

A handful of companies are even exploring a venture-capital-style budgeting

model. Initial funding is provided for MVPs, which can be released quickly,

refined according to customer feedback, and relaunched in the marketplace …

And subsequent funding is based on how those MVPs perform in the market.

Under this model, companies can reduce the risk that a project will fail, since

MVPs are continually monitored and development tasks reprioritized … [69].

— Comella-Dorda et al., An Operating Model for Company-Wide Agile Development

As we have discussed previously, product and project management are distinct. Product management,

in particular, has more concern for overall business outcomes. If we take this to a logical conclusion,

the product portfolio becomes a form of the investment portfolio, managed not in terms of schedule

and resources, but rather in terms of business results.

This implies the need for some form of internal venture funding model, to cover the initial investment

in an MVP. If and when this internal investment bears fruit, it may become the basis for a value stream

organization, which can then serve as a vehicle for direct costs and an internal services market (see

below). McKinsey reports the following case:

A large European insurance provider restructured its budgeting processes so that each product

domain is assigned a share of the annual budget, to be utilized by chief product owners. (Part of

the budget is also reserved for requisite maintenance costs). Budget responsibilities have been

divided into three categories: a development council consisting of business and IT managers

meets monthly to make go/no-go decisions on initiatives. Chief product owners are charged with

the tactical allocation of funds - making quick decisions in the case of a new business

opportunity, for instance - and they meet continually to rebalance allocations.

Meanwhile, product owners are responsible for ensuring execution of software development

tasks within 40-hour work windows and for managing maintenance tasks and backlogs; these,

too, are reviewed on a rolling basis. As a result of this shift in approach, the company has

increased its budgeting flexibility and significantly improved market response times [69].

With a rolling backlog and stable funding that decouples annual allocation from ongoing execution,

the venture-funded product paradigm is likely to continue growing. A product management mindset

activates a variety of useful practices, as we will discuss in the next section.

Options as a Portfolio Strategy

In governing for effectiveness and innovation, one technique is that of options. Related to the idea of

options is parallel development. In investing terms, purchasing an option gives the right, but not the

obligation, to purchase a stock (or other value) for a given price at a given time. Options are an

important tool for investors to develop strategies to compensate for market uncertainty.

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 255

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

What does this have to do with developing digital products?

Product development is so uncertain that sometimes it makes sense to try several approaches at once.

This, in fact, was how the program to develop the first atomic bomb was successfully managed. Parallel

development is analogous to an options strategy. Small, sustained investments in different

development “options” can optimize development payoff in certain situations (see [230], Section 6.2.1,

“Product Management”). When taken to a logical conclusion, such an options strategy starts to

resemble the portfolio management approaches of venture capitalists. Venture capitalists invest in a

broad variety of opportunities, knowing that most, in fact, will not pan out. See discussion of internal

venture funding as a business model.

It is arguable that the venture-funded model has created different attitudes and expectations towards

governance in West Coast “unicorn” culture. However, it would be dangerous to assume that this

model is universally applicable. A firm is more than a collection of independent sub-organizations; this

is an important line of thought in management theory, starting with Coase’s “The Nature of the Firm”

[63].

The idea that “Real Options” were a basis for Agile practices was proposed by Chris Matts [190].

Investment banker turned Agile coach Franz Ivancsich strongly cautions against taking options theory

too far, noting that to price them correctly you have to determine the complete range of potential

values for the underlying asset [159].

Lean Product Development

Because we never show it on our balance sheet, we do not think of [design-in-

process] as an asset to be managed, and we do not manage it.

— Don Reinertsen, Managing the Design Factory

The Lean Product Development thought of Don Reinertsen was discussed extensively in Section 6.2.2,

“Work Management”. His emphasis on employing an economic framework for decision-making is

relevant to this discussion as well. In particular, his concept of cost of delay is poorly addressed in

much IT financial planning, with its concerns for full utilization, efficiency, and variance analysis.

Other Lean Accounting thinkers share this concern; for example:

the cost-management system in a Lean environment must be more reflective of the physical operation. It

must not be confined to monetary measures but must also include non-financial measures, such as quality

and throughput times._+[<<Huntzinger2007,139>>]+

Another useful Reinertsen concept is that of design-in-process. This is an explicit analog to the well-

known Lean concept of work-in-process. Reinertsen makes the following points [229 p. 13]:

• Design-in-progress is larger and more expensive to hold than work-in-progress

• It has much lower turn rates

• It has much higher holding costs (e.g., due to obsolescence)

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

256 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• The liabilities of design-in-progress are ignored due to weaknesses in accounting standards

These concerns give powerful economic incentives for managing throughput and flow, continuously

re-prioritizing for the maximum economic benefit and driving towards the Lean ideal of single-piece

flow.

Lean Accounting

It was not enough to chase out the cost accountants from the plants; the

problem was to chase cost accounting from my people’s minds.

— Taiichi Ohno

There are several often-cited motivations for cost accounting [139 p. 13]:

• Inventory valuation (not applicable for intangible services)

• Informing pricing strategy

• Management of production costs

IT service costing has long presented additional challenges to traditional cost accounting. As IT

Financial Management Association president Terry Quinlan notes, “Many factors have contributed to

the difficulty of planning Electronic Data Processing (EDP) expenditures at both application and overall

levels. A major factor is the difficulty of measuring fixed and variable cost.” [225 p. 6]

This begs the broader question: should traditional cost accounting be the primary accounting

technique used at all? Cost accounting in Lean and Agile organizations is often controversial. Lean

pioneer Taiichi Ohno of Toyota thought it was a flawed approach. Huntzinger [139] identifies a variety

of issues:

• Complexity

• Un-maintainability

• Supplies information “too late” (i.e., does not support fast feedback)

• “Overhead” allocations result in distortions

Shingo Prize winner Steve Bell observes:

It is usually impossible to tie … abstract cost allocations and the resulting variances back to the

originating activities and the value they may or may not produce; thus, they can’t help you

improve. But they can waste your time and distract you from the activities that produce the

desired outcomes … [26 p. 110].

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 257

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

The trend in Lean Accounting has been to simplify. A guiding ideal is seen in the Wikipedia article on

Lean Accounting:

The “ideal” for a manufacturing company is to have only two types of transactions within the production

processes; the receipt of raw materials and the shipment of finished product.

Concepts such as value stream orientation, internal market economics, and service brokering all can

contribute towards achieving this ideal.

Value Stream Orientation

Collecting costs into traditional financial accounting categories, like labor,

material, overhead, selling, distribution, and administrative, will conceal the

underlying cost structure of products … The alternative to traditional methods

… is the creation of an environment that moves indirect costs and allocation

into direct costs. [139]

— James R. Huntzinger, Lean Cost Management

As discussed above, Lean thinking discourages the use of any concept of overhead, sometimes

disparaged as “peanut butter” costing. Rather, direct assignment of all costs to the maximum degree is

encouraged, in the interest of accounting simplicity.

We discussed a venture-funded product model above, as an alternative to project-centric approaches.

Once a product has proven its viability and becomes an operational concern, it becomes the primary

vehicle for those concerns previously handled through cost accounting and chargeback. The term for a

product that has reached this stage is “value stream”. As Huntzinger notes, “Lean principles demand

that companies align their operations around products and not processes” [139 p. 19].

By combining a value stream orientation in conjunction with organizational principles such as

frugality, internal market economics, and decentralized decision-making (see, for example, [131 p. 12]),

both Lean and Beyond Budgeting argue that more customer-satisfying and profitable results will

ensue. The fact that the product, in this case, is digital (not manufactured), and the value stream

centers around product development (not production) does not change the argument.

Internal Market Economics

value stream and product line managers, like so much in the Lean world, are

“fractal”.

— Womack and Jones, Lean Thinking

Coordinate cross-company interactions through “market-like” forces.

— Jeremy Hope and Robin Fraser, Beyond Budgeting Questions and Answers

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

258 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

IT has long been viewed as a “business within a business”. In the internal market model, services

consume other services ad infinitum [195]. Sometimes the relationship is hierarchical (an application

team consuming infrastructure services) and sometimes it is peer-to-peer (an application team

consuming another’s services, or a network support team consuming email services, which in turn

require network services).

The increasing sourcing options including various cloud options make it more and more important

that internal digital services be comparable to external markets. This, in turn, puts constraints on

traditional IT cost recovery approaches, which often result in charges with no seeming relationship to

reasonable market prices.

There are several reasons for this. One commonly cited reason is that internal IT costs include support

services, and therefore cannot fairly be compared to simple retail prices (e.g., for a computer as a

good).

Another, more insidious reason is the rolling in of unrelated IT overhead to product prices. We have

quoted James Huntzinger’s work above in various places on this topic. Dean Meyer has elaborated this

topic in greater depth from an IT financial management perspective, calling for some organizational

“goods” to be funded as either ventures (similar to above discussion) or “subsidies” (for enterprise-

wide benefits such as technical standardization) [195 p. 92].

As discussed above, a particularly challenging form of IT overhead is excess capacity. The saying “the

first person on the bus has to buy the bus” is often used in IT shared services, but is problematic. A

new, venture-funded startup cannot operate this way — expecting the first few customers to fund the

investment fully! Nor can this work in an internal market, unless heavy-handed political pressure is

brought to bear. This is where internal venture funding is required.

Meyer presents a sophisticated framework for understanding and managing an internal market of

digital services. This is not a simple undertaking; for example, correctly setting service prices can be

surprisingly complex.

Service Brokerage

Finally, there is the idea that digital or IT services should be aggregated and “brokered” by some party

(perhaps the descendant of a traditional IT organization). In particular, this helps with capacity

management, which can be a troublesome source of internal pricing distortions. This has been seen

not only in IT services, but in Lean attention to manufacturing; when unused capacity is figured into

product cost accounting, distortions occur [139], Chapter 7, “Church and Excess Capacity”.

Applying Meyer’s principles, excess capacity would be identified as a subsidy or a venture as a distinct

line item.

But cloud services can assist even further. Excess capacity often results from the available quantities in

the market; e.g., one purchases hardware in large-grained capital units. But more flexibly priced,

expensed compute on-demand services are available, it is feasible to allocate and de-allocate capacity

on-demand, eliminating the need for accounting for excess capacity.

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 259

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Evidence of Notability

Financial management in IT and digital systems has a long history of focused discussion; e.g., [225] and

the work of the IT Financial Management Association and the TBM Council.

Limitations

IT financial management is a focused subset of financial management in general.

Related Topics

• Product Management

• Sourcing

• Portfolio Management

• Project Management

• Governance

• Architecture

6.3.2.2. Digital Sourcing and Contracts

Description

Digital sourcing is the set of concerns related to identifying suppliers (sources) of the necessary inputs

to deliver digital value. Contract management is a critical, subsidiary concern, where digital value

intersects with law.

The basic classes of inputs include:

• People (with certain skills and knowledge)

• Hardware

• Software

• Services (which themselves are composed of people, hardware, and/or software)

Practically speaking, these inputs are handled by two different functions:

• People (in particular, full-time employees) are handled by a human resources function

• Hardware, software, and services are handled by a procurement function

◦ Other terms associated with this are Vendor Management, Contract Management, and Supplier

Management; we will not attempt to clarify or rationalize these areas in this section.

We discussed hiring and managing digital specialists in the the Competency Category of IT Human

Resources Management.

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

260 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.3.2.2.1. Basic Concerns

A small company may establish binding agreements with vendors relatively casually. For example,

when the founder first chose a cloud platform on which to build their product, they clicked on a button

that said “I accept”, at the bottom of a lengthy legal document they didn’t necessarily read closely. This

“clickwrap” agreement is a legally binding contract, which means that the terms and conditions it

specifies are enforceable by the courts.

A startup may be inattentive to the full implications of its contracts for various reasons:

• The founder does not understand the importance and consequences of legally binding agreements

• The founder understands but feels they have little to lose (for example, they have incorporated as a

limited liability company, meaning the founder’s personal assets are not at risk)

• The service is perceived to be so broadly used that an agreement with it must be safe (if 50 other

startups are using a well-known cloud provider and prospering, why would a startup founder

spend precious time and money on overly detailed scrutiny of its agreements?)

All of these assumptions bear some risk — and many startups have been burned on such matters —

but there are many other, perhaps more pressing risks for the founder and startup.

However, by the time the company has scaled to the team of teams level, contract management is

almost certainly a concern of the Chief Financial Officer. The company has more resources (“deeper

pockets”), and so lawsuits start to become a concern. The complexity of the company’s services may

require more specialized terms and conditions. Standard “boilerplate” contracts thus are replaced by

individualized agreements. Concerns over intellectual property, the ability to terminate agreements,

liability for damages, and other topics require increased negotiation and counterproposing contractual

language. See the case study on the 9 figure true-up for a grim scenario.

At this point, the company may have hired its own legal professional; certainly, legal fees are going up,

whether as services from external law firms or internal staff.

Contract and vendor management is more than just establishing the initial agreement. The ongoing

relationship must be monitored for its consistency with the contract. If the vendor agrees that its

service will be available 99.999% of the time, the availability of that service should be measured, and if

it falls below that threshhold, contractual penalties may need to be applied.

In larger organizations, where a vendor might hold multiple contracts, a concept of "vendor

management” emerges. Vendors may be provided with “scorecards” that aggregate metrics which

describe their performance and the overall impression of the customer. Perhaps key stakeholders are

internally surveyed as to their impression of the vendor’s performance and whether they would be

likely to recommend them again. Low scores may penalize a vendor’s chances in future Request for

Information (RFI)/RFP processes; high scores may enhance them. Finally, advising on sourcing is one of

the main services an Enterprise Architecture group may provide.

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 261

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.3.2.2.2. Outsourcing and Cloud Sourcing

The first significant vendor relationship the startup may engage with is for cloud services. The decision

whether, and how much, to leverage cloud computing remains a topic of much industry discussion.

The following pros and cons are typically considered [202]:

Table 18. Cloud Sourcing Pros and Cons

Pro Con

Operational costs

Public cloud workforce availability (as opposed to

private cloud skills)

Better capital management (i.e., through expensed

cloud services)

Ease in providing elastic scalability

Agility (faster provisioning of commercial cloud

instances)

Reduce capex (faciilities, hardware, software)

Promoting innovation (e.g., web-scale applications

may require current cloud infrastructure)

Public clouds are rich and mature, with extensive

platform capabilities

Flexible capacity management/resource

utilization

Data Gravity (scale of data too voluminous to

easily migrate the apps and data to the cloud)

Security (perception cloud is not as secure)

Private clouds are improving

Lack of equivalent SaaS offerings for applications

being run in-house

Significant integration requirements between in-

house apps and new ones deployed to cloud

Lack of ability to support migration to cloud

Vendor licensing (see 9 figure true-up)

Network latency (slow response of cloud-deployed

apps)

Poor transparency of cloud infrastructure

Risk of cloud platform lock-in

Cloud can reduce costs when deployed in a sophisticated way; if a company has purchased more

capacity than it needs, cloud can be more economical (review the section on virtualization economics).

However, ultimately, as Abbott and Fisher point out:

Large, rapidly growing companies can usually realize greater margins by using wholly owned equipment

than they can by operating in the cloud. This difference arises because IaaS operators, while being able to

purchase and manage their equipment cost-effectively, are still looking to make a profit on their services

[4 p. 474].

Minimally, cloud services need to be controlled for consumption. Cloud providers will happily allow

virtual machines to run indefinitely, and charge for them. An ecosystem of cloud brokers and value-

add resellers is emerging to assist organizations with optimizing their cloud dollars.

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

262 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.3.2.2.3. Software Licensing

As software and digital services are increasingly used by firms large and small, the contractual rights

of usage become more and more critical. We mentioned a "clickwrap” licensing agreement above.

Software licensing, in general, is a large and detailed topic, one presenting a substantial financial risk

to the unwary firm, especially when cloud and virtualization are concerned.

Software licensing is a subset of software asset management, which is itself a subset of IT asset

management, discussed in more depth in the material on process management and IT lifecycles.

Software asset management in many cases relies on the integrity of a digital organization’s package

management; the package manager should represent a definitive inventory of all the software in use

in the organization.

Free and open-source software (sometimes abbreviated FOSS) has become an increasingly prevalent

and critical component of digital products. While technically “free”, the licensing of such software can

present risks. In some cases, open-source products have unclear licensing that puts them at risk of

legal conflicts which may impact users of the technology [182]. In other cases, the open-source license

may discourage commercial or proprietary use; for example, the GNU General Public License (GPL)

requirement for disclosing derivative works causes concern among enterprises [310].

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 263

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Case Study: The Nine-Figure “True-Up"

A large enterprise had a long relationship with a major software vendor, who provided a critical

software product used widely for many purposes across the enterprise.

The price for this product was set based on the power of the computer running it. A license

would cost less for a computer with 4 cores and 1 gigabyte of RAM than it would for a computer

with 16 cores and 8 gigabytes of RAM. The largest computers required the most expensive

licenses.

As described previously, the goal of virtualization is to use one powerful physical computer to

consolidate more lightly-loaded computers as “virtual machines”. This can provide significant

savings, and over the course of three years, the enterprise virtualized about 5,000 formerly

physical computers, each of which had been running the vendor’s software.

However, a deadly wrinkle emerged in the software vendor’s licensing terms. The formerly

physical computers were, in general, smaller machines. The new virtual farms were clusters of

16 of the most powerful computers available on the market. The vendor held that each of the

5,000 instances of its software running on the virtual machines was liable for the full licensing

fee applicable to the most powerful machine!

Even though each of the 5,000 virtual machines could not possibly have been using the full

capacity of the virtual farm, the vendor insisted (and was upheld) that the contract did not

account for that, and there was no way of knowing whether any given virtual machine had been

using the full capacity of the farm at some point.

The dispute escalated to the CEOs of each company, but the vendor held firm. The enterprise was

obliged to pay a “true-up” charge of over $100 million (nine figures).

This is not an isolated instance. Major software vendors have earned billions in such charges and

continue to audit aggressively for these kinds of scenarios. This is why contracts and licenses

should never be taken lightly. Even startups could be vulnerable, if licensed commercial software

is used in unauthorized ways in a cloud environment, for example.

6.3.2.2.4. The Role of Industry Analysts

When a company is faced by a sourcing question of any kind, one initial reaction is to research the

market alternatives. But research is time-consuming, and markets are large and complex. Therefore,

the role of industry or market analyst has developed.

In the financial media, we often hear from “industry analysts” who are concerned with whether a

company is a good investment in the stock market. While there is some overlap, the industry analysts

we are concerned with here are more focused on advising prospective customers of a given market’s

offerings.

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

264 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Because sourcing and contracting are an infrequent activity, especially for smaller companies, it is

valuable to have such services. Because they are researching a market and talking to vendors and

customers on a regular basis, analysts can be helpful to companies in the purchasing process.

However, analysts take money from the vendors they are covering as well, leading to occasional

charges of conflict of interest. How does this work? There are a couple of ways.

First, the analyst firm engages in objective research of a given market segment. They do this by

developing a common set of criteria for who gets included, and a detailed set of questions to assess

their capabilities.

For example, an analyst firm might define a market segment of “Cloud IaaS” vendors. Only vendors

supporting the basic NIST guidelines for IaaS are invited. Then, the analyst might ask: “Do you support

SDNs; e.g., Network Function Virtualization?” as a question. Companies that answer “yes” will be given

a higher score than companies that answer “no”. The number of questions on a major research report

might be as high as 300 or even higher.

Once the report is completed, and the vendors are ranked (analyst firms typically use a two-

dimensional ranking, such as the Gartner Magic Quadrant or Forrester Wave), it is made available to

end users for a fee. Fees for such research might range from $500 to $5,000 or more, depending on how

specialized the topic, how difficult the research, and the ability of prospective customers to pay.

NOTE

Large companies - e.g., those in the Fortune 500 - typically would purchase an

“enterprise agreement", often defined as a named “seat” for an individual, who can

then access entire categories of research.

Customers may have further questions for the analyst who wrote the research. They may be entitled to

some portion of analyst time as part of their license, or they may pay extra for this privilege.

Beyond selling the research to potential customers of a market, the analyst firm has a complex

relationship with the vendors they are covering. In our example of a major market research report, the

analyst firm’s sales team also reaches out to the vendors who were covered. The conversation goes

something like this:

“Greetings. You did very well in our recent research report. Would you like to be able to give it away to

prospective customers, with your success highlighted? If so, you can sponsor the report for $50,000.”

Because the analyst report is seen as having some independence, it can be an attractive marketing tool

for the vendor, who will often pay (after some negotiating) for the sponsorship. In fact, vendors have

so many opportunities along these lines they often find it necessary to establish a function known as

“Analyst Relations” to manage all of them.

6.3.2.2.5. Software Development and Contracts

Software is often developed and delivered per contractual terms. Contracts are legally binding

agreements, typically developed with the assistance of lawyers. As noted in [21 p. 5]: “Legal

professionals are trained to act, under legal duty, to advance their client’s interests and protect them

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 265

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

against all pitfalls, seen or unseen.” The idea of “customer collaboration over contract negotiation”

may strike them as the height of naïveté.

However, Agile and Lean influences have made substantial inroads in contracting approaches.

Arbogast et al. describe the general areas of contract concern:

• Risk, exposure, and liability

• Flexibility

• Clarity of obligations, expectations, and deliverables

They argue that: “An Agile project contract may articulate the same limitations of liability (and related

terms) as a traditional project contract, but the Agile contract will better support avoiding the very

problems that a lawyer is worried about.” (p.12)

So, what is an "Agile" contract?

There are two major classes of contracts:

• Time and materials

• Fixed-price

In a time and materials contract, the contracting firm simply pays the provider until the work is done.

This means that the risk of the project overrunning its schedule or budget resides primarily with the

firm hiring out the work. While this can work, there is often a desire on the part of the firm to reduce

this risk. If you are hiring someone because they claim they are experts and can do the work better,

cheaper, and/or quicker than your own staff, it seems reasonable that they should be willing to

shoulder some of the risks.

In a fixed-price contract, the vendor providing the service will make a binding commitment that (for

example): “we will get the software completely written in nine months for $3 million”. Penalties may

be enforced if the software is late, and it is up to the vendor to control development costs. If the vendor

does not understand the work correctly, they may lose money on the deal.

Reconciling Agile with fixed-price contracting approaches has been a challenging topic [214]. The

desire for control over a contractual relationship is historically one of the major drivers of waterfall

approaches. However, since requirements cannot be fully known in advance, this is problematic.

When a contract is signed based on waterfall assumptions, the project management process of change

control is typically used to govern any alterations to the scope of the effort. Each change order typically

implies some increase in cost to the customer. Because of this, the perceived risk mitigation of a fixed-

price contract may become a false premise.

This problem has been understood for some time. Scott Ambler argued in 2005 that: “It’s time to

abandon the idea that fixed bids reduce risk. Clients have far more control over a project with a

variable, gated approach to funding in which working software is delivered on a regular basis” [16].

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

266 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Andreas Opelt states: “For Agile IT projects it is, therefore, necessary to find an agreement that

supports the balance between a fixed budget (maximum price range) and Agile development (scope

not yet defined in detail).”

How is this done? Opelt and his co-authors further argue that the essential question revolves around

the project “Iron Triangle":

• Scope

• Cost

• Deadline

The approach they recommend is determining which of these elements is the “fixed point” and which

is estimated. In traditional waterfall projects, the scope is fixed, while costs and deadline must be

estimated (a problematic approach when product development is required).

In Opelt’s view, in Agile contracting, costs and deadlines are fixed, while the scope is “estimated” —

understood to have some inevitable variability. "… you are never exactly aware of what details will be

needed at the start of a project. On the other hand, you do not always need everything that had

originally been considered to be important” [214].

Their recommended approach supports the following benefits:

• Simplified adaptation to change

• Non-punitive changes in scope

• Reduced knowledge decay (large “batches” of requirements degrade in value over time)

This is achieved through:

• Defining the contract at the level of product or project vision (epics or high-level stories; see

discussion of Scrum) — not detailed specification

• Developing high-level estimation

• Establishing agreement for sharing the risk of product development variability

This last point, which Opelt et al. term “riskshare”, is key. If the schedule or cost expand beyond the

initial estimate, both the supplier and the customer pay, according to some agreed %, which they

recommend be between 30%-70%. If the supplier proportion is too low, the contract essentially

becomes time and materials. If the customer proportion is too low, the contract starts to resemble

traditional fixed-price.

Incremental checkpoints are also essential; for example, the supplier/customer interactions should be

high bandwidth for the first few sprints, while culture and expectations are being established and the

project is developing a rhythm.

Finally, the ability for either party to exit gracefully and with a minimum penalty is needed. If the

initiative is testing market response (aka Lean Startup) and the product hypothesis is falsified, there is

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 267

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

little point in continuing the work from the customer’s point of view. And, if the product vision turns

out to be far more work than either party estimated, the supplier should be able to walk away (or at

least insist on comprehensive re-negotiation).

These ideas are a departure from traditional contract management. As Opelt asks: “How can you sign a

contract from which one party can exit at any time?”. Recall, however, that (if Agile principles are

applied) the customer is receiving working software continuously through the engagement (e.g., after

every sprint).

In conclusion, as Arbogast et al. argue: “Contracts that promote or mandate sequential lifecycle

development increase project risk - an Agile approach … reduces risk because it limits both the scope

of the deliverable and extent of the payment [and] allows for inevitable change” [21 p. 13].

Evidence of Notability

Sourcing, and outsourcing, have long been key topics in digital and IT management. The option to

allocate some level of responsibility to external parties in exchange for compensation has been an

aspect of digital management since the first computers became available.

Limitations

The decision to outsource some or all of an IT organization to a third party is often cast in terms of "it’s

not our core competency". However, Digital Transformation is resulting in some companies changing

their minds and bringing digital systems development and operation back in-house, as a key business

competency.

Related Topics

• Cloud Computing

• Product Management

• Sourcing

• Portfolio Management

• Governance

• Assurance

• Architecture

6.3.2.3. Portfolio Management

Description

Now that we understand the coordination problem better, and have discussed finance and sourcing,

we are prepared to make longer-term commitments to a more complicated organizational structure. As

we stated in the Competency Area introduction, one way of looking at these longer-term commitments

is as investments. We start them, we decide to continue them, or we decide to halt (exit) them. In fact,

we could use the term “portfolio” to describe these various investments; this is not a new concept in IT

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

268 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

management.

NOTE
The first comparison of IT investments to a portfolio was in 1974, by Richard Nolan in

Managing the Data Resource Function [210].

Whatever the context for your digital products (external or internal), they are intended to provide

value to your organization and ultimately your end customer. Each of them in a sense is a “bet” on

how to realize this value (review the Spotify DIBB model), and represents in some sense a form of

product discovery. As you deepen your abilities to understand investments, you may find yourself

applying business case analysis techniques in more rigorous ways, but as always retaining a Lean

Startup experimental mindset is advisable.

As you strengthen a hypothesis in a given product or feature structure, you increasingly formalize it: a

clear product vision supported by dedicated resources. We will discuss the IT portfolio concept further

in Section 6.4.3.5, “Architecture, Digital Strategy, and Portfolio”. In your earliest stages of

differentiating your portfolio, you may first think about features versus components.

6.3.2.3.1. Features versus Components

Figure 92. Features versus Components

As you consider your options for partitioning your product, in terms of the AKF scaling cube, a useful

and widely adopted distinction is that between “features” and “components” (see Figure 92, “Features

versus Components”).

Features are what your product does. They are what the customers perceive as valuable. “Scope as

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 269

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

viewed by the customer” according to Mark Kennaley [164] p.169. They may be "flowers" — defined by

the value they provide externally, and encouraged to evolve with some freedom. You may be investing

in new features using Lean Startup, the Spotify DIBB model, or some other hypothesis-driven

approach.

Components are how your product is built, such as database and web components. In other words,

they are a form of infrastructure (but infrastructure you may need to build yourself, rather than just

spin up in the cloud). They are more likely to be “cogs” — more constrained and engineered to

specifications. Mike Cohn defines a component team as “a team that develops software to be delivered

to another team on the project rather than directly to users” [68 p. 183].

Feature teams are dedicated to a clearly defined functional scope (such as “item search” or “customer

account lookup”), while component teams are defined by their technology platform (such as

“database” or “rich client”). Component teams may become shared services, which need to be carefully

understood and managed (more on this to come). A component’s failure may affect multiple feature

teams, which makes them riskier.

It may be easy to say that features are more important than components, but this can be carried too

far. Do you want each feature team choosing its own database product? This might not be the best

idea; you will have to hire specialists for each database product chosen. Allowing feature teams to

define their own technical direction can result in brittle, fragmented architectures, technical debt, and

rework. Software product management needs to be a careful balance between these two perspectives.

SAFe suggests that components are relatively:

• More technically focused

• More generally re-usable

than features. SAFE also recommends a ratio of roughly 20-25% component teams to 75%-80% feature

teams [246].

Mike Cohn suggests the following advantages for feature teams [68 pp. 183-184]:

• They are better able to evaluate the impact of design decisions

• They reduce hand-off waste (a coordination problem)

• They present less schedule risk

• They maintain focus on delivering outcomes

He also suggests [68 pp. 186-187] that component teams are justified when:

• Their work will be used by multiple teams

• They reduce the sharing of specialists across teams

• The risk of multiple approaches outweighs the disadvantages of a component team

Ultimately, the distinction between “feature versus component” is similar to the distinction between

“application” and “infrastructure". Features deliver outcomes to people whose primary interests are

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

270 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

not defined by digital or IT. Components deliver outcomes to people whose primary interests are

defined by digital or IT.

6.3.2.3.2. Epics and New Products

In the coordination Competency Category, we talked of one product with multiple feature and/or

component teams (see Figure 93, “One Company, One Product”). Features and components as we are

discussing them here are large enough to require separate teams (with new coordination

requirements). At an even larger scale, we have new product ideas, perhaps first seen as epics in a

product backlog.

Figure 93. One Company, One Product

Eventually, larger and more ambitious initiatives lead to a key organizational state transition: from

one product to multiple products. Consider our hypothetical startup company. At first, everyone on the

team is supporting one product and dedicated to its success. There is little sense of contention with

“others” in the organization. This changes with the addition of a second product team with different

incentives (see Figure 94, “One Company, Multiple Products”). Concerns for fair allocation and a sense

of internal competition naturally arise out of this diversification. Fairness is deeply wired into human

(and animal) brains, and the creation of a new product with an associated team provokes new

dynamics in the growing company.

Figure 94. One Company, Multiple Products

Because resources are always limited, it is critical that the demands of each product be managed using

objective criteria, requiring formalization. This was a different problem when you were a tight-knit

startup; you were constrained, but everyone knew they were “in it together". Now you need some

ground rules to support your increasingly diverse activities. This leads to new concerns:

• Managing scope and preventing unintended creep or drift from the product’s original charter

• Managing contention for enterprise or shared resources

• Execution to timeframes (e.g., the critical trade show)

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 271

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• Coordinating dependencies (e.g., achieving larger, cross-product goals)

• Maintaining good relationships when a team’s success depends on another team’s commitment

• Accountability for results

Structurally, we might decide to separate a portfolio backlog from the product backlog. What does this

mean?

• The portfolio backlog is the list of potential new products in which the organization might invest

• Each product team still has its own backlog of stories (or other representations of their work)

The DEEP backlog we discussed in Section 6.2.2, “Work Management” gets split accordingly (see Figure

95, “Portfolio versus Product Backlog”).

Figure 95. Portfolio versus Product Backlog

The decision to invest in a new product should not be taken lightly. When the decision is made, the

actual process is as we covered in Section 6.2.1, “Product Management”: ideally, a closed-loop, iterative

process of discovering a product that is valuable, usable, and feasible.

There is one crucial difference: the investment decision is formal and internal. While we started our

company with an understanding of our investment context, we looked primarily to market feedback

and grew incrementally from a small scale. (Perhaps there was venture funding involved, but this

document doesn’t cover that.)

Now, we may have a set of competing ideas on which we are thinking about placing bets. In order to

make a rational decision, we need to understand the costs and benefits of the proposed initiatives. This

is difficult to do precisely, but how can we rationally choose otherwise? We have to make some

assumptions and estimate the likely benefits and the effort it might take to realize them.

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

272 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.3.2.3.3. Larger-Scale Planning and Estimating

Fundamentally, we plan for two reasons:

• To decide whether to make an investment

• To ensure the investment’s effort progresses effectively and efficiently

We have discussed investment decision-making in terms of the overall business context, in terms of the

product roadmap, the product backlog, and in terms of Lean Product Development and cost of delay.

As we think about making larger-scale, multi-team digital investments, all of these practices come

together to support our decision-making process. Estimating the likely time and cost of one or more

larger-scale digital product investment is not rocket science; doing so is based on the same techniques

we have used at the single-team, single-product level.

With increasing scope of work and increasing time horizon tends to come increasing uncertainty. We

know that we will use fast feedback and ongoing hypothesis-driven development to control for this

uncertainty. But at some point, we either make a decision to invest in a given feature or product and

start the hypothesis testing cycle — or we don’t.

Once we have made this decision, there are various techniques we can use to prioritize the work so

that the most significant risks and hypotheses are addressed soonest. But in any case, when large

blocks of funding are at issue, there will be some expectation of monitoring and communication. In

order to monitor, we have to have some kind of baseline expectation to monitor against. Longer-

horizon artifacts such as the product roadmap and release plan are usually the basis for monitoring

and reporting on product or initiative progress.

In planning and execution, we seek to optimize the following contradictory goals:

• Delivering maximum value (outcomes)

• Minimizing the waste of un-utilized resources (people, time, equipment, software)

Obviously, we want outcomes — digital value — but we want it within constraints. It has to be within a

timeframe that makes economic sense. If we pay 40 people to do work that a competitor or supplier

can do with three, we have not produced a valuable outcome relative to the market. If we take 12

months to do something that someone else can do in five, again, our value is suspect. If we purchase

software or hardware we don’t need (or before we need it) and, as a result, our initiative’s total costs

go up relative to alternatives, we again may not be creating value. Many of the techniques suggested

here are familiar to formal project management. Project management has the deepest tools, and

whether or not you use a formal project structure, you will find yourself facing similar thought

processes as you scale.

To meet these value goals, we need to:

• Estimate so that expected benefits can be compared to expected costs, ultimately to inform the

investment decision (start, continue, stop)

• Plan so that we understand dependencies (e.g., when one team must complete a task before

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 273

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

another team can start theirs)

Estimation sometimes causes controversy. When a team is asked for a projected delivery date, the

temptation for management is to “hold them accountable” for that date and penalize them for not

delivering value by then. But product discovery is inherently uncertain, and therefore such penalties

can seem arbitrary. Experiments show that when animals are penalized unpredictably, they fall into a

condition known as “learned helplessness”, in which they stop trying to avoid the penalties [304].

We discussed various coordination tools and techniques previously. Developing plans for

understanding dependencies is one of the best known such techniques. An example of such a planning

dependency would be that the database product should be chosen and configured before any schema

development takes place (this might be a component team working with a feature team).

6.3.2.3.4. Planning Larger Efforts

… many large projects need to announce and commit to deadlines many

months in advance, and many large projects do have inter-team dependencies

…

— Mike Cohn, Agile Estimating

Agile and adaptive techniques can be used to plan larger, multi-team programs. Again, we have

covered many fundamentals of product vision, estimation, and work management in earlier material.

Here, we are interested in the concerns that emerge at a larger scale, which we can generally class

into:

• Accountability

• Coordination

• Risk management

Accountability

With larger blocks of funding comes higher visibility and inquiries as to progress. At a program level,

differentiating between estimates and commitments becomes even more essential.

Coordination

Mike Cohn suggests that larger efforts specifically can benefit from the following coordination

techniques [67]:

• Estimation baseline (velocity)

• Key details sooner

• Lookahead planning

• Feeding buffers

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

274 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Estimating across multiple teams is difficult without a common scale, and Cohn proposes an approach

for determining this in terms of team velocity. He also suggests that, in larger projects, some details

will require more advance planning (it is easy to see APIs as being one example), and some team

members' time should be devoted to planning for the next release. Finally, where dependencies exist,

buffers should be used; that is, if Team A needs something from Team B by May 1, Team B should plan

on delivering it by April 15.

Risk Management

Finally, risk and contingency planning is essential. In developing any plan, Abbott and Fisher

recommend the “5-95 rule”: 5% of the time on building a good plan, and 95% of the time planning for

contingencies [4 p. 105]. We will discuss risk management in detail in Section 6.4.1, “Governance, Risk,

Security, and Compliance”.

Evidence of Notability

Portfolio management in the IT and digital context has been a topic since at least 1974 [210].

Limitations

IT portfolios (whether conceived as service, project, application, or product portfolios) are significantly

different from classic financial portfolios and the usefulness of the metaphor is periodically

questioned.

Related Topics

• Product Management

• Sourcing

• Portfolio Management

• Project Management

• Governance

• Architecture, Digital Strategy, and Portfolio

6.3.2.4. The Digital Product or Service Catalog

Description

A Digital Product or Service Catalog is an organized and curated collection of any and all business

and IT-related services that can be performed by, for, or within an enterprise [306].

(Though the above serves as a good general definition of a Service Catalog, this section will explain

some complexities around this naming and related concepts.)

When an organization reaches a team of teams level, teams need some way to start exposing their

digital products and services to other teams and individuals in the organization.

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 275

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

If your organization is a SaaS provider or some other external digital product or service provider, at

this level, you may also have enough differentiation in your digital product or service offerings that

your public-facing digital Product or Service Catalog requires more formalized management.

NOTE

While industry terminology is still unsettled, some organizations and software vendors

are staying with the “Service Catalog” name, while others are now using “Digital

Product Catalog” to reflect and promote DPM practices’ growing influence among

Digital Practitioners; more on this below.

“While Service Catalogs are not new, they are becoming increasingly critical to enterprises seeking to

optimize IT efficiencies, service delivery, and business outcomes. They are also a way of supporting

both business and IT services, as well as optimizing IT for cost and value with critical metrics and

insights.”

Digital Product/Service Catalogs can cover various needs and requests, from professional service

requests to end-user IT support requests, to user access to internally delivered software and

applications, to support for third-party cloud services across the board, to support for business (non-IT)

services which are managed through an integrated service desk [88].

Digitally-savvy organizations pursue commoditization and enhanced automation for self-service for

many service request types.

The most recent trends reflect an increasing number of organizations using Artificial Intelligence (AI)

to automate service requests and using Service Catalogs to manage cloud services.

Table 19. Digital Product/Service Examples by Type and Delivery Option

Digital Product/Service

Examples by Type and

Delivery Option

DevOps Low/No-Code Externally Sourced

(SIAM)

High touch Requests to change

internally developed

services

Access to internal

professional services

(e.g., SRE/security

consultations)

External professional

services

Commodity Rare Internal workflows

(ESM) - can include

provisioning of both

internally and

externally sourced

operational services

(e.g., IaaS)

BPO

Operational/Application DevOps-driven strategic

digital services

More complex low/no

code-based development

SaaS

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

276 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Digital Product/Service

Examples by Type and

Delivery Option

DevOps Low/No-Code Externally Sourced

(SIAM)

Operational/Infrastructu

re

Infrastructure

platforms; e.g., the

DevOps pipeline itself

N/A PaaS, IaaS, and SIAM

6.3.2.4.1. Service Catalog Management Approaches: APM versus SPM versus DPM

Though Service Catalogs have been around for a long time, the management concepts underpinning

them are evolving.

Traditionally, Service Catalogs have been developed in the service of the larger management

approaches of Application Portfolio Management (APM) or Service Portfolio Management (SPM), but

are increasingly being driven by Digital Product Management (DPM) concepts; below is a short

summary of this evolution.

Application Portfolio Management (APM)

For larger organizations, one approach to keep tabs on every IT product is APM [185]. Commonly

associated with Enterprise Architecture practices where the application architecture is needed to

manage and make broad-sweeping technology or data changes. These would include efforts such as

understanding the impact of choosing a different database vendor, deciding to port internally

managed applications into the cloud, or to address regulatory requirements like Sarbanes-Oxley (SOX),

Health Insurance Portability and Accountability Act (HIPAA), or Payment Card Industry (PCI) which

impact many different applications—even if they don’t have an active team assigned.

The APM practices, however, often lack operational context, often summarizing the detail from CMDBs

and support metrics to have a vague idea of how well the applications are performing, but often not

with great fidelity.

Service Portfolio Management (SPM)

From an operational context, some organizations use SPM practices to manage the services being

consumed, focusing on ticket generation, consumption measurement, and user satisfaction of the IT

products after they have been put into operational status. The SPM practices have strong operational

management roots, pursuing operational concerns such as reliability, stability, and other support-

oriented metrics.

However, SPM doesn’t often address architectural, planning, and compliance needs well. ITIL V3

introduced Service Strategy [211]; however, in reality few organizations implemented this, and few

vendors provide tools to manage services in a strategic/planning context even today.

Common Need to Own and Manage at Every Scale

While there are operational versus planning needs creating the two portfolios, we find there is a

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 277

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

common owner that is accountable for both. What APM practices call a “Business Owner” is often the

same person SPM practices call a “Service Manager”. Often this common stakeholder is responsible for

the business context of the IT product, whether it’s a product used internally or externally.

External versus Internally-Consumed Product Catalog

Another line being blurred is the consumers of the IT product; some are internal and increasingly

many are external consumers. The differences in who uses an IT product are now becoming very

blurry; for example, traditionally human resources systems that used to provide employee-facing

functionality, now also offer job applicant functionality for external use. The user experience for the

consumption of an IT product therefore needs to be considered in a similar fashion, whether it’s an

employee consumption experience or customer-facing experience. Employees would become

frustrated where employers were to provide poor employee experience. And worse, a customer’s

experience with an IT product can spell disaster, resulting in loss of revenue and, in extreme cases,

damage to the company’s brand.

Digital Product Management

Newer concepts have emerged to better manage all aspects of every IT product through the full value

stream. “DPM” bridges the classic APM and SPM worlds into a full lifecycle approach, and this new

portfolio management acumen is often used to maintain the planning, delivery, and operational details

of the IT product, effectively collapsing two highly separated worlds into one simpler portfolio, and

addressing both the portfolio-level challenges introduced at larger-scale, while simultaneously

addressing gaps between planning and building an IT product versus deliver/run aspects.

To summarize, digital products and services increasingly are understood as the front end of value

streams. Digital products and services provide desired outcomes consumers of the product want, and

there is a value stream in the execution of a digital product or service.

However, there are also much longer lifecycle management concerns of the digital product or service

itself and, for Digital Practitioners, it is important to keep in mind that the immediate end-to-end

transactional gratification — for the digital product or service consumer — is a different concern than

the management and governance of the full lifecycle of the multiple things that deliver that

transactional gratification.

The former is oriented towards the consumer of the digital product or service, while the latter is

oriented to the long-term stakeholder (the business owner) of the digital product or service.

6.3.2.4.2. Service Catalog versus Request Catalog

Service Catalogs and Request Catalogs are not the same. To clarify the difference, Rob England

provides a good analogy:

"A service is a pipe. Customers sign up for a pipe. They select from a Service Catalog. Transactions

come out of the pipe. Users request a transaction. They select from a Request Catalog."

England explains the analogy: "The customer is the business entity which is engaging to consume a

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

278 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

service. A service provider agrees with another entity as the service customer. The individual people

have delegated roles and responsibilities within that relationship including possibly the approval of

transactions. If you as an individual buy a service from a service provider you are not personally

buying it, you are buying on behalf of your organization.

The person who approves the expenditure on an individual transaction (a request) is not the customer.

That is merely part of the internal process for request fulfilment. The person who agrees the initial

engagement of the service is the customer.

The customer creates the pipe, the user consumes a transaction out of the pipe." [95]

Confusion around the distinction between these two catalogs has also caused come confusion for some

service-level managers. Charles Betz writes: "Service-level metrics take two forms: First, there are

those that measure the fulfill service request process (in this case, how long it took to provision

someone’s email). Second, there are those that measure the aggregate performance of the system as a

whole, as a "service" to multiple users and to those who paid for it.

This can be confusing, as a list of SLAs may or may not appear consistent with the Service Catalog. The

orderable services provide user access to the human resources system, but the SLA may not be about

how quickly such access is provided – instead, it may be about the aggregate experience of all the users

who have access to the human resources system." [32]

6.3.2.4.3. Service Requests can Trigger Activities Against an Application Service or a Function

There are also ambiguities around the concept of the service lifecycle. "Some services (e.g., particular

application services) have a lifecycle, yet other services (e.g., project management) would in theory

always be required by the enterprise.

Some would solve this by saying that the actual "service" is not the application system, but that

approach results in pushing important lifecycle activities down to a "system" level.

Another approach is simply to see the Service Catalog as containing distinct transactional/IT-based

services and professional services; this is a pragmatic approach. The data implications might be that

there is no one conceptual entity containing all "services" – the physical Service Catalog is an

amalgamation of the two distinct concepts."

The semantics here are important and can be confusing when not fully understood [32].

6.3.2.4.4. Service Catalog Support for Hybrid Cloud, Multi-Cloud, and Service Integration and
Management (SIAM)

Multi-cloud is the use of multiple cloud computing and storage services in a single heterogeneous

architecture. This also refers to the distribution of cloud assets, software, applications, etc. across

several cloud-hosting environments. With a typical multi-cloud architecture utilizing two or more

public clouds as well as multiple private clouds, a multi-cloud environment aims to eliminate the

reliance on any single cloud provider [306].

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 279

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Hybrid cloud is a composition of two or more clouds (private, community, or public) that remain

distinct entities but are bound together, offering the benefits of multiple deployment models. Hybrid

cloud can also mean the ability to connect collocation, managed, and/or dedicated services with cloud

resources. A hybrid cloud service crosses isolation and provider boundaries so that it can’t be simply

put in one category of private, public, or community cloud service. It allows extension of either the

capacity or the capability of a cloud service, by aggregation, integration, or customization with another

cloud service [194].

More mature Service Catalogs provide metrics for cost and usage, selective service-level/quality

guarantees, role-based support for secure and appropriate access, and integrated levels of automation

to make service provisioning more dynamic, accessible, and efficient.

Service Catalog support for cloud services has increased and now nearly all organizations are using

some form of a Service Catalog to support them, and cloud support priorities are growing in diversity.

These include:

• Internal Software as a Service (SaaS) applications

• Internal Infrastructure as a Service (IaaS) services

• SaaS from public cloud

• IaaS from public cloud

• Internal Platform as a Service (PaaS) offerings

• PaaS from public cloud

[88]

Service Integration and Management (SIAM) is an approach to managing multiple suppliers of

services (business services as well as IT services) and integrating them to provide a single business-

facing IT organization. It aims at seamlessly integrating interdependent services from various internal

and external service providers into end-to-end services in order to meet business requirements [306].

Multi-source IT operating models are increasingly common and offer many benefits; however, they

also present some challenges. One of those challenges is managing and integrating services from

multiple insourced and outsourced service providers, which may lead to issues falling into the gaps

between the service providers. Digitalization increases the number of suppliers used in an

organization. This has led to the need for SIAM, which has therefore become an emerging service area

globally.

The Digital Product/Service Catalog is one of the key elements in SIAM. “A small but growing

percentage of companies have a professional SIAM model in use and many companies lack a proper

Service Catalog and CMDB, which include business services as well. The Service Catalog itself is

essential in proving understandable and industrialized services for the business. If it is not in good

shape, the IT operations are on a lower maturity level and cannot provide full value for the business

and end users.”

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

280 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

The aim of SIAM is to:

• Manage multiple suppliers and integrate them to deliver services

• Ensure that the services meet the business need

• Get single point of visibility and end-to-end accountability

• Manage service management processes

• Achieve multi-supplier control and provide governance over suppliers

[119]

SIAM can act a coordination mechanism for internal and external parties for cross-supplier catalog

integration and can complement DevOps activities. "You have a value stream of activities across the

product/service lifecycle that can be measured, discussed at all levels, improved with the use of

technology, and delivered to the customer in a consistent and reliable manner. SIAM is going to suggest

that you create a strong governance, but DevOps will encourage that this governance structure be

flexible enough to not stifle the agility of delivery and improvement. Which adds to the culture of

sharing and improvement." [41]

6.3.2.4.5. "Single Pane of Glass" Service or Request Catalogs?

Given all of the newer/digital Service and Request Catalog missions and capabilities, the holy grail of

"Single Pane of Glass" Service or Request Catalogs is harder to achieve than ever. The reality is that

many large organizations are both consuming services and making requests from - and offering

services and fulfillment through - multiple Service and Request Catalogs. Still, this doesn’t mean that

concepts, operating models, etc. which bring consolidation, synthesis, and integration should not be

pursued where and when it is beneficial. In the new digital world, most endeavors that clarify,

integrate, automate, optimize, etc. the value chains of business-critical services will benefit the

business.

6.3.2.4.6. The Rise of ESM/EBM: Service Catalogs are Front-Ending Enterprise/Business Digital
Products and Services

Enterprise Service Management (ESM)/Enterprise Business Management (EBM) is the practice of

applying ITSM to other areas of an enterprise or organization with the purpose of improving

performance, efficiency, and service delivery.

ESM (sometimes called EBM) is a holistic approach to service management that mirrors what ITSM

does:

• Uses service management concepts and principles

• Implemented through the use of same or similar technologies, such as service desk and

incident/service request software/ITSM suites, taking advantage of their self-service service

delivery commoditization capabilities such as low-code or no-code workflow automation, platform-

level knowledge management, and social/chat integration, etc. [267]

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 281

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Enterprise/business service support through integrated service desk/ITSM tools combines Business

Process Automation (BPA) and IT Process Automation (ITPA), and a striking number of IT organizations

are making the leap; in fact, many organizations today are consolidating IT and non-IT customer

service.

The following enterprise groups were among the most dependent on Service Catalogs to support their

services:

• Vendor and contract management

• Facilities management

• Purchasing

• Enterprise operations

• Sales

• Human resources

• Marketing

• External customer-facing catalog options

• Corporate finance

• Legal

[88]

6.3.2.4.7. Digital Product/Service Catalog Support of Cloud and DevOps

In more advanced IT environments, Service Catalog integrations can handshake with service modeling

and CMDBs to enable yet more advanced levels of automation; this can be especially helpful when

catalog services are tied to development and DevOps initiatives [88].

George Lawton agrees: "With the evolution and adoption of cloud and DevOps, enterprises have seen a

number of new opportunities to expand the use of Service Catalogs … Traditionally, a Service Catalog

was limited to simple types of requests such as access requests, password resets, and new end-user

technology hardware purchases.

Now, with the advent of new IaaS cloud platforms, Service Catalogs have expanded to allow IT and

software engineering teams to request; for example:

• New virtual machines with automated provisioning

• Items to manage those virtual machines and to configure load balancers

• Domain name system configurations

• Firewall configurations

Indeed, through Service Catalogs and automation capabilities, the need for a centralized infrastructure

for non-production environments is diminishing. We are continually looking for opportunities to

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

282 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

develop and deploy new catalog items with a big focus on automation … And we are continually seeing

a huge decrease in requests that require IT to touch requests in order for them to be fulfilled, and a

huge increase in both man-hours saved from IT support staff and wait time saved from our

requestors." [176]

Many are aware of "the growing generational gap between public clouds and enterprise IT. Consider

the size of budgets public cloud companies invest in R&D. The budgets are astronomically huge when

you compare to the budget of a typical enterprise IT. This economy of scale is likely only going to widen

with time. Most enterprises will be unable to match the scale or technical expertise of public clouds in

their private data centers.

This gap leads to some innovative developers in enterprises to be mavericks, bypassing traditional IT

departments and operating outside enterprise control to look for the next-generation services and

infrastructure. To avoid this, IT often focuses not on provisioning infrastructure, but providing the

infrastructure and application components as a service to empower these developers_." [184]

6.3.2.4.8. Using AI to Automate Requests/Cognitive Service Catalogs

"One of the challenges with traditional Service Catalogs was that they placed a burden on the employee

making a request, thus limiting adoption. "Previously, Service Catalogs were clunky and portal-based.

The customer had to log in, file a request, and wait for the request to be fulfilled … CIOs can reduce this

burden using conversational bots to automate requests. Employees simply chat with the bot, tell it

what they need, and the bot uses AI to learn employees' preferences along the way.

One large telco … was going through a massive transformation around employee and customer service

experience. The company pursued a strategy of using bots across multiple chat channels including

Slack, SMS, and Skype to access a Service Catalog. Any industry that is affected by the accuracy, speed,

and cost of customer service can use this technology to automate their service desk function. We are

seeing a lot of momentum around telcos that are facing increasing pressure to move faster, and

financial institutions like banks are moving toward cognitive Service Catalogs." [176]

6.3.2.4.9. The Service/Request Catalog and Digital Financial Management

As the Service and Request Catalog discussions in this section should make clear, the Service Catalog’s

role as a live services subset of the Service Portfolio - along with Service Portfolio Mnagement concepts

and goals - is a complex one.

Technology Business Management (TBM) is a framework for “running IT with greater business

acumen” to effectively and consistently communicate the cost of IT along with the business services IT

provides. The primary goal of TBM is to provide the ability of IT and business leaders to have data-

driven discussions ("value conversations") about cost and value of IT to best support business goals. It

is designed to provide “a shared decision-making model for technology and business leaders” and a

structure for IT executives to have “conversations with the CEO and the Board of Directors about the

value of IT investments” [72].

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 283

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Service and Request Catalog Pricing and TBM

In order to price digital products/services and requests, you have to know the cost for them. TBM

attempts to bring rosetta stone capabilities for translating the language and numbers between the

business, IT, and finance. Among other things, TBM also provides techniques for service and digital

product-centric costing to aid Service Catalog pricing efforts, but also cost-per-unit calculation

techniques needed for Request Catalog pricing.

As Jez Humble writes: "Agile methods and continuous delivery have been successfully applied to

everything from mainframe systems in large financial services companies to embedded systems in

consumer electronics, consistently delivering higher-quality, faster delivery, greater business

responsiveness, and reduced costs over the product lifecycle.

Any company that hopes to survive in the digital age must move beyond zero sum thinking. The recipe

is easy to understand, but hard to implement: leaders must set and communicate clear business goals

in terms of time-to-market, quality, and cost. They must then invest the necessary resources for

everyone in the organization to collaborate so they can solve the problems that prevent them from

achieving these goals. Nothing should be out of scope - Enterprise Architecture, process, budgeting, and

governance, risk and compliance." [135]

TBM is a key enabler for such collaboration among the business, IT, and finance.

6.3.2.4.10. Service/Request Catalog Maturity as a Measure of Success

A recent survey compared some features of "companies who view themselves as "extremely

successful" with those who were only marginally so (the two extremes), which almost always produces

meaningful patterns of difference. In this case, the following patterns arose.

Those ITSM teams who viewed themselves as extremely successful were:

• 2X more likely to have a Service Catalog

• 2X more likely to offer users access to corporate applications through mobile

• Dramatically more likely to support cloud-related services in their catalogs; in fact they were 5X

more likely to support SaaS from public cloud and 6X more likely to support PaaS from public

cloud

• Considerably more likely to support enterprise services, including:

◦ 2X more likely to support human resources

◦ 3X more likely to support facilities management

◦ 2X more likely to support legal

◦ More than 4X more likely to support purchasing

◦ 5X more likely to support marketing

◦ Nearly 3X more likely to support enterprise operations

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

284 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Given this data, it becomes obvious that we are not only living in the midst of the "digital age" in which

"Digital Transformation" is key, but that Service Catalogs are increasingly becoming a critical

cornerstone in making Digital Transformation yet more of a reality [88].

6.3.2.4.11. Service/Product Catalog Conclusion

Digital Practitioners should understand that there is now more being accomplished by Service Catalogs

than ever before, and there is a clear need for scale-appropriate, Lean, Agile, and outcome-focused

Digital Product/Service Catalog and Request Catalog management and governance strategies and

roadmaps to manage this complexity.

Since organizations will not want to implement all possible Service and Request Catalog missions at

once, organizations should find it beneficial to fold the Service and Request Catalog development and

maturity under their coordination and investment management areas, at the team of teams level, and

under their governance and Enterprise Architecture areas at the enduring enterprise level, to take

advantage of their Service Catalog complementary tools and techniques, such as Service Catalog

roadmap development, Service Catalog goverance policies, etc.

Related Topics

To be added in a future version.

6.3.2.5. Project Management

Description

In the DPBoK emergence model, we always seek to make clear why we need a new concept or practice.

It is not sufficient to say: “we need project management because companies of our size use it”. Many

authoritative books on Agile software development assume that some form of project management is

going to be used. Other authors question the need for it or at least raise various cautions.

Project management, like many other areas of IT practice, is undergoing a considerable transformation

in response to the Agile transition. However, it will likely remain an important tool for value delivery

at various scales.

Fundamentally, project management is a means of understanding and building a shared mental model

of a given scope of work. In particular, planning the necessary tasks gives a basis for estimating the

time and cost of the work as a whole, and therefore understanding its value. Even though industry

practices are changing, value remains a critical concern for the Digital Practitioner.

As the above quotes indicate, there are diverse opinions on the role and importance of traditional

project management in the enterprise. Clearly, it is under pressure from the Agile movement. Project

management professionals are advised not to deny or diminish this fact. One of the primary criticisms

of project management as a paradigm is that it promotes large “batches” of work. It is possible for a

modern, IT-centric organization to make considerable progress on the basis of product management

plus simple, continuous work management, without the overhead of the formalized project lifecycle

suggested by the PMBOK.

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 285

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Cloud computing is having impacts on traditional project management as well. As we will see in the

section on the decline of traditional IT, projects were often used to install vendor-delivered commodity

software, such as for payroll or employee expense. Increasingly, that kind of functionality is delivered

by online service providers, leaving “traditional” internal IT with considerably reduced

responsibilities.

Some of the IT capability may remain in the guise of an internal “service broker”, to assist with the

sourcing and procurement of online services. The remainder moves into DPM, as the only need for

internal IT is in the area of revenue-generating, market-facing strategic digital product.

So, this section will examine the following questions:

• Given the above trends, under what circumstances does formalized project management make

economic sense?

• Assuming that formalized project management is employed, how do we continue to support

objectives such as fast feedback and adaptability?

6.3.2.5.1. A Traditional IT Project

So, what does all this have to do with IT? As discussed in previous material, project management is one

of the main tools used to deliver value across specialized skill-based teams, especially in traditional IT

organizations.

A “traditional” IT project would usually start with the “sponsorship” of some executive with authority

to request funding. For example, suppose that the VP of Logistics under the Chief Operating Officer

(COO) believes that a new supply chain system is required. With the sponsorship of the COO, she puts

in a request (possibly called a “demand request” although this varies by organization) to implement

this system. The assumption is that a commercial software package will be acquired and implemented.

The IT department serves as an overall coordinator for this project. In many cases, the “demand

request” is registered with the enterprise PMO, which may report to the CIO.

NOTE

Why might the Enterprise PMO report under the CIO? IT projects in many companies

represent the single largest type of internally managed capital expenditure. The other

major form of projects - building projects - are usually outsourced to a general

contractor.

The project is initiated by establishing a charter, allocating the funding, assigning a project manager,

establishing communication channels to stakeholders, and a variety of other activities. One of the first

major activities of the project will be to select the product to be used. The project team (perhaps with

support from the architecture group) will help lead the RFI/RFQ processes by which vendors are

evaluated and selected.

NOTE
RFI stands for Request for Information; RFQ stands for Request for Quote. See the links

for definitions.

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

286 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Once the product is chosen, the project must identify the staff who will work on it, perhaps a

combination of full-time employees and contractors, and the systems implementation lifecycle can

start.

We might call the above, the systems implementation lifecycle, not the software development

lifecycle. This is because most of the hard software development was done by the third party who

created the supply chain software. There may be some configuration or customization (adding new

fields, screens, reports) but this is lightweight work in comparison to the software engineering

required to create a system of this nature.

The system requires its own hardware (servers, storage, perhaps a dedicated switch) and specifying

this in some detail is required for the purchasing process to start. The capital investment may be

hundreds of thousands or millions of dollars. This, in turn, requires extensive planning and senior

executive approval for the project as a whole.

It would not have been much different for a fully in-house developed application, except that more

money would have gone to developers. The slow infrastructure supply chain still drove much of the

behavior, and correctly “sizing” this infrastructure was a challenge particularly for in-house developed

software. (The vendors of commercial software would usually have a better idea of the infrastructure

required for a given load.) Hence, there is much attention to up-front planning. Without requirements

there is no analysis or design; without design, how do you know how many servers to buy?

Ultimately, the project comes to an end, and the results (if it is a product such as a digital service) are

transitioned to a “production” state. Figure 96, “Traditional IT Implementation Lifecycle” presents a

graphical depiction.

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 287

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 96. Traditional IT Implementation Lifecycle

There are a number of problems with this classic model, starting with the lack of responsiveness to

consumer needs (see Figure 97, “Customer Responsiveness in Traditional Model”).

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

288 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 97. Customer Responsiveness in Traditional Model

This might work for a non-competitive function, but if the “digital service consumer” has other

options, they may go elsewhere. If they are an internal user within an enterprise, they might be

engaged in critical competitive activities.

The Decline of the “Traditional” IT Project

The above scenario is in decline, and along with it a way of life for many “IT” professionals. One

primary reason is cloud, and in particular SaaS. Another reason is the increasing adoption of the

Lean/Agile product development approach for digital services. Figure 98, “Traditional Enterprise IT

“Space”” presents one view of the classic model.

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 289

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 98. Traditional Enterprise IT “Space”

Notice the long triangles labeled “Producing focus” and “Consuming focus”. These represent the

perspectives of (for example) a software vendor versus their customer. Traditionally, the R&D

functions were most mature within the product companies. What was less well understood was that

internal IT development was also a form of R&D. Because of the desire for scope management

(predictability and control), the IT department performing systems development was often trapped in

the worst of both worlds — having neither a good quality product nor high levels of certainty. For

many years, this was accepted by the industry as the best that could be expected. However, the

combination of Lean/Agile and cloud is changing this situation (see Figure 99, “Shrinking Space for

Traditional IT”).

There is diminishing reason to run commodity software (e.g., human resources, payroll, expenses, etc.)

in-house. Cloud providers such as Workday, Concur, Salesforce, and others provide ready access to the

desired functionality “as a service”. The responsiveness and excellence of such products are

increasing, due to the increased tempo of market feedback (note that while a human resource

management system may be a commodity for your company, it is strategic for Workday) and concerns

over security and data privacy are rapidly fading.

What is left internal to the enterprise, increasingly, are those initiatives deemed “competitive” or

“strategic”. Usually, this means that they are going to contribute to a revenue stream. This, in turn,

means they are “products” or significant components of them. (See Section 6.2.1.1, “Product

Management Basics”.) A significant market-facing product initiative (still calling for project

management per se) might start with the identification of a large, interrelated set of features, perhaps

termed an “epic”. Hardware acquisition is a thing of the past, due to either private or public cloud. The

team starts with analyzing the overall structure of the epic, decomposing it into stories and features,

and organizing them into a logical sequence.

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

290 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 99. Shrinking Space for Traditional IT

Because capacity is available on-demand, new systems do not need to be nearly as precisely “sized”,

which meant that implementation could commence without as much up-front analysis. Simpler

architectures suffice until the real load is proven. It might then be a scramble to refactor software to

take advantage of new capacity, but the overall economic effect is positive, as over-engineering and

over-capacity are increasingly avoided. So, IT moves in two directions — its most forward-looking

elements align to the enterprise product management roadmap, while its remaining capabilities may

deliver value as a “service broker”. (More on this in the section on IT sourcing.)

Let’s return to the question of project management in this new world.

6.3.2.5.2. How is a Project Different from Simple “Work Management”?

In Section 6.2.2, “Work Management”, we covered a simple concept of “work management” that

deliberately did not differentiate product, project, and/or process-based work. As was noted at the

time, for smaller organizations, most or all of the organization would be the “project team”, so what

would be the point?

The project is starting off as a list of tasks that is essentially identical to a product backlog. Even in

Kanban, we know who is doing what, so what is the difference? Here are key points:

• The project is explicitly time-bound; as a whole, it is lengthier and more flexible than the repetitive,

time-boxed sprints of Scrum, but more fixed than the ongoing flow of Kanban

• Dependencies - you may have had a concept of one task or story blocking another, and perhaps you

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 291

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

used a white board to outline more complex sequences of work, but project management has an

explicit concept of dependencies in the tasks and powerful tools to manage them; this is essential in

the most ambitious and complex product efforts

• Project management also has more robust tools for managing people’s time and effort, especially as

they translate to project funding; while estimation and ongoing re-planning of spending can be a

contentious aspect of project management, it remains a critical part of management practice in

both IT and non-IT domains

At the end of the day, people expect to be paid for their time, and investors expect to be compensated

through the delivery of results. Investment capital only lasts as a function of an organization’s “burn

rate”; the rate at which the money is consumed for salaries and expenses. Some forecasting of status

(whether that of a project, organization, product, program, etc.) is, therefore, an essential and

unavoidable obligation of management unless funding is unlimited (a rare situation to say the least).

Project accounting, at scale, is a deep area of considerable research and theory behind it. In particular,

the concept of Earned Value Management is widely used to quantify the performance of a project

portfolio.

6.3.2.5.3. The “Iron Triangle”

Figure 100. Project “Iron Triangle”

The project management "Iron Triangle" represents the interaction of cost, time, scope, and quality of a

project (see Figure 100, “Project “Iron Triangle””
[7]

). The idea is that, in general, one or more of these

factors may be a constraint.

The same applies to project management and reflects well the “Iron Triangle” of trade-offs. However,

more recent thinking in the DevOps movement suggests that optimizing for continuous flow and speed

tends to have beneficial impacts on quality as well. As digital pipelines increase their automation and

speed to delivery, quality also increases because testing and building become more predictable.

Conversely, the idea that stability increases through injecting delay into the deployment process (i.e.,

through formal change management) is also under question (see [100]).

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

292 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.3.2.5.4. Project Practices

Project management (not restricted to IT) is a defined area of study, theory, and professional practice.

This section provides a (necessarily brief) overview of these topics.

We will first discuss the PMBOK, which is the leading industry framework-in-project management, at

least in the US. (PRINCE2® is another framework, originating from the UK, which will not be covered

in this edition.) We will spend some time on the critical issues of scope management which drive some

of the conflicts seen between traditional project management and Agile product management.

PMBOK details are easily obtained on the web, and will not be repeated here. It is clear that the Agile

critiques of waterfall project management have been taken seriously by the PMBOK thought leaders.

There is now a PMI Agile certification and much explicit recognition of the need for iterative and

incremental approaches to project work.

The PMBOK remains extensive and complex when considered as a whole. This is necessary, as it is

used to manage extraordinarily complex and costly efforts in domains such as construction,

military/aerospace, government, and others. Some of these efforts (especially those involving systems

engineering, over and above software engineering) do have requirements for extensive planning and

control that the PMBOK meets well.

However, in Agile domains that seek to be more adaptive to changing business dynamics, full use of

the PMBOK framework may be unnecessary and wasteful. The accepted response is to “tailor” the

guidance, omitting those plans and deliverables that are not needed.

IMPORTANT

Part of the problem with extensive frameworks such as the PMBOK is that

knowing how and when to tailor them is hard-won knowledge that is not part of

the usual formalized training. And yet, without some idea of “what matters” in

applying the framework, there is great risk of wasted effort. The Agile

movement in some ways is a reaction to the waste that can result from overly

detailed frameworks.

Scope Management

Scope management is a powerful tool and concept, at the heart of the most challenging debates around

project management. The PMBOK uses the following definitions [223]:

Scope: The sum of the products, services, and results to be provided as a project. See also project scope

and product scope.

Scope Change: Any change to the project scope. A scope change almost always requires an adjustment

to the project cost or schedule.

Scope Creep: The uncontrolled expansion of product or project scope without adjustments to time,

cost, and resources.

Change Control: A process whereby modifications to documents, deliverables, or baselines associated

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 293

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

with the project are identified, documented, approved, or rejected.

In the Lean Startup world, products may pivot and pivot again, and their resource requirements may

flex rapidly based on market opportunity. Formal project change control processes are in general not

used. Even in larger organizations, product teams may be granted certain leeway to adapt their

“products, services, and results” and while such adaptations need to be transparent, formal project

change control is not the vehicle used.

On the other hand, remember our emergence model. The simple organizational change from one to

multiple products may provoke certain concerns and a new kind of contention for resources. People

are inherently competitive and also have a sense of fairness. A new product team that seems to be

unaccountable for results, consuming “more than its share” of the budget while failing to meet the

original vision for their existence, will cause conflict and concern among organizational leadership.

It is in the tension between product autonomy and accountability that we see project management

techniques such as the Work Breakdown Structure (WBS) and project change control employed. The

WBS is defined by the PMBOK as:

… a hierarchical decomposition of the total scope of work to be carried out by the project team to

accomplish the project objectives and create the required deliverables. The WBS organizes and defines the

total scope of the project, and represents the work specified in the current approved project. [223]

[222] recommends: “Subdivide your WBS component into additional deliverables if you think either of

the following situations applies: The component will take much longer than two calendar weeks to

complete. The component will require much more than 80 person-hours to complete.”

This may seem reasonable, but in iterative product development, it can be difficult to “decompose” a

problem in the way project management seems to require. Or to estimate in the way Portny suggests.

This can lead to two problems.

First, the WBS may be created at a seemingly appropriate level of detail, but since it is created before

key information is generated, it is inevitably wrong and needing ongoing correction. If the project

management approach requires a high-effort “project change management” process, much waste may

result as “approvals” are sought for each feedback cycle. This may result in increasing disregard by the

development team for the project manager and his/her plan, and corresponding cultural risks of

disengagement and lowering of trust on all sides.

Second, we may see the creation of project plans that are too high-level, omitting information that is in

fact known at the time — for example, external deadlines or resource constraints. This happens

because the team develops a cultural attitude that is averse to all planning and estimation.

Project Risk Management

Project management is where we see the first formalization of risk management (which will be more

extensively covered in Section 6.4.1, “Governance, Risk, Security, and Compliance”). Briefly, risk is

classically defined as the probability of an adverse event times its cost. Project managers are alert to

risks to their timelines, resource estimates, and deliverables.

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

294 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Risks may be formally identified in project management tooling. They may be accepted, avoided,

transferred, or mitigated. Unmanaged risks to a project may result in the project as a whole reporting

an unfavorable status.

Project Assignment

Enterprise IT organizations have evolved to use a mix of project management, processes, and ad hoc

work routing to achieve their results. Often, resources (people) are assigned to multiple projects; a

practice sometimes called “fractional allocation”.

In fractional allocation, a Database Administrator (DBA) will work 25% on one project, 25% on another,

and still be expected to work 50% on ongoing production support. This may appear to work

mathematically, but practically it is an ineffective practice. Both Gene Kim in The Phoenix Project [165]

and Eli Goldratt in Critical Chain [112] present dramatized accounts of the overburden and gridlock

that can result from such approaches.

As previously discussed, human beings are notably bad at multi-tasking, and the mental “context-

switching” required to move from one task to another is wasteful and ultimately not scalable. A human

being fractionally allocated to more and more projects will get less and less done in total, as the

transactional friction of task switching increases.

Governing Outsourced Work

A third major reason for the continued use of project management and its techniques is governing

work that has been outsourced to third parties. This is covered in detail in the section on sourcing.

6.3.2.5.5. The Future of Project Management

Recall our three “Ps”:

• Product

• Project

• Process

Taken together, the three represent a coherent set of concerns for value delivery in various forms. But

in isolation, any one of them ultimately is limited. This is a particular challenge for project

management, whose practitioners may identify deeply with their chosen field of expertise.

Clearly, formalized project management is under pressure. Its methods are perceived by the Agile

community as overly heavyweight; its practitioners are criticized for focusing too much on success in

terms of cost and schedule performance and not enough on business outcomes. Because projects are

by definition temporary, project managers have little incentive to care about technical debt or

operational consequences. Hence the rise of the product manager.

However, a product manager who does not understand the fundamentals of project execution will not

succeed. As we have seen, modern products, especially in organizations scaling up, have dependencies

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 295

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

and coordination needs, and to meet those needs, project management tools will continue to provide

value.

Loose coupling to the project plan rescue? While this document does not go into systems

architectural styles in depth, a project with a large number of dependencies may be an indication that

the system or product being constructed also has significant interdependencies. Recall Amazon’s

product strategy including its API mandate.

Successful systems designers for years have relied on concepts such as encapsulation, abstraction, and

loose-coupling to minimize the dependencies between components of complex systems so that their

design, construction, and operation can be managed with some degree of independence. These ideas

are core to the software engineering literature. Recent expressions of these core ideas are SOA and

microservices.

Systems that do not adopt such approaches are often termed “monolithic” and have a well-deserved

reputation for being problematic to build and operate. Many large software failures stem from such

approaches. If you have a project plan with excessive dependencies, the question at least should be

asked: does my massive, tightly-coupled project plan indicate I am building a monolithic, tightly-

coupled system that will not be flexible or responsive to change?

Again, many digital companies build tremendously robust integrated services from the combination of

many quasi-independent, microservice-based “product” teams, each serving a particular function.

However, when a particular organizational objective requires changes to more than one such

“product”, the need for cross-team coordination emerges. Someone needs to own this larger objective,

even if its actual implementation is carried out across multiple distinct teams. We will discuss this

further in Section 6.3.3, “Organization and Culture”.

Evidence of Notability

Project management has historically been the primary vehicle for funding and managing new IT and

digital functionality. It is only in the past decade that the product management alternative has emerged

as a replacement.

Limitations

There are many limitations to project management as an IT delivery paradigm, starting with the

premise that it is temporary. Implicit in this approach is an assumption that temporary projects "build"

things to be "run" ongoing by an operations team. In other words, it is difficult to implement project

management without implementing waterfall development to some degree.

Related Topics

• Product Management

• Work Management

• Coordination Models

• Sourcing

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

296 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• Portfolio Management

• Risk Management

6.3.3. Organization and Culture

Area Description

The organization is going through a critical phase, the “team of teams” transition. There are

increasingly specialized people delivering an increasingly complex digital product, or perhaps even

several distinct products. Deep-skilled employees are great, but they tend to lose the big picture. The

organization is in constant discussions around the tension between functional depth versus product

delivery. And when it goes from one team to multiple, the topic of the organization must be formalized.

Leaders often must think about how their company should be structured. There is no shortage of

opinions there. From functional centers of excellence to cross-functional product teams, and from

strictly hierarchical models to radical models like holacracy, there seems to be an infinite variety of

choices.

A structure needs to be filled with the right people. How can the organization retain that startup feel it

had previously, with things getting this big? Many leaders know intuitively that great hires are the

basis for your company’s success, but now the organization must think more systematically about

hiring. Finally, the people hired will create the company’s culture. Many employees and consultants

emphasize the role of culture, but what do they mean? Is there such a thing as a “good” culture? How

is one culture better than another?

Ultimately, as the Digital Practitioner moves into higher leadership, they realize that the concern for

organization and culture is all about creating the conditions for success. The leader can’t drive success

as an individual any more; that is increasingly for others to do. All you can do is set the stage for their

efforts, provide overall direction and vision, and let your teams do what they do best.

This Competency Area proceeds in a logical order, from operational organization forms, to populating

them by hiring staff, to the hardest to change questions of culture.

6.3.3.1. Structuring the Organization: Product and Function

Description

There are two major models that Digital Practitioners may encounter in their career:

• The traditional centralized back-office “IT” organization

• Digital technology as a component of market-facing product management

The traditional IT organization started decades ago, with “back-office” goals like replacing file clerks

and filing cabinets. At that time, computers were not flexible or reliable, business did not move as fast,

and there was a lot of value to be gained in relatively simple efforts like converting massive paper

filing systems into digital systems. As these kinds of efforts grew and became critical operational

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 297

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

dependencies for companies, the role of Chief Information Officer (CIO) was created, to head up

increasingly large organizations of application developers, infrastructure engineers, and operations

staff.

The business objectives for such organizations centered on stability and efficiency. Replacing 300 file

clerks with a system that didn’t work, or that wound up costing more was obviously not a good

business outcome! On the other hand, it was generally accepted that designing and implementing these

systems would take some time. They were complex, and many times the problem had never been

solved before. New systems might take years — including delays — to come online, and while

executives might be unhappy, oftentimes the competition wasn’t doing much better. CIOs were

conditioned to be risk-averse; if systems were running, changing them was scrutinized with great care

and rarely rushed.

The culture and practices of the modern IT organization became more established, and while it

retained a reputation for being slow, expensive, and inflexible, no-one seemed to have any better

ideas. It didn’t hurt that the end customer wasn’t interested in computers.

Then along came the personal computer, and the dot-com boom. Suddenly everyone had personal

computers at home and was on the Internet. Buying things! Computers continued to become more

reliable and powerful as well. Companies realized that their back-office IT organizations were not able

to move fast enough to keep up with the new e-commerce challenge, and in many cases organized

their Internet team outside of the CIO’s control (which sometimes made the traditional IT organization

very unhappy). Silicon Valley startups such as Google and Facebook in general did not even have a

separate “CIO” organization, because for them (and this is a critical point) the digital systems were

the product. Going to market against tough competitors (Alta Vista and Yahoo® against Google,

Friendster and MySpace against Facebook) wasn’t a question of maximizing efficiency. It was about

product innovation and effectiveness and taking appropriate risks in the quest for these rapidly

growing new markets.

Let’s go back to our example of the traditional CIO organization. A typical structure under the CIO

might look as shown in Figure 101, “Classic IT Organization”.

Figure 101. Classic IT Organization

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

298 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

(We had some related discussion in Table 11, “Application, Infrastructure, Development, Operations”).

Such a structure was perceived to be “efficient” because all the server engineers would be in one

organization, while all the Java developers would be in another, and their utilization could be

managed for efficiency. Overall, having all the “IT” people together was also considered efficient, and

the general idea was that “the business” (sales, marketing, operations, and back-office functions like

finance and human resources) would define their "requirements" and the IT organization would

deliver systems in response. It was believed that organizing into "centers of excellence” (sometimes

called organizing by function) would make the practices of each center more and more effective, and

therefore more valuable to the organization as a whole. However, the new digital organizations

perceived that there was too much friction between the different functions on the organization chart.

Skepticism also started to emerge that “centers of excellence” were living up to their promise. Instead,

what was too often seen was the emergence of an “us versus them” mentality, as developers argued

with the server and network engineers.

One of the first companies to try a completely different approach was Intuit. As Intuit started selling its

products increasingly as services, it re-organized and assigned individual infrastructure contributors -

e.g., storage engineers and DBAs - to the product teams with which they worked [4], p.103.

Figure 102. New IT Organization

This model is also called the "Spotify model” (see Figure 102, “New IT Organization”). The dotted line

boxes (Developers, Quality Assurance, Engineering) are no longer dedicated “centers of excellence”

with executives leading them. Instead, they are lighter-weight “communities of interest” organized into

chapters and guilds. The cross-functional product teams are the primary way work is organized and

understood, and the communities of interest play a supporting role. Henrik Kniberg provided one of

the first descriptions of how Spotify organizes along product lines [169]. (Attentive readers will ask:

“What happened to the PMO? And what about security?”. There are various answers to these

questions, which we will continue to explore in Context III.)

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 299

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

One important note: Human resources management lines of authority in this model may still be by

functional center, not product line. This is the case at Spotify. However, the overall power structure

shifts in favor of product focus decisively.

The consequences of this transition in organizational style are still being felt and debated. Sriram

Narayan is in general an advocate of product organization. However, in his book Agile Organization

Design, he points out that “IT work is labor-intensive and highly specialized”, and therefore managing

IT talent is a particular organizational capability it may not make sense to distribute [207].

Furthermore, he observes that IT work is performed on medium to long time scales, and “IT culture”

differs from “business culture”, concluding that "although a merger of business and IT is desirable, for

the vast majority of big organizations it isn’t going to happen anytime soon".

Conversely, Abbott and Fisher in The Art of Scalability argue that: "… The difference in mindset,

organization, metrics, and approach between the IT and product models is vast. Corporate technology

governance tends to significantly slow time-to-market for critical projects … IT mindsets are great for

internal technology development, but disastrous for external product development” [4 pp. 122-124].

However, it is possible that Abbott and Fisher are overlooking the decline of traditional IT. Hybrid

models exist, with “product” teams reporting up under “business” executives, and the CIO still

controlling the delivery staff who may be co-located with those teams. We will discuss the alternative

models in more detail below.

6.3.3.1.1. Conway’s Law

Melvin Conway is a computer programmer who worked on early compilers and programming

languages. In 1967 he proposed the thesis that:

Any organization that designs a system (defined broadly) will produce a design whose structure is a copy

of the organization’s communication structure. [73].

What does this mean? If we establish two teams, each team will build a piece of functionality (a feature

or component). They will think in terms of “our stuff” and “their stuff” and the interactions (or

interface) between the two. Perhaps this seems obvious, but as you scale up, it is critical to keep in

mind. In particular, as you segment your organization along the AKF y-axis, you will need to keep in

mind the difference between features and components. You are on a path to have dozens or hundreds

of such teams. The decisions you make today on how to divide functionality and work will determine

your operating model far into the future.

Ultimately, Conway’s law tells us that to design a product is also to design an organization and vice

versa. This is important for designers and architects to remember.

6.3.3.1.2. Defining the Organization

There are many different ways we can apply these ideas of traditional functional organizing versus

product-oriented organizing, and features versus components. How do we begin to decide these

questions? As a Digital Practitioner in a scaling organization, you need to be able to lead these

conversations. The cross-functional, diverse, collaborative team is a key unit of value in the digital

enterprise, and its performance needs to be nurtured and protected.

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

300 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Abbott and Fisher suggest the following criteria when considering organizational structures [4 p. 12]:

• How easily can I add or remove people to/from this organization? Do I need to add them in groups,

or can I add individual people?

• Does the organizational structure help or hinder the development of metrics that will help measure

productivity?

• Does the organizational structure allow teams to own goals and feel empowered and capable of

meeting them?

• Which types of conflict will arise, and will that conflict help or hinder the mission of the

organization?

• How does this organizational structure help or hinder innovation within my company?

• Does this organizational structure help or hinder the time-to-market for my products?

• How does this organizational structure increase or decrease the cost per unit of value created?

• Does work flow easily through the organization, or is it easily contained within a portion of the

organization?

6.3.3.1.3. Team Persistence

Team persistence is a key question. The practice in project-centric organizations has been temporary

teams, that are created and broken down on an annual or more frequent basis. People “rolled on” and

“rolled off” projects regularly in the common heavyweight project management model. Often,

contention for resources resulted in fractional project allocation, as in “you are 50% on Project A and

25% on Project B” which could be challenging for individual contributors to manage. With team

members constantly coming and going, developing a deep, collective understanding of the work was

difficult. Hard problems benefit from team stability. Teams develop both a deeper rational

understanding of the problem, as well as emotional assets such as psychological safety. Both are

disrupted when even one person on a team changes. Persistent teams of committed individuals also (in

theory) reduce destructive multi-tasking and context-switching.

6.3.3.1.4. Product and Function

There is a fundamental tension between functional specialization and end-to-end value delivery — the

tendency for specialist teams start to identify with their specialty and not the overall mission. The

tension may go by different names:

• Product versus function

• Value stream versus activity

• Process versus silo

As we saw previously, there are three major concepts used to achieve an end-to-end flow across

functional specialties:

• Product

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 301

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• Project

• Process

These are not mutually-exclusive models and may interact with each other in complex ways. (See the

scaling discussion in the Context III introduction.)

6.3.3.1.5. Waterfall and Functional Organization

For example, some manufacturing can be represented as a very simple, sequential process model (see

Figure 103, “Simple Sequential Manufacturing”).

Figure 103. Simple Sequential Manufacturing

The product is already defined, and the need to generate information (i.e., through feedback) is at an

absolute minimum.

NOTE

Even in this simplest model, feedback is important. Much of the evolution of 20th

century manufacturing has been in challenging this naive, open-loop model.

(Remember our brief discussion of open-loop?) The original, open-loop waterfall model

of IT systems implementation (see Figure 104, “Waterfall”) was arguably based on just

such a naive concept.

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

302 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 104. Waterfall

(Review Section 6.1.3.2, “Agile Software Development” on waterfall development and Agile history.)

Functional, or practice, areas can continually increase their efficiency and economies of scale through

deep specialization.

6.3.3.1.6. Defining “Practice"

A “practice” is synonymous with “discipline” — it is a set of interrelated precepts, concerns, and

techniques, often with a distinct professional identity. “Java programming”, “security”, or “capacity

management” are practices. When an organization is closely identified with a practice, it tends to act

as a functional silo (more on this to come). For example, in a traditional IT organization, the Java

developers might be a separate team from the HTML, CSS and JavaScript specialists. The DBAs might

have their own team, and also the architects, business analysts, and quality assurance groups. Each

practice or functional group develops a strong professional identity as the custodians of “best

practices” in their area. They may also develop a strong set of criteria for when they will accept work,

which tends to slow down product discovery.

There are two primary disadvantages to the model of projects flowing in a waterfall sequence across

functional areas:

• It discourages closed-loop feedback

• There is transactional friction at each hand-off

Go back and review: the waterfall model falls into the “original sin” of IT management, confusing

production with product development. As a repeatable production model, it may work, assuming that

there is little or no information left to generate regarding the production process (an increasingly

questionable assumption in and of itself). But when applied to product development, where the

primary goal is the experiment-driven generation of information, the model is inappropriate and has

led to innumerable failures. This includes software development, and even implementing purchased

packages in complex environments.

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 303

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.3.3.1.7. The Continuum of Organizational Forms

NOTE

The following discussion and accompanying set of diagrams is derived from Preston

Smith and Don Reinertsen’s thought regarding this problem in Developing Products in

Half the Time [264] and Managing the Design Factory [229]. Similar discussions are

found in the Guide to the Project Management Body of Knowledge [223] and Abbott and

Fisher’s The Art of Scalability [4].

There is a spectrum of alternatives in structuring organizations for flow across functional concerns.

First, a lightweight “matrix” project structure may be implemented, in which the project manager has

limited power to influence the activity-based work, where people sit, etc. (see Figure 105, “Lightweight

Project Management Across Functions”).

Figure 105. Lightweight Project Management Across Functions

Work flows across the functions, perhaps called "centers of excellence”, and there may be contention

for resources within each center. Often, simple “first in, first out” queuing approaches are used to

manage the ticketed work , rather than more sophisticated approaches such as cost of delay. It is the

above model that Reinertsen was thinking of when he said: “The danger in using specialists lies in

their low involvement in individual projects and the multitude of tasks competing for their time.”

Traditional I&O organizations, when they implemented defined Service Catalogs, can be seen as

attempting this model. (More on this in the discussion of ITIL and shared services.)

Second, a heavyweight project structure may specify much more, including dedicated time assignment,

modes of work, standards, and so forth (see Figure 106, “Heavyweight Project Management Across

Functions”). The vertical functional manager may be little more than a resource manager, but does still

have reporting authority over the team member and crucially still writes their annual performance

evaluation (if the organization still uses those). This has been the most frequent operating model in the

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

304 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

traditional CIO organization.

Figure 106. Heavyweight Project Management Across Functions

If even more focus is needed — the now-minimized influence of the functional areas is still deemed too

strong — the organization may move to completely product-based reporting (see Figure 107, “Product

Team, Virtual Functions”). With this, the team member reports to the product owner. There may still

be communities of interest (Spotify guilds and tribes are good examples) and there still may be

standards for technical choices.

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 305

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 107. Product Team, Virtual Functions

Finally, in the skunkworks model, all functional influence is deliberately blocked, as distracting or

destructive to the product team’s success (see Figure 108, “Skunkworks Model”).

Figure 108. Skunkworks Model

The product team has complete autonomy and can move at great speed. It is also free to:

• Re-invent the wheel, developing new solutions to old and well-understood problems

• Bring in new components on a whim (regardless of whether they are truly necessary) adding to

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

306 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

sourcing and long-term support complexity

• Ignore safety and security standards, resulting in risk and expensive retrofits

Early e-commerce sites were often set up as skunkworks to keep the interference of the traditional CIO

to a minimum, and this was arguably necessary. However, ultimately, skunkworks is not scalable.

Research by the Corporate Executive Board suggests that: “Once more than about 15% of projects go

through the fast [skunkworks] team, productivity starts to fall away dramatically.” It also causes issues

with morale, as a two-tier organization starts to emerge with elite and non-elite segments [113].

Because of these issues, Don Reinertsen observes that: “Companies that experiment with autonomous

teams learn their lessons, and conclude that the disadvantages are significant. Then they try to

combine the advantages of the functional form with those of the autonomous team” [229].

The Agile movement is an important correction to dominant IT management approaches employing

open-loop delivery across centralized functional centers of excellence. However, the ultimate extreme

of the skunkworks approach cannot be the basis for organization across the enterprise. While

functionally specialized organizations have their challenges, they do promote understanding and

common standards for technical areas. In a product-centric organization, communities of interest or

practice provide an important counterbalancing platform for coordination strategies to maintain

common understandings.

6.3.3.1.8. Scaling the Product Organization

The functional organization scales well. Just keep hiring more Java programmers, or DBAs, or security

engineers and assign them to projects as needed. However, scaling product organizations requires

more thought. The most advanced thinking in this area is found in the work of Scrum authors such as

Ken Schwaber, Mike Cohn, Craig Larman, and Roman Pichler. Scrum, as we have discussed, is a strict,

prescriptive framework calling for self-managing teams with:

• Product owner

• Scrum master

• Team member

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 307

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 109. Product Owner Hierarchy

Let’s accept Scrum and the 2-pizza team as our organizing approach. A large-scale Scrum effort is

based on multiple small teams; e.g., representing AKF scaling cube partitions (see Figure 109, “Product

Owner Hierarchy”, similar to [219], p.12; [249]). If we want to minimize multi-tasking and context-

switching, we need to ask: “How many product teams can a given product owner handle?”. In Agile

Product Management with Scrum, Roman Pichler says: “My experience suggests that a product owner

usually cannot look after more than two teams in a sustainable manner” [219 p. 12]. Scrum authors,

therefore, suggest that larger-scale products be managed as aggregates of smaller teams. We will

discuss how the product structure is defined in Section 6.3.2, “Investment and Portfolio”.

6.3.3.1.9. From Functions to Components to Shared Services

We have previously discussed feature versus component teams. As a reminder, features are functional

aspects of software (things people find directly valuable) while components are how software is

organized (e.g., shared services and platforms such as data management).

As an organization grows, we see both the feature and component sides scale. Feature teams start to

diverge into multiple products, while component teams continue to grow in the guise of shared

services and platforms. Their concerns continue to differentiate, and communication friction may start

to emerge between the teams. How an organization handles this is critical.

In a world of digital products delivered as services, both feature and component teams may be the

recipients of ongoing investment. An ongoing objection in discussions of Agile is: “We can’t put a

specialist on every team!". This objection reflects the increasing depth of specialization seen in the

evolving digital organization. Ultimately, it seems there are two alternatives to handling deep

functional specialization in the modern digital organization:

• Split it across teams

• Turn it into an internal product

We have discussed the first option above (split the specialty across teams). But for the second option

consider, for example, the traditional role of server engineer (a common infrastructure function). Such

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

308 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

engineers historically have had a consultative, order-taking relationship to application teams:

• An application team would identify a need for computing capacity (“we need four servers”)

• The infrastructure engineers would get involved and provide recommendations on make, model,

and capacity

• Physical servers would be acquired, perhaps after some debate and further approval cycles

Such processes might take months to complete, and often caused dissatisfaction. With the rise of cloud

computing, however, we see the transition from a consultative, order-taking model to an automated,

always-on, self-service model. Infrastructure organizations move their activities from consulting on

particular applications to designing and sustaining the shared, self-service platform. At that point, are

they a function or a product?

6.3.3.1.10. Final Thoughts on Organization Forms

Formal organizational structures determine, to a great extent, how work gets done. But enterprise

value requires that organizational units — whether product or functional — collaborate and

coordinate effectively. Communications structures and interfaces, as covered in Section 6.3.1,

“Coordination and Process”, are therefore an essential part of organizational design.

And of course, an empty structure is meaningless. You need to fill it with real people, which brings us

to the topic of human resource management in the digital organization.

Evidence of Notability

Debates over organizational form are frequent of late. The years between 2010 and 2020 have seen a

massive shift in many IT and digital organizations, from a focus on deep functional specialization to

broader, cross-functional teams. Best practices and lessons at this writing are still unformed. Works

such as Narayam’s Agile Organization Design [207] as well as coverage of the topic in other literature

and industry guidance provide evidence of notability.

Limitations

Organization design influences, but does not completely determine, organizational results.

Related Topics

• Digital Context

• Product Management

• Financial Management

• Sourcing

• Portfolio Management

• Human Resources Management

• Culture

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 309

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• Governance

6.3.3.2. IT Human Resources Management

Description

Now that you have decided, for now, on an organization structure, you need to put people into it. As

you scale, hiring people (like managing money) becomes a practice requiring formalization, and you

will doubtless need to hire your first human resources professional soon, in order to stay compliant

with applicable laws and regulations.

6.3.3.2.1. Basic Concerns

Human resources management can also be termed "people management”. It is distinct from supply

chain and technology management, being concerned with the identification and recruitment,

onboarding, ongoing development of, and eventual exit of individuals from an organization. This brief

section covers the topic as it relates to digital management, incorporating recent cases and

perspectives.

6.3.3.2.2. Hiring

Here is a typical hiring process:

• Solicit candidates, through various channels such as job boards and recruiters

• Review resumes and narrow candidate pool down for phone interviews

• Conduct phone interviews and narrow candidate pool down for in-person interviews

• Conduct in-person interviews, identify candidates for offers

• Make offer, negotiate to acceptance

• Hire and onboard

Your organization has been hiring people for some time now. It has always been one of your most

important decisions, but you have reached the point where a more formal and explicit understanding

of how you do this is essential.

First, why do you hire new staff? How and when do you perceive a need? It is well established that

increasing the size of a team can slow it down. Legendary software engineer Fred Brooks, in his work

The Mythical Man Month, identified the pattern that “adding more people to a late project makes it

later” [43].

Are you adding people because of a perceived need for specialist skills? While this will always be a

reason for new hires, many argue in favor of “T-shaped” people — people who are deep in one skill,

and broad in others. Hiring new staff has an impact on culture — is it better to train from within, or

source externally?

Second, how are you hiring staff? In a traditional, functionally specialized model, someone in a human

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

310 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

resources organization acts as an intermediary between the hiring manager, and the job applicant

(sometimes with a recruiter also in the mix between the company and the applicant). Detailed job

descriptions are developed, and applicants not explicitly matching the selection criteria (e.g., in their

resume) are not invited for an interview.

Such practices do not necessarily result in good outcomes. Applicants routinely tailor resumes to the

job description. In some cases, they have been known to copy the job description into invisible sections

of their resume so that they are guaranteed a “match” if automated resume-scanning software is used.

A compelling case study of the limitations of traditional human resources-driven hiring is discussed by

Robert Sutton and Huggy Rao in Scaling up Excellence: Getting to More without Settling for Less [274].

The authors describe the company Lotus Software, one of the pioneers of early desktop computing.

With [company founder] Kapor’s permission, [head of organizational development] Klein pulled together

the resumes of the first 40 Lotus employees … [and] submitted all 40 resumes to the Lotus human

resources department. Not one of the 40 applicants, including Kapor, was invited for a job interview. The

founders had built a world that rejected people like them.

Sean Landis, author of Agile Hiring [2], believes that: “accepted hiring wisdom is not very effective

when applied to software professionals”. He further states that:

• Very few companies hire well

• Individuals with deep domain knowledge are in the best position to perform great hiring

• Companies often focus on the wrong candidates

• It is important to track metrics on the cost and effectiveness of hiring practices

In short, hiring is one of the most important decisions the digital enterprise makes, and it cannot be

reduced to a simple process to be executed mechanically. Requiring senior technical talent to interview

candidates may result in improved hiring decisions. However, such requirements add to the overall

work demands placed on these individuals.

Finally, it is important to understand the costs of a bad hire. One risk is hiring "toxic" individuals who

do not work well with others, degrade team morale, and even drive good employees to leave. Recent

research by Michael Housman and Dylan Minor suggests that while the benefit from hiring a highly

qualified “superstar” worker at most is $5,303, the cost of hiring a “toxic” worker (one destructive of

morale and team norms) averages $12,489 — certainly a risk to consider [132].

6.3.3.2.3. Process as Skill

Sometimes new employees come in expecting that you are following certain processes. This is in part

because “process” experience can be an important part of an employee’s career background. A skilled

human resources manager may consider their experience with large-scale enterprise hiring processes

to be a major part of their qualifications for a position in your company.

This applies to both “business” and “IT” processes. In fact, in the digital world, there is no real

difference. Digital processes:

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 311

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• Initiate new systems, from idea to construction

• Publicize and grant access to the new systems

• Capture revenue from the systems

• Support people in their interactions with the systems

• Fix the systems when they break

• Improve the systems based on stakeholder feedback

It is not clear which of these are “IT” versus “business” processes. But they are definitely processes.

Some of them are more predictable, some less so, but they all represent some form of ordered work

that is repeatable to some degree. And to some extent, you may be seeking people with experience

defined at least in part by their exposure to processes.

6.3.3.2.4. Education and Training

Human resources departments are frequently responsible for education and training. Sometimes,

employees take trainings and then through some form of examination or other proof, achieve a "

certification" which can further their career. ITIL and PMBOK have been well-known IT certifications

offered to individuals.

More recently, organizations have embraced a "dojo" approach; immersive environments where entire

teams are trained [251]. Such approaches focus more on learning by doing, as opposed to passing

multiple-choice tests (the basis of basic ITIL and PMBOK certification).

6.3.3.2.5. Allocation and Tracking People’s Time

When a new hire enters your organization, they enter a complex system that will structure and direct

their daily activities through a myriad of means. The various means that direct their action include:

• Team assignment (e.g., to an ongoing product)

• Project assignment

• Process responsibilities

Notice again the appearance of the "3 Ps".

Product, project, and process become challenging when they are all allowed to generate demand on

individuals independently of each other. In the worst-case scenario, the same individual winds up

with:

• Collaborative team responsibilities

• “Fractional” allocation to one or more projects

• Ticketed process responsibilities

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

312 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

NOTE

Fractional allocation is the practice of funding individuals through assigning them at

some % to a project. For example, a server engineer might be allocated 25% time to a

project for six months to define its infrastructure architecture, while being assigned

30% to another project to refresh obsolete infrastructure.

When demand is un-coordinated, these multiple channels can result in multi-tasking and dramatic

overburden and, in the worst case, the individual becomes the constraint to enterprise value. Project

managers expect deliverables on time, and too often have no visibility to operational concerns (e.g.,

outages) that may affect the ability of staff to deliver. Ad hoc requests “smaller than a project, bigger

than a ticket” further complicate matters.

The Phoenix Project presents an effective and realistic dramatization of the resulting challenges. Work

is entering the system through multiple channels, and the overburden on key individuals (such as

Brent, the lead systems engineer) has reached crisis proportions. Through a variety of mechanisms,

they take control of the demand channels and greatly improve the organization’s success. One of the

most important lessons is well articulated by Erik, the mentor:

“Your job as VP of IT Operations is to ensure the fast, predictable, and uninterrupted flow of planned

work that delivers value to the business while minimizing the impact and disruption of unplanned work,

so you can provide stable, predictable, and secure IT service … You must figure out how to control the

release of work into IT Operations and, more importantly, ensure that your most constrained resources

are doing only the work that serves the goal of the entire system, not just one silo. [165 p. 91+]+

In order to understand the work, measuring the consumption of people’s time is important. There are

various time-tracking approaches:

• Simple allocation of staff payroll to product or organizational line

• Project management systems (sometimes these are used for weekly time tracking, even for staff

that are not assigned to projects — in such cases, placeholder operational projects are created)

• Human resources management systems

• Ticketing/workflow systems — advanced systems, such as those found in the Professional Services

Automation sector, track time when tickets are in an “open” status

• Backlog management systems (that may seem similar to ticketing systems)

• Home-built systems

There is little industry consensus on best practices here. There are reasonable concerns about the

burden of time tracking on employees, and poor data quality resulting from employees attempting to

“code” activities when summarizing their time on a weekly or bi-weekly basis.

6.3.3.2.6. Accountability and Performance

Regardless of whether the company is a modern digital enterprise or more traditional in its approach,

the commitment, performance, and results of employees is a critical concern. The traditional approach

to managing this has been an annual review cycle, resulting in a performance ranking from 1 to 5:

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 313

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

1. Did not meet expectations

2. Partially met expectations

3. Met expectations

4. Exceeded expectation

5. Significantly exceeded expectations

This annual rating determines the employee’s compensation and career prospects in the organization.

Some companies, notably GE and Microsoft, have attempted “stack rankings” in which the “bottom”

10% (or more) performers must be terminated. As the Davis and Daniels quote above indicates, such

practices are terribly destructive of psychological safety and therefore team cohesion. High-profile

practitioners are therefore moving away from this practice [45], [213].

The traditional annual review is a large “batch” of feedback to the employee, and therefore ineffective

in terms of systems theory, not much better than an open-loop approach. Because of the weaknesses of

such slow feedback (not to mention the large annual costs, expensive infrastructure, and opportunity

costs of the time spent), companies are experimenting with other approaches.

Deloitte Consulting, as reported in the Harvard Business Review [46], realized that its annual

performance review process was consuming two million hours of time annually, and yet was not

delivering the needed value. In particular, ratings were suffering from the measurable flaw that they

tended to reveal more about the person doing the rating, than the person being rated!

They started by redefining the goals of the performance management system to identify and reward

performance accurately, as well as further fueling improvements.

A new approach with greater statistical validity was implemented, based on four key questions:

• Given what I know of this person’s performance, and if it were my money, I would award this

person the highest possible compensation increase and bonus

• Given what I know of this person’s performance, I would always want him or her on my team

• This person is at risk for low performance

• This person is ready for promotion today

In terms of the frequency of performance check-ins, they note:

… the best team leaders … conduct regular check-ins with each team member about near-term work … to

set expectations for the upcoming week, review priorities, comment on recent work and provide course

correction, coaching, or important new information … If a leader checks in less often than once a week,

the team member’s priorities may become vague … the conversation will shift from coaching for near-

term work to giving feedback about past performance … If you want people to talk about how to do their

best work in the near future, they need to talk often …

Sutton and Rao, in Scaling up Excellence, discuss the similar case of Adobe. At Adobe: “annual reviews

required 80,000 hours of time from the 2,000 managers at Adobe each year, the equivalent of 40 full-

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

314 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

time employees. After all that effort, internal surveys revealed that employees felt less inspired and

motivated afterwards — and turnover increased”. Because of such costs and poor results, Adobe

scrapped the entire performance management system in favor of a “check-in” approach. In this

approach, managers are expected to have regular conversations about performance with employees

and are given much more say in salaries and merit increases. The managers themselves are evaluated

through random “pulse surveys” that measure how well each manager “sets expectations, gives and

receives feedback, and helps people with their growth and development” [274 p. 113].

Whether incentives (e.g., pay raises) should be awarded individually or on a team basis is an ongoing

topic of discussion in the industry. Results often derive from team performance, and the contributions

of any one individual can be difficult to identify. Because of this, Scrum pioneer Ken Schwaber argues

that: “the majority of the enterprise’s bonus and incentive funds need to be allocated based on the

team’s performance rather than the individual’s performance” [249 p. 6]. However, this runs into

another problem: that of the “free-rider”. What do we do about team members who do not pull their

weight? Even in self-organizing teams, confronting someone about their behavior is not something

people do willingly, or well.

Ideally, teams will self-police, but this becomes less effective with scale. In one case study in the

Harvard Business Review, Continental Airlines found that the free rider problem was less of a concern

when metrics were clearly correlated with team activity. In their case, the efforts and cooperation of

gate teams had a significant influence on On-Time Arrival and Departure metrics, which could then be

used as the basis for incentives [168].

Ultimately, both individuals and teams need coaching and direction. Team-level management and

incentives must still be supplemented with some feedback loops centering on the individual. Perhaps

this feedback is not compensation-based, but the organization must still identify individuals with

leadership potential and deal with free riders and toxic individuals.

Observed behaviors are a useful focus. Sean Landis describes the difference between behaviors and

skills as follows:

Two things make good leaders: behaviors and skills. If you focus on behaviors in your hiring of

developers, they will be predisposed for leadership success. The hired candidate may walk in the door

with the skills necessary to lead or not. If not, skills are easy to acquire through training and mentoring.

People can acquire or modify behaviors, but it is much harder than skill development. Hire for behaviors

and train the leadership skills. [2+]+

He further provides many examples of behaviors, such as:

• Adaptable

• Accountable

• Initiative-taker

• Optimistic

• Relational

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 315

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Evidence of Notability

Many executives and military leaders have identified the central importance of hiring decisions. In

large, complex organizations, choosing the right people is the most powerful lever a leader has to drive

organizational performance. The organizational context these new hires find themselves in will

profoundly affect them and the results of their efforts.

Limitations

Hiring the right individuals will not lead to organizational success if other aspects of the operating

model are ineffective; e.g., demand and execution management that encourage too much work-in-

process.

Related Topics

• Digital Context

• Product Management

• Financial Management

• Sourcing

• Portfolio Management

• Organization

• Culture

• Governance

6.3.3.3. Why Culture Matters

Description

“Culture” is a difficult term to define, and even more difficult to characterize across large

organizations. It starts with how an organization is formally structured, because structure is, in part, a

set of expectations around how information flows. “Who talks to who, when and why” is in a sense

culture. Culture can also be seen embedded in artifacts like processes and formally specified operating

models.

But “culture” has additional, less tangible meanings. The anecdotes executives choose to repeat are

culture. Whether an organization tacitly condones being five minutes late for meetings (because walk

time in large facilities is expected) or has little tolerance for this (because most people dial in) is

culture. The degree of deference shown to senior executives, and their opinions, is culture. Whether a

junior person dares to hit “reply-all” on an email including her boss’s boss is culture. Organizational

tolerance for competitive or toxic behavior is culture.

Culture cannot be directly changed — it is better seen as a lagging indicator, that changes in response

to specific practical interventions. Even tools and processes can change the culture, if they are

judiciously chosen (most tools and processes do not have this effect). Skeptical? Consider the impact

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

316 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

that computers — a tool — have had on culture. Or email.

We have already touched on culture in the Section 6.2.1, “Product Management” discussion of team

formation. These themes of psychological safety, equal collaboration, emotional awareness, and

diversity inform our further discussions. We will look at culture from a few additional perspectives in

this section:

• Motivation

• Schneider matrix

• The Westrum typology

• Mike Rother’s research into Toyota’s improvement and coaching “katas”

6.3.3.3.1. Motivation

One of the most important reasons to be concerned about culture is its effect on motivation. There is

little doubt that a more motivated team performs better than an unmotivated, “going through the

motions” organization. But what motivates people?

One of the oldest discussions of culture is Douglas McGregor’s idea of “Theory X” versus “Theory Y”

organizations, which he developed in the 1960s at the Massachusetts Institute of Technology.

“Theory X” organizations rely on extrinsic motivators and operate on the assumption that workers

must be cajoled and punished in order to produce results. We see Theory X approaches when

organizations focus on pay scales, bonuses, titles, awards, writeups/demerits, performance appraisals,

and the like.

Theory Y organizations operate on the assumption that most people seek meaningful work intrinsically

and that they have the ability to solve problems in creative ways that do not require tight

standardization. According to Theory Y, people can be trusted and should be treated as mature

individuals, in contrast to the distrust inherent in Theory X.

Related to Theory Y, in terms of intrinsic motivation, Daniel Pink, the author of Drive, suggests that

three concepts are key: autonomy, mastery, and purpose. If these three qualities are experienced by

individuals and teams, they will be more likely to feel motivated and collaborate more effectively.

6.3.3.3.2. Schneider and Westrum

One model for understanding culture is the matrix proposed by William Schneider (see Figure 110,

“Schneider Matrix”, similar to [248]).

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 317

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 110. Schneider Matrix

Two dimensions are proposed:

• The extent to which the culture is focused on the company or the individual

• The extent to which the company is “possibility-oriented” versus “reality-oriented”

This is not a neutral matrix. It is not clear that highly controlling cultures are ever truly effective. Even

in the military, which is generally assumed to be the ultimate “command and control” culture, there

are notable case studies of increased performance when more empowering approaches were

encouraged.

For example, military commanders realized as long ago as the Napoleonic wars that denying soldiers

and commanders autonomy in the field was a good way to lose battles. Even in peacetime operations,

forward-thinking military commanders continue to focus on “what, not how”.

In Turn the Ship Around: A True Story of Turning Followers into Leaders, Captain L. David Marquette

discusses moving from a command-driven to an outcome-driven model, and the beneficial results it

had on the USS Santa Fe [189]. Similar themes appear in Captain D. Michael Abrashoff’s It’s Your Ship:

Management Techniques from the Best Damn Ship in the Navy [5].

Neither of these accounts is surprising when we consider the more sophisticated aspects of military

doctrine. Don Reinertsen provides a rigorous overview in Chapter 9 of Principles of Product

Development Flow. In this discussion, he notes that the military has been experimenting with

centralized versus decentralized control for centuries. Modern warfighting relies on autonomous, self-

directed teams that may be out of touch with central command and required to improvise effectively

to achieve the mission. Therefore, military orders are incomplete without a statement of

“commander’s intent” — the ultimate outcome of the mission [230], pp.243-265. Military leaders are

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

318 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

also concerned with pathological "toxic command” which is just as destructive in the military as

anywhere else [293].

Similar to the Schneider matrix is the Westrum typology, which proposes that there are three major

types of culture:

• Pathological

• Bureaucratic

• Generative

The cultural types exhibit the following behaviors:

Table 20. Westrum Typology

Pathological (Power-oriented) Bureaucratic (Rule-oriented) Generative (Performance-

oriented)

Low cooperation Modest cooperation High cooperation

Messengers (of bad news) shot Messengers neglected Messengers trained

Failure is punished Failure leads to justice Failure leads to inquiry

(Excerpted from [224].)

The State of DevOps research has demonstrated a correlation between generative cultures and digital

business effectiveness [224], [44]. Notice also the relationship to blameless postmortems discussed in

Section 6.2.3, “Operations Management”.

6.3.3.3.3. State of DevOps Survey Research

DevOps is a broad term, first introduced in Section 6.1.3.3, “DevOps Technical Practices”. As

noted in that section, DevOps includes continuous delivery, team behavior and product

management, and culture. Puppet Labs has sponsored an annual survey for the last five years,

the State of DevOps report. It consists of annual surveys with 25,000 individual data points. It

shows a variety of correlations including:

• Core continuous delivery practices such as version control, test automation, deployment

automation, and continuous integration increase team engagement and IT and

organizational performance

• Lean product management approaches such as seeking fast feedback and splitting work into

small batches also increase team engagement and IT and organizational performance [44]

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 319

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.3.3.3.4. Toyota Kata

Academics and consultants have been studying Toyota for many years. The performance and influence

of the Japanese automaker are legendary, but it has been difficult to understand why. Much has been

written about Toyota’s use of particular tools, such as Kanban bins and Andon boards. However,

Toyota views these as ephemeral adaptations to the demands of its business.

Figure 111. Toyota Kata

According to Mike Rother in Toyota Kata [238], underlying Toyota’s particular tools and techniques are

two powerful practices:

• The improvement kata

• The coaching kata

What is a kata? It is a Japanese word stemming from the martial arts, meaning pattern, routine, or

drill. More deeply, it means “a way of keeping two things in alignment with each other”. The

improvement kata is the repeated process by which Toyota managers investigate and resolve

problems, in a hands-on, fact-based, and preconception-free manner, and improve processes towards a

“target operating condition”. The coaching kata is how the improvement kata is instilled in new

generations of Toyota managers (see Figure 111, “Toyota Kata”, similar to [238]).

As Rother describes it, the coaching and improvement katas establish and reinforce a coherent culture

or mental model of how goals are achieved and problems approached. It is understood that human

judgment is not accurate or impartial. The method compensates with a teaching-by-example focus on

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

320 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

seeking facts without preconceived notions, through direct, hands-on investigation and experimental

approaches.

This is not something that can be formalized into a simple checklist or process; it requires many guided

examples and applications before the approach becomes ingrained in the upcoming manager.

Evidence of Notability

Culture quickly emerged as one of the key concerns of the DevOps community. Google’s research into

psychological safety is a concrete validation of its importance and notability.

Limitations

Culture is both intangible and a lagging indicator. Culture cannot be changed through exhortations to

"be more collaborative" and so forth. However, organizational priorities that are perceived to be real -

as in reinforced by performance objectives - can change culture. Work practices (including even the

use of certain technologies) can and do change culture. (Skeptical? Think about how email changed

work culture, for better and worse.)

Related Topics

• Digital Context

• DevOps

• Product Management

• Organization

• Human Resources Management

• Governance

6.3.3.4. Industry Frameworks

Description

This culminating section consists of a critical examination of the IT management frameworks, which

can be seen as structured approaches to many concerns discussed in Context III: coordination,

processes, investment management, projects, and organizational structures.

Industry frameworks and bodies of knowledge play a powerful role in shaping organizational

structures and their communication interfaces, and creating a base of people with consistent skills to

fill the resulting roles. While there is much of value in the frameworks, they may lead you into the

planning fallacy or defined process traps. Too often, they assume that variation is the enemy, and they

do not provide enough support for the alternative approach of empirical process control. At the time of

publication, the frameworks are challenged on many fronts by Agile, Lean, and DevOps approaches.

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 321

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.3.3.4.1. Defining Frameworks

NOTE
There are other usages of the term “framework”, especially in terms of software

frameworks. Process and management frameworks are non-technical.

So, what is a “framework”? The term “framework”, in the context of a business process, is used for

comprehensive and systematic representations of the concerns of a professional practice. In general,

an industry framework is a structured artifact that seeks to articulate a professional consensus

regarding a domain of practice. The intent is usually that the guidance be mutually-exclusive and

collectively exhaustive within the domain so that persons knowledgeable in the framework have a

broad understanding of domain concerns.

The first goal of any framework, for a given conceptual space, is to provide a “map” of its components

and their relationships. Doing this serves a variety of goals:

• Develop and support professional consensus in the business area

• Support training and orientation of professionals new to the area (or its finer points)

• Support governance and control activities related to the area (more on this in Section 6.4.1,

“Governance, Risk, Security, and Compliance”)

Many frameworks have emerged in the IT space, with broader and narrower domains of concern.

Some are owned by non-profit standards bodies; others are commercial. We will focus on five in this

document. In roughly chronological order, they are:

• CMMI (Capability Maturity Model Integration)

• ITIL (originally the Information Technology Infrastructure Library)

• PMBOK (Project Management Body of Knowledge)

• COBIT (originally Control Objectives for Information Technology)

• The TOGAF framework (The Open Group standard for Enterprise Architecture)

NOTE

Both ITIL and COBIT have recently released new versions (COBIT 2019, ITIL 4) which

respond in some measure to these challenges noted above. However, since much of the

current industry practice still reflects earlier versions, the discussion here will remain

for the forseeable future.

6.3.3.4.2. Observations on the Frameworks

In terms of the new digital delivery approaches, there are a number of issues and concerns with the

frameworks:

• The misuse of statistical process control

• Local optimization temptation

• Lack of execution model

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

322 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• Proliferation of secondary artifacts, compounded by batch-orientation

• Confusion of process definition

The Misuse of Statistical Process Control

Some frameworks, notably the original Capability Maturity Model (CMM), emphasize statistical process

control. However, as we discussed in the previous section, process control theorists see creative,

knowledge-intensive processes as requiring empirical control. Statistical process control applied to

software has therefore been criticized as inappropriate [226].

In CMM terms, empirical process control starts by measuring and immediately optimizing (adjusting).

As Martin Fowler notes: “a process can still be controlled even if it can’t be defined" [250]. They need

not - and cannot - be fully defined. Therefore, it is highly questionable to assume that process

optimization is something only done at the highest levels of maturity.

This runs against much current thinking and practice, especially that deriving from Lean philosophy,

in which processes are seen as always under improvement. (See discussion of Toyota Kata.) All

definition, measurement, and control must serve that end.

PMBOK suggests that “control charts may also be used to monitor cost and schedule variances, volume,

and frequency of scope changes, or other management results to help determine if the project

management processes are in control” [223 pp. 4108-4109]. This also contradicts the insights of

empirical process control, unless the project was also a fully defined process - unlikely from a process

control perspective.

Local Optimization Temptation

IT capability frameworks can be harmful if they lead to fragmentation of improvement effort and lack

of focus on the flow of IT value.

The digital delivery system at scale is a complex socio-technical system, including people, process, and

technology. Frameworks help in understanding it, by breaking it down into component parts in

various ways. This is all well and good, but the danger of reductionism emerges.

NOTE
There are various definitions of "reductionism”. This discussion reflects one of the

more basic versions.

A reductionist view implies that a system is nothing but the sum of its parts. Therefore, if each of the

parts is attended to, the system will also function well.

This can lead to a compulsive desire to do “all” of a framework. If ITIL v2011 calls for 25 processes,

then a large, mature organization by definition should be good at all of them. But the 25 processes (and

dozens more sub-processes and activities) called for by ITIL v2011
[8]

, or the 32 called for in COBIT 5,

are somewhat arbitrary divisions. They overlap with each other. Furthermore, there are many digital

organizations that do not use a full framework-based process portfolio and yet deliver value as well as

organizations that do use the frameworks to a greater degree.

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 323

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

The temptation for local, process-level optimization runs counter to core principles of Lean and

systems thinking. Many management thinkers, including W. Edwards Deming, Eli Goldratt, and others

have emphasized the dangers of local optimization and the need for taking a systems view.

As this document’s structure suggests, the delivering of IT value requires different approaches at

different scales. There is recognition of this among framework practitioners; however, the frameworks

themselves provide insufficient guidance on how they scale up and down.

Lack of Execution Model

It is also questionable whether even the largest actual IT organizations on the planet could fully

implement the full scope of the process-based frameworks. Specifying too many interacting processes

has its own complications. Consider: Both ITIL 2011 and COBIT devote considerable time to

documenting possible process inputs and outputs. As a part of every process definition, ITIL 2011 had a

section entitled “triggers, inputs, outputs, and interfaces”. The “Service-Level Management Process”

[281 pp. 120-122], for example, lists:

• 7 triggers (e.g., “service breaches”)

• 10 inputs (e.g., “customer feedback”)

• 10 outputs (e.g., “reports on OLAs”)

• 7 interfaces (e.g., “supplier management”)

COBIT similarly details process inputs and outputs. In the Enabling Processes guidance, each

management practice suggests inputs and outputs. For example, the APO08 process “Manage

Relationships” has an activity of “Provide input to the continual improvement of services”, with:

• 6 inputs

• 2 outputs

But processes do not run themselves. These process inputs and outputs require staff attention. They

imply queues and therefore work-in-process, often invisible. They impose a demand on the system,

and each hand-off represents transactional friction. Some hand-offs may be implemented within the

context of an IT management suite; others may require procedural standards, which themselves need

to be created and maintained. The industry currently lacks understanding of how feasible such fully

elaborated frameworks are in terms of the time, effort, and organizational structure they imply.

We have discussed the issue of overburden previously. Too many organizations have contending

execution models, where projects, processes, and miscellaneous work all compete for people’s

attention. In such environments, the overburden and wasteful multi-tasking can reach crisis levels.

With ITIL in particular, because it does not cover project management or architecture, we have a very

large quantity of potential process interactions that is nevertheless incomplete. (It should be noted that

ITIL 4 now terms its primary concerns "practices", not "processes" - this is a notable shift.)

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

324 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Secondary Artifacts, Compounded by Batch-Orientation

The process hand-offs also imply that artifacts (documents of various sorts, models, software, etc.) are

being created and transferred in between teams, or at least between roles on the same team with some

degree of formality. Primary artifacts are executable software and any additional content intended

directly for value delivery. Secondary artifacts are anything else.

An examination of the ITIL and COBIT process interactions shows that many of the artifacts are

secondary concepts such as “plans”, “designs”, or “reports”:

• Design specifications (high-level and detailed)

• Operation and use plan

• Performance reports

• Action plans

• Consideration and approval

and so on. (Note that actually executable artifacts; e.g., source code, are not included here.)

Again, artifacts do not create themselves. Dozens of artifacts are called for in the process frameworks.

Every artifact implies:

• Some template or known technique for performing it

• People trained in its creation and interpretation

• Some capability to store, version, and transmit it

Unstructured artifacts such as plans, designs, and reports, in particular, impose high cognitive load

and are difficult to automate. As digital organizations automate their pipelines, it becomes essential to

identify the key events and elements they may represent, so that they can be embedded into the

automation layer.

Finally, even if a given process framework does not specifically call for waterfall, we can sometimes

still see its legacy. For example:

• Calls for thorough, “rigorous” project planning and estimation

• Cautions against “cutting corners”

• “Design specifications” moving through approval pipelines (and following a progression from

general to detailed)

All of these tend to signal a large batch-orientation, even in frameworks making some claim of

supporting Agile.

Good system design is a complex process. We introduced technical debt in Section 6.1.3, “Application

Delivery”, and will revisit it in Section 6.4.3, “Architecture”. But the slow feedback signals resulting

from the batch processes implied by some frameworks are unacceptable in current industry. This is in

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 325

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

part why new approaches are being adopted.

Confusion of Process Definition

One final issue with the “process” frameworks is that, while they use the word “process” prominently,

they are not aligned with BPM best practices [30].

All of these frameworks provide useful descriptions of major ongoing capabilities and practices that

the large IT organization must perform. But in terms of our preceding discussion on process method,

they, in general, are developed from the perspective of steady-state functions, as opposed to a value

stream or defined process perspective.

The BPM community is clear that processes are countable and event-driven (see [255]). Naming them

with a strong, active verb is seen as essential. “True” IT processes, therefore, might include:

• Accept Demand

• Deliver Release

• Complete Change

• Resolve Incident

• Improve Service

However, if reviewing ITIL, a BPM consultant would see the "process" called “Capacity Management”

and observe that it is not countable or event-driven. “How many capacities did you do today?” is not a

sensible question, for the most part.

Evidence of Notability

The major frameworks have had an enormous influence on digital and IT management. They drive

many of the basic assumptions encountered in digital management and IT practices. Consultancies and

training organizations monetize them; auditors assess organizations against their "best practices".

Limitations

Frameworks struggle to strike a balance between too extremes: being either too specific and

prescriptive versus being too abstract and theoretical. In the digitally transforming economy, informed

by Agile practices, they seem to specify simple cookbook recipes to increasingly dynamic and complex

problems. Is this inherent to any framework? Can a new framework overcome these issues? That, in

part, is the motivation for this document.

Related Topics

• Digital Context

• Workflow Management

• Operational Process Emergence

• Coordination

6.3. Context III: Team of Teams Chapter 6. The Body of Knowledge

326 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• Investment and Portfolio Management

• Governance

6.3.4. Context III Conclusion

Process management is a critical practice in business operations and will continue into the digital era.

There are a variety of approaches, concerns, and techniques that must be considered and correctly

applied.

Section 6.3.2, “Investment and Portfolio” considered the fundamentals of project and resource

management, with some caution and with an understanding that not all work is performed through

classical project management and its Iron Triangle of cost, quality, and scope.

Finally, Section 6.3.3, “Organization and Culture” discussed organizational structure and culture, and

the importance of culture in organizational effectiveness.

Context III is essential preparation for Context IV — essentially, Context III is about management,

where Context IV expands into governance and the longest-lived, largest-scale concerns for digital

delivery.

6.3.4.1. Context III Architectural View

Figure 112. Architectural View

As the organization scales to multiple products and teams, new components are required for

coordinating and managing investment, provisioning multiple services, and abstracting operational

issues when product to team cardinality is not 1:1. Formal ITSM queue-based processes (incident,

change, problem) emerge here as mechanisms for communicating, executing, and assessing risk across

Chapter 6. The Body of Knowledge 6.3. Context III: Team of Teams

Digital Practitioner Body of Knowledge™ Standard 327

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

team boundaries. Suggested functional components include:

• Proposal Component

• Portfolio Demand Component

• Project Component

• Service Design Component

• Release Composition Component

• Offer Management Component

• Request Rationalization Component

• Problem Component

• Diagnostics & Remediation Component

• Change Control Component

• Incident Component

• Event Component

NOTE

The requirements for many of these components are discussed in Context II, but their

appearance in Context III indicates the increasing formalization and automation

required to support team of teams activities.

Context III "Architectural View" Learning Objectives

• Identify the IT4IT components suitable for Context III

Related Topics

• Portfolio Management

• Project Management

• Application Delivery

• Operations Management

• Operational Response

• Monitoring and Telemetry

6.4. Context IV: Enduring Enterprise

Context Description

In this context, we imagine that the practitioner is now running one of the larger and more complex

IT-based operations on the planet, with an annual IT budget of hundreds of millions or billions of

dollars. There are thousands of programmers, systems engineers, and IT managers, with a wide variety

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

328 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

of responsibilities. IT is in your market-facing products and in your back-office operations. In fact, it is

sometimes hard to distinguish the boundaries as your company transforms into a digital business.

Agile techniques remain important, but things are getting complex, and you are testing the boundaries

of what is possible. How can we operate at this scale and still be Agile? Decisions made long ago come

back to haunt, security threats are increasing, and, at this scale, there is no escaping the auditors.

The term "enterprise" does not necessarily imply any particular size, although it is often associated

with larger-scale organizations. For the thought experiment here, at this stage the organization has

scaled up to a relatively large size. However, what may be less obvious is that scaling up in size also

means scaling out in terms of timeframes: concern for the past and the future extend further and

further in each direction. Organizational history is an increasing factor, and the need to manage this

knowledge base can’t be ignored. The organization is fulfilling responsibilities set in place by those no

longer present, and is building product and signing service contracts to be fulfilled by those who will

come after. Hence the qualifier "Enduring" is applied to Context IV.

Competency Area: Governance, Risk, Security, and Compliance

The practitioner needs to cope with new layers of enterprise organization, and external forces

(regulators, vendor partners, security adversaries, auditors) increasingly defining their options. This

Competency Area sets the frame for the section. Section 6.4.2, “Information Management” and Section

6.4.3, “Architecture” in many ways are further elaborations of two major domains of governance

concerns.

Competency Area: Information Management

This document has been concerned with data, information, and knowledge since the earliest days of

the digital journey. But at this scale, it must formalize its information management approaches and

understandings; without that, it will never capture the full value available with modern analytics and

Big Data.

Competency Area: Architecture

The digital organization must understand its big picture of interacting lifecycles, reduce technical debt

and redundancy, and obtain better economies of scale. Architecture is a complex and challenging topic

area, with multiple domains and value propositions, and its share of controversy.

IMPORTANT

Context IV, like the other parts, needs to be understood as a unified whole. In

reality, enterprises struggle with the issues in all three Competency Areas

simultaneously.

Context IV "Enduring Enterprise" High-Level Dimensions

• Identify key drivers for operating at the largest scale

• Identify the essential temporal dimension of Context IV

• Identify the role of governance

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 329

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• Identify the role of information management

• Identify the role of architecture

6.4.1. Governance, Risk, Security, and Compliance

Area Description

Operating at scale requires a different mindset. When the practitioner was starting out, the horizon

seemed bounded only by imagination, will, and talent. At enterprise scale, it is a different world. The

practitioner finds themselves constrained by indifferent forces and hostile adversaries, some of them

competing fairly, and others seeking to attack by any means. Whether or not the organization is a for-

profit, publicly traded company, it is now large enough that audits are required; it is also likely to have

directors of some nature. The concept of “controls” has entered the practitioner’s awareness.

As a team of teams, the practitioner needs to understand resource management, finance, the basics of

multiple product management and coordination, and cross-functional processes. At the enterprise

level, they need also to consider questions of corporate governance. Stakeholders have become more

numerous, and their demands have multiplied, so the well-established practice of establishing a

governing body is applied.

Security threats increase proportionally to the company’s size. The talent and persistence of these

adversaries are remarkable. Other challenging players are, on paper, “on the same side”, but auditors

are never to be taken for granted. Why are they investigating IT systems? What are their motivations

and responsibilities? Finally, what laws and regulations are relevant to IT?

IMPORTANT

As with other Competency Areas in the later part of this document, we are going

to some degree introduce this topic “on its own terms”. We will then add

additional context and critique in subsequent sections.

The organization has been concerned with security as a technical practice since your company started.

Otherwise, you would not have gotten this big. But now, it has a Chief Information Security Officer,

formal risk management processes, a standing director-level security steering committee, auditors,

and compliance specialists. That kind of formalization does not usually happen until an organization

grows to a certain size.

NOTE

More than any other Competency Area, the location of this material, and especially its

Security subsection, draws attention. Again, any topic in any Competency Area may be

a matter of concern at any stage in an organization’s evolution. Security technical

practices were introduced in Context I.

This document needed the content in Context III to get this far. It was critical to understand structure,

how the organization was organizing our strategic investments, and how the organization is engaging

in operational activities. In particular it is difficult for an organization to govern itself without

some ability to define and execute processes, as processes often support governance controls

and security protocols.

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

330 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

This Competency Area covers “Governance, Risk, Security, and Compliance” because there are clear

relationships between these concerns. They have important dimensions of independence as well. It is

interesting that Shon Harris' popular Guide to the CISSP® starts its discussion of security with a

chapter titled “Information Security Governance and Risk Management”. Governance leads to a

concern for risk, and security specializes in certain important classes of risk. Security requires

grounding in governance and risk management.

Compliance is also related but again distinct, as is the concern for adherence to laws and regulations,

and secondarily internal policy.

Competency Area 10 "Governance, Risk, Security, and Compliance" High-Level Dimensions

• Define governance versus management

• Describe key objectives of governance according to major frameworks

• Define risk management and its components

• Describe and distinguish assurance and audit, and describe their importance to digital operations

• Discuss digital security concerns and practices

• Identify common regulatory compliance issues

• Describe how governance is retaining its core concerns while evolving in light of Digital

Transformation

• Describe automation techniques relevant to supporting governance objectives throughout the

digital delivery pipeline

6.4.1.1. Governance

Description

6.4.1.1.1. What Is Governance?

The system by which organizations are directed and controlled.

— Cadbury Report

To talk about governing digital or IT capabilities, we must talk about governance in general.

Governance is a challenging and often misunderstood concept. First and foremost, it must be

distinguished from “management”. This is not always easy but remains essential. The ISACA COBIT

framework, across its various versions, has made a clear distinction between governance and

management, which encompass different types of activities, organizational structures, and purposes.

In most enterprises, governance is the responsibility of the Board of Directors under the leadership of

the chairperson while management is the responsibility of the executive management under the

leadership of the CEO.

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 331

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

A Governance Example

Here is simple explanation of governance:

Suppose you own a small retail store. For years, you were the primary operator. You might have hired

an occasional cashier, but that person had limited authority; they had the keys to the store and cash

register, but not the safe combination, nor was their name on the bank account. They did not talk to

your suppliers. They received an hourly wage, and you gave them direct and ongoing supervision.
[9]

 In

this case, you were a manager. Governance was not part of the relationship.

Now, you wish to go on an extended vacation — perhaps a cruise around the world, or a trek in the

Himalayas. You need someone who can count the cash and deposit it, and place orders with and pay

your suppliers. You need to hire a professional manager.

They will likely draw a salary, perhaps some percentage of your proceeds, and you will not supervise

them in detail as you did the cashier. Instead, you will set overall guidance and expectations for the

results they produce. How do you do this? And perhaps even more importantly, how do you trust this

person?

Now, you need governance.

As we see in the above quote, one of the most firmly reinforced concepts in the COBIT guidance (more

on this and ISACA in the next section) is the need to distinguish governance from management.

Governance is by definition a Board-level concern. Management is the CEO’s concern. In this

distinction, we can still see the shop owner and his or her delegate.

Theory of Governance

In political science and economics, the need for governance is seen as an example of the principal-

agent problem [93]. Our shopkeeper example illustrates this. The hired manager is the “agent”, acting

on behalf of the shop owner, who is the “principal”.

In principal-agent theory, the agent may have different interests than the principal. The agent also has

much more information (think of the manager running the shop day-to-day, versus the owner off

climbing mountains). The agent is in a position to do economic harm to the principal; to shirk duty, to

steal, to take kickbacks from suppliers. Mitigating such conflicts of interest is a part of governance.

In larger organizations (such as you are now), it is not just a simple matter of one clear owner vesting

power in one clear agent. The corporation may be publicly owned, or in the case of a non-profit, it may

be seeking to represent a diffuse set of interests (e.g., environmental issues). In such cases, a group of

individuals (directors) is formed, often termed a “Board”, with ultimate authority to speak for the

organization.

The principal-agent problem can be seen at a smaller scale within the organization. Any manager

encounters it to some degree, in specifying activities or outcomes for subordinates. But this does not

mean that the manager is doing “governance”, as governance is by definition an organization-level

concern.

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

332 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

The fundamental purpose of a Board of Directors and similar bodies is to take the side of the principal.

This is easier said than done; Boards can become overly close to an organization’s senior management

— the senior managers are real people, while the “principal” may be an amorphous, distant body of

shareholders and/or stakeholders.

Because governance is the principal’s concern, and because the directors represent the principal,

governance, including IT governance, is a Board-level concern.

There are various principles of corporate governance we will not go into here, such as shareholder

rights, stakeholder interests, transparency, and so forth. However, as we turn to our focus on digital

and IT-related governance, there are a few final insights from the principal-agent theory that are

helpful to understanding governance. Consider:

the heart of principal-agent theory is the trade-off between (a) the cost of measuring behavior and (b) the

cost of measuring outcomes and transferring risk to the agent. [93]

What does this mean? Suppose the shopkeeper tells the manager, “I will pay you a salary of $50,000

while I am gone, assuming you can show me you have faithfully executed your daily duties.”

The daily duties are specified in a number of checklists, and the manager is expected to fill these out

daily and weekly, and for certain tasks, provide evidence they were performed (e.g., bank deposit slips,

checks written to pay bills, photos of cleaning performed, etc.). That is a behavior-driven approach to

governance. The manager need not worry if business falls off; they will get their money. The owner has

a higher level of uncertainty; the manager might falsify records, or engage in poor customer service so

that business is driven away. A fundamental conflict of interest is present; the owner wants their

business sustained, while the manager just wants to put in the minimum effort to collect the $50,000.

When agent responsibilities can be well specified in this manner, it is said they are highly

programmable.

Now, consider the alternative. Instead of this very scripted set of expectations, the shopkeeper might

tell the manager, “I will pay you 50% of the shop’s gross earnings, whatever they may be. I’ll leave you

to follow my processes however you see fit. I expect no customer or vendor complaints when I get

back.”

In this case, the manager’s behavior is more aligned with the owner’s goals. If they serve customers

well, they will likely earn more. There are any number of hard-to-specify behaviors (less

programmable) that might be highly beneficial.

For example, suppose the store manager learns of an upcoming street festival, a new one that the

owner did not know of or plan for. If the agent is managed in terms of their behavior, they may do

nothing — it’s just extra work. If they are measured in terms of their outcomes, however, they may

well make the extra effort to order merchandise desirable to the street fair participants, and perhaps

hire a temporary cashier to staff an outdoor booth, as this will boost store revenue and therefore their

pay.

(Note that we have considered similar themes in our discussion of Agile and contract management, in

terms of risk sharing.)

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 333

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

In general, it may seem that an outcome-based relationship would always be preferable. There is,

however, an important downside. It transfers risk to the agent (e.g., the manager). And because the

agent is assuming more risk, they will (in a fair market) demand more compensation. The owner may

find themselves paying $60,000 for the manager’s services, for the same level of sales, because the

manager also had to “price in” the possibility of poor sales and the risk that they would only make

$35,000.

Finally, there is a way to align interests around outcomes without going fully to performance-based

pay. If the manager for cultural reasons sees their interests as aligned, this may mitigate the principal-

agent problem. In our example, suppose the store is in a small, tight-knit community with a strong

sense of civic pride and familial ties.

Even if the manager is being managed in terms of their behavior, their cultural ties to the community

or clan may lead them to see their interests as well aligned with those of the principal. As noted in [93],

“Clan control implies goal congruence between people and, therefore, the reduced need to monitor

behavior or outcomes. Motivation issues disappear.” We have discussed this kind of motivation in

Section 6.3.1, “Coordination and Process”, especially in our discussion of control culture and insights

drawn from the military.

COSO and Control

Internal control is a process, effected by an entity’s Board of Directors,

management, and other personnel, designed to provide reasonable assurance

regarding the achievement of objectives relating to operations, reporting, and

compliance.

— Committee of Sponsoring Organizations of the Treadway Commission, Internal Control — Integrated

Framework

An important discussion of governance is found in the statements of COSO on the general topic of "

control".

Control is a term with broader and narrower meanings in the context of governance. In the area of

risk management, “controls” are specific approaches to mitigating risk. However, “control” is also used

by COSO in a more general sense to clarify governance.

Control activities, according to COSO, are:

the actions established through policies and procedures that help ensure that management’s directives to

mitigate risks to the achievement of objectives are carried out. Control activities are performed at all

levels of the entity, at various stages within business processes, and over the technology environment.

They may be preventive or detective in nature and may encompass a range of manual and automated

activities such as authorizations and approvals, verifications, reconciliations, and business performance

reviews.

… Ongoing evaluations, built into business processes at different levels of the entity, provide timely

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

334 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

information. Separate evaluations, conducted periodically, will vary in scope and frequency depending on

assessment of risks, effectiveness of ongoing evaluations, and other management considerations. Findings

are evaluated against criteria established by regulators, recognized standard-setting bodies or

management, and the Board of Directors, and deficiencies are communicated to management and the

Board of Directors as appropriate. [76]

6.4.1.1.2. Analyzing Governance

Governance Context

Figure 113. Governance in Context

Governance is also a practical concern for you because, at your scale, you have a complex set of

environmental forces to cope with (see Figure 113, “Governance in Context”). You started with a focus

on the customer, and the market they represented. Sooner or later, you encountered regulators and

adversaries: competitors and cybercriminals.

These external parties intersect with your reality via various channels:

• Your brand, which represents a sort of general promise to the market (see [272], p.16)

• Contracts, which represent more specific promises to suppliers and customers

• Laws, regulations, and standards, which can be seen as promises you must make and keep in order

to function in civil society, or in order to obtain certain contracts

• Threats, which may be of various kinds:

◦ Legal

◦ Operational

◦ Intentional

◦ Unintentional

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 335

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

◦ Illegal

◦ Environmental

We will return to the role of external forces in our discussion of assurance. For now, we will turn to

how digital governance, within an overall system of digital delivery, reflects our emergence model.

Governance and the Emergence Model

In terms of our emergence model, one of the most important distinctions between a “team of teams”

and an “enterprise” is the existence of formalized organizational governance.

Figure 114. Governance Emerges at the Enterprise Level

As illustrated in Figure 114, “Governance Emerges at the Enterprise Level”, formalized governance is

represented by the establishment of a governing body, responsive to some stakeholders who seek to

recognize value from the organization or “entity” — in this case, a digital delivery organization.

Corporate governance is a broad and deep topic, essential to the functioning of society and its

organized participants. These include for-profit, non-profit, and even governmental organizations. Any

legally organized entity of significant scope has governance needs.

One well-known structure for organizational governance is seen in the regulated, publicly owned

company (such as those listed on stock exchanges) . In this model, shareholders elect a governing body

(usually termed the Board of Directors), and this group provides the essential direction for the

enterprise as a whole.

However, organizational governance takes other forms. Public institutions of higher education may

have a Board of Regents or Board of Governors, perhaps appointed by elected officials. Non-profits

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

336 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

and incorporated private companies still require some form of governance, as well. One of the less

well-known but very influential forms of governance is the venture capital portfolio approach, very

different from a public, mission-driven company. We will talk more about this in the digital

governance section.

These are well-known topics in law, finance, and social organization, and there are many sources you

can turn to if you have further interest. If you are taking any courses in Finance or Accounting, you

will likely cover governance objectives and processes.

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 337

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 115. Governance and Management with Interface

Illustrated in Figure 115, “Governance and Management with Interface”
[10]

 is a more detailed visual

representation of the relationship between governance and management in a digital context. Reading

from the top down:

Value recognition is the fundamental objective of the stakeholder. We discussed in Section 6.2.1,

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

338 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

“Product Management” the value objectives of effectiveness, efficiency, and risk (aka top line, bottom

line, and risk). These are useful final targets for impact mapping, to demonstrate that lower-level

perhaps more “technical” product capabilities do ultimately contribute to organization outcomes.

NOTE

The term “value recognition” as the stakeholder goal is chosen over “value creation” as

“creation” requires the entire system. Stakeholders do not “create” without the

assistance of management, delivery teams, and the individual.

Here, we see them from the stakeholder perspective of:

• Benefits realization

• Cost optimization

• Risk optimization

(Adapted from [146 p. 23])

Both ISO 38500 [155] as well as COBIT [146, 152] specify that the fundamental governance activities of

governance are:

• Direct

• Evaluate

• Monitor

Evaluation is the analysis of current state, including current proposals and plans. Directing is the

establishment of organizational intent as well as the authorization of resources. Monitoring is the

ongoing attention to organizational status, as an input to evaluation and direction.

Direct, Evaluate, and Monitor may also be ordered as Evaluate, Direct, and Monitor (EDM). These are

highly general concepts that in reality are performed simultaneously, not as any sort of strict sequence.

The governance/management interface is an essential component. The information flows across this

interface are typically some form of the following:

From the governing side

• Goals (e.g., product and go-to-market strategies)

• Resource authorizations (e.g., organizational budget approvals)

• Principles and policies (e.g., personnel and expense policies)

From the governed side

• Plans and proposals (at a high level; e.g., budget requests)

• Performance reports (e.g., sales figures)

• Conformance/compliance indicators (e.g., via audit and assurance)

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 339

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Notice also the circular arrow at the center of the governance/management interface. Governance is

not a one-way street. Its principles may be stable, but approaches, tools, practices, processes, and so

forth (what we will discuss below as "governance elements") are variable and require ongoing

evolution.

We often hear of “bureaucratic” governance processes. But the problem may not be “governance” per

se. It is more often the failure to correctly manage the governance/management interface. Of course, if

the Board is micro-managing, demanding many different kinds of information and intervening in

operations, then governance and its management response is all much the same thing. In reality,

however, burdensome organizational “governance” processes may be an overdone, bottom-up

management response to perceived Board-level mandates.

Or they may be point-in-time requirements no longer needed. The policies of 1960 are unsuited to the

realities of 2020. But if policies are always dictated top-down, they may not be promptly corrected or

retired when no longer applicable. Hence, the scope and approach of governance in terms of its

elements must always be a topic of ongoing, iterative negotiation between the governed and the

governing.

Finally the lowermost digital delivery chevron — aka value chain, represents most of what we have

discussed in Contexts I, II, and III:

• The individual working to create value using digital infrastructure and lifecycle pipelines

• The team collaborating to discover and deliver valuable digital products

• The team of teams coordinating to deliver higher-order value while balancing effectiveness with

efficiency and consistency

Ultimately, governance is about managing results and risk. It is about objectives and outcomes. It is

about “what”, not “how”. In terms of practical usage, it is advisable to limit the “governance” domain

— including the use of the term — to a narrow scope of the Board or Director-level concerns, and the

existence of certain capabilities, including:

• Organizational policy management

• External and internal assurance and audit

• Risk management, including security aspects

• Compliance

We turn to a more in depth conversation of how governance plays out across its boundary with

management.

Evidence of Notability

Corporate governance is a central concern for organizations as they start to scale. Understanding its

fundamentals, and especially distinguishing it from management, is critical. There is substantial

evidence for this, including the very existence of ISACA as well as COSO and related organizations.

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

340 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Limitations

Governance is an abstract and difficult to understand concept for people in earlier career stages. The

tendency is to either lump it in with "management" in general, or equate it just with "security".

Related Topics

• Digital Value

• Securing Infrastructure

• Securing Applications

• Investment and Portfolio

• Human Resources Management

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 341

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.4.1.2. Implementing Governance

To govern, organizations must rely on a variety of mechanisms, which are documented in this

competency category.

6.4.1.2.1. Elements of a governance structure

Organizations leverage a variety of mechanisms to implement governance. The following draws on

COBIT 2019 and other sources [147, 152]:

• Mission, Principles, Policies, and Frameworks

• Organizational Structures

• Culture, Ethics, and Behavior

• People, Skills, and Competencies

• Processes and Procedures

• Information

• Services, Infrastructure, and Applications

NOTE

COBIT terminology has changed over the years, from "control objectives" (v4 and

before) to "enablers" (v5) to the current choice of "components". This document uses

the term "elements", and retains frameworks as a key governance element (COBIT 2019

dropped).

In Figure 116, “Elements Across the Governance Interface” varying lengths of the elements are

deliberate. The further upward the bar extends, the more they are direct concerns for governance. All

of the elements are discussed elsewhere in the book.

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

342 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 116. Elements Across the Governance Interface

Table 21. Governance element cross-references

Element Covered

Principles, Policies, and Procedures Principles & policies covered in this Competency

Category. Frameworks covered in (PMBOK),

(CMMI, ITIL, COBIT, TOGAF), (DMBOK).

Processes Competency Area 7

Organizational Structures Competency Area 9 on org structure

Culture, Ethics, and Behavior Competency Area 9 on culture

Information Competency Area 11

Services, Infrastructure, and Applications Context I

People, Skills, and Competencies Competency Area 9 on workforce

Here, we are concerned with their aspect as presented to the governance interface. Some notes follow.

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 343

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.4.1.2.2. Mission, Principles, Policies, and Frameworks

Carefully drafted and standardized policies and procedures save the company

countless hours of management time. The consistent use and interpretation of

such policies, in an evenhanded and fair manner, reduces management’s

concern about legal issues becoming legal problems.

— Michael Griffin, “How To Write a Policy Manual"

Principles are the most general statement of organizational vision and values. Policies will be

discussed in detail in the next section. In general, they are binding organization mandates or

regulations, sometimes grounded in external laws. Frameworks were defined in Section 6.3.3.4,

“Industry Frameworks”. We discuss all of these further in this Competency Category.

NOTE

Some companies may need to institute formal policies quite early. Even a startup may

need written policies if it is concerned with regulations such as HIPAA. However, this

may be done on an ad hoc basis, perhaps outsourced to a consultant. (A startup cannot

afford a dedicated VP of Policy and Compliance.) This topic is covered in detail in this

section because, at enterprise scale, ongoing policy management and compliance must

be formalized. Recall that formalization is the basis of our emergence model.

Vision Hierarchy

Figure 117. Vision/Mission/Policy Hierarchy

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

344 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Illustrated in Figure 117, “Vision/Mission/Policy Hierarchy” is one way to think about policy in the

context of our overall governance objective of value recognition.

The organization’s vision and mission should be terse and high level, perhaps something that could fit

on a business card. It should express the organization’s reason for being in straightforward terms.

Mission is the reason for being; vision is a “picture” of the future, preferably inspirational.

The principles and codes should also be brief. (“Codes” can include codes of ethics or codes of

conduct.) For example, Nordstrom’s is about 8,000 words, perhaps about ten pages.

Policies are more extensive. There are various kinds of policies:

In a non-IT example, a compliance policy might identify the Foreign Corrupt Practices Act and make it

clear that bribery of foreign officials is unacceptable. Similarly, a human resources policy might spell

out acceptable and unacceptable side jobs (e.g., someone in the banking industry might be forbidden

from also being a mortgage broker on their own account).

Policies are often independently maintained documents, perhaps organized along lines similar to:

• Employment and human resources policies

• Whistleblower policy (non-retaliation)

• Records retention

• Privacy

• Workplace guidelines

• Travel and expense

• Purchasing and vendor relationships

• Use of enterprise resources

• Information security

• Conflicts of interest

• Regulatory

(This is not a comprehensive list.)

Policies, even though more detailed than codes of ethics/conduct, still should be written fairly broadly.

In many organizations, they must be approved by the Board of Directors. They should, therefore, be

independent of technology specifics. An information security policy may state that the hardening

guidelines must be followed, but the hardening guidelines (stipulating, for example, what services and

open ports are allowable on Debian® Linux) are not policy. There may be various levels or classes of

policy.

Finally, policies reference standards and processes and other governance elements as appropriate.

This is the management level, where documentation is specific and actionable. Guidance here may

include:

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 345

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• Standards

• Baselines

• Guidelines

• Processes and procedures

These concepts may vary according to organization, and can become quite detailed. Greater detail is

achieved in hardening guidelines. A behavioral baseline might be “Guests are expected to sign in and

be accompanied when on the data center floor.” We will discuss technical baselines further in the

Competency Category on security, and also in our discussion of the technology product lifecycle in

Section 6.4.3, “Architecture”. See also Shon Harris' excellent CISSP Exam Guide [124] for much more

detail on these topics.

The ideal end state is a policy that is completely traceable to various automation characteristics, such

as approved “Infrastructure as Code” settings applied automatically by configuration management

software (as discussed in “The DevOps Audit Toolkit,” [85] — more on this to come). However, there

will always be organizational concerns that cannot be fully automated in such manners.

Policies (and their implementation as processes, standards, and the like) must be enforced. As Steve

Schlarman notes “Policy without a corresponding compliance measurement and monitoring strategy

will be looked at as unrealistic, ignored dogma.” [247]

Policies and their derivative guidance are developed, just like systems, via a lifecycle. They require

some initial vision and an understanding of what the requirements are. Again, Schlarman: “policy

must define the why, what, who, where, and how of the IT process” [247]. User stories have been used

effectively to understand policy needs.

Finally, an important point to bear in mind:

Company policies can breed and multiply to a point where they can hinder innovation and risk-taking.

Things can get out of hand as people generate policies to respond to one-time infractions or out of the

ordinary situations [116 p. 17].

It is advisable to institute sunset dates or some other mechanism that forces their periodic review, with

the understanding that any such approach generates demand on the organization that must be funded.

We will discuss this more in the Competency Category on digital governance.

Standards, Frameworks, Methods, and the Innovation Cycle

We used the term “standards” above without fully defining it. We have discussed a variety of industry

influences throughout this document: PMBOK, ITIL, COBIT, Scrum, Kanban, ISO/IEC 38500, and so on.

We need to clarify their roles and positioning further. All of these can be considered various forms of

“guidance” and as such may serve as governance elements. However, their origins, stakeholders,

format, content, and usage vary greatly.

First, the term "standard” especially has multiple meanings. A “standard” in the policy sense may be a

set of compulsory rules. Also, “standard” or “baseline” may refer to some intended or documented

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

346 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

state the organization uses as a reference point. An example might be “we run Debian Linux 16_10 as a

standard unless there is a compelling business reason to do otherwise”.

This last usage shades into a third meaning of uniform, de jure standards such as are produced by the

IEEE, IETF, and ISO/IEC.

• ISO/IEC: International Standards Organization/International Electrotechnical Commission

• IETF: Internet Engineering Task Force

• IEEE: Institute of Electrical and Electronics Engineers

The International Standards Organization, or ISO, occupies a central place in this ecosystem. It

possesses “general consultative status” with the United Nations, and has over 250 technical committees

that develop the actual standards.

The IEEE standardizes such matters as wireless networking (e.g., WiFi). The IETF (Internet Engineering

Task Force) standardizes lower-level Internet protocols such as TCP/IP and HTTP. The W3C (World

Wide Web Consortium) standardizes higher-level Internet protocols such as HTML. Sometimes

standards are first developed by a group such as the IEEE and then given further authority though

publication by ISO/IEC. The ISO/IEC in particular, in addition to its technical standards, also develops

higher-order management/"best practice” standards. One well-known example of such an ISO standard

is the ISO 9000 series on quality management.

Some of these standards may have a great effect on the digital organization. We will discuss this

further in the Competency Category on compliance.

Frameworks were discussed in Section 6.3.3.4, “Industry Frameworks”. Frameworks have two major

meanings. First, software frameworks are created to make software development easier. Examples

include Struts, AngularJS, and many others. This is a highly volatile area of technology, with new

frameworks appearing every year and older ones gradually losing favor.

In general, we are not concerned with these kinds of specific frameworks in this document, except

governing them as part of the technology product lifecycle. We are concerned with “process”

frameworks such as ITIL, PMBOK, COBIT, CMMI, and the TOGAF framework. These frameworks are not

“standards” in and of themselves. However, they often have corresponding ISO standards:

Table 22. Frameworks and Corresponding Standards

Framework Standard

ITIL ISO/IEC 20000

COBIT ISO/IEC 38500

PMBOK ISO/IEC 21500

CMMI ISO/IEC 15504

TOGAF ISO/IEC 42010

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 347

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Frameworks tend to be lengthy and verbose. The ISO/IEC standards are brief by comparison, perhaps

on average 10% of the corresponding framework. Methods (aka methodologies) in general are more

action-oriented and prescriptive. Scrum and XP are methods. It is at least arguable that PMBOK is a

method as well as a framework.

NOTE

There is little industry consensus on some of these definitional issues, and the student

is advised not to be overly concerned about such abstract debates. If you need to

comply with something to win a contract, it doesn’t matter whether it’s a “standard”,

“framework”, “guidance”, “method”, or whatever.

Finally, there are terms that indicate technology cycles, movements, communities of interest, or

cultural trends: Agile and DevOps being two of the most current and notable. These are neither

frameworks, standards, nor methods. However, commercial interests often attempt to build

frameworks and methods representing these organic trends. Examples include SAFe, Disciplined Agile

Delivery, the DevOps Institute, the DevOps Agile Skills Association, and many others.

Figure 118. Innovation Cycle

Figure: Figure 118, “Innovation Cycle” illustrates the innovation cycle. Innovations produce value, but

innovation presents change management challenges, such as cost and complexity. The natural

response is to standardize for efficiency, and standardization taken to its end state results in

commodification, where costs are optimized as far as possible, and the remaining concern is managing

the risk of the commodity (as either consumer or producer). While efficient, commoditized

environments offer little competitive value, and so the innovation cycle starts again.

Note that the innovation cycle corresponds to the elements of value recognition:

• Innovation corresponds to Benefits Realization

• Standardization corresponds to Cost Optimization

• Commoditization corresponds to Risk Optimization

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

348 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Organizational Structures

We discussed basic organizational structure in Section 6.3.3, “Organization and Culture”. However,

governance also may make use of some of the scaling approaches discussed in Section 6.3.3.2, “IT

Human Resources Management”. Cross-organization coordination techniques (similar to those

discussed in Boundary Spanning) are frequently used in governance (e.g., cross-organizational

coordinating committees, such as an enterprise security council).

Culture, Ethics, and Behavior

Culture, ethics, and behavior as a governance element can both drive revenue as well as risk and cost.

See also Culture and Hiring.

People, Skills, and Competencies

People and their skills and competencies (covered in Section 6.3.3.2, “IT Human Resources

Management”) are governance elements upon in which all the others rest. “People are our #1 asset”

may seem to be a cliche, but it is ultimately true. Formal approaches to understanding and managing

this base of skills are therefore needed. A basic “human resources” capability is a start, but

sophisticated and ambitious organizations institute formal organizational learning capabilities to

ensure that talent remains a critical focus.

Processes

Process is defined in Chapter 2, Definitions. We will discuss processes as controls in the upcoming

Competency Category on risk management. A control is a role that a governance element may play.

Processes are the primary form of governance element used in this sense.

Information

Information is a general term; in the sense of a governance element, it is based on data in its various

forms, with overlays of concepts (such as syntax and semantics) that transform raw “data” into a

resource that is useful and valuable for given purposes. From a governance perspective, information

carries governance direction to the governed system, and the fed back monitoring is also transmitted

as information. Information resource management and related topics such as data governance and

data quality are covered in Section 6.4.2, “Information Management”; it is helpful to understand

governance at an overall level before going into these more specific domains.

Services, Infrastructure, and Applications

Services, infrastructure, and applications of course are the critical foundation of digital value. These

fundamental topics were covered in Context I. In the sense of governance elements, they have a

recursive or self-reflexive quality. Digital technology automates business objectives; at scale, a digital

pipeline becomes a non-trivial business concern in and of itself, requiring considerable automation [

31], [278]. Applications that serve as digital governance elements might include:

• Source control

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 349

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• Build management

• Package management

• Deployment and configuration management

• Monitoring

• Portfolio management

Evidence of Notability

Governance requires mechanisms in order to function.

Limitations

Elaborate structures of governance elements (especially processes) can slow down digital delivery and,

ironically, contribute greater risk than they reduce.

Related Topics

• Digital Value

• Process Management

• Human Resources Management

• Frameworks

• Risk Management

6.4.1.3. Risk and Compliance Management

Description

Risk and compliance are grouped together in this Competency Category as they are often managed by

unified functional areas or capabilities (e.g., "Corporate Risk and Compliance"). Note, however, that

they are two distinct concerns, to be outlined below.

6.4.1.3.1. Risk Management Fundamentals

Risk is defined as the possibility that an event will occur and adversely affect

the achievement of objectives.

— Committee of Sponsoring Organizations of the Treadway Commission, Internal Control — Integrated

Framework

Risk is a fundamental concern of governance. Management (as we have defined it in this Competency

Category) may focus on effectiveness and efficiency well enough, but too often disregards risk.

As we noted above, the shop manager may have incentives to maximize income but, usually, does not

stand to lose their life savings. The owner, however, does. Fire, theft, disaster — without risk

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

350 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

management, the owner does not sleep well.

For this reason, risk management is a large element of governance, as indicated by the popular GRC

acronym: Governance, Risk Management, and Compliance.

Defining “Risk"

The definition of “risk” is surprisingly controversial. The ISO 31000 standard [156] and the

Project Management Institute® PMBOK [223] both define risk as including positive outcomes

(benefits). This definition has been strongly criticized by (among others) Douglas Hubbard in The

Failure of Risk Management [133]. Hubbard points out that, traditionally, risk has meant the

chance and consequences of loss.

As this is an an overview text, we will use the more pragmatic, historical definition. Practically

speaking, operational risk management as a function focuses on loss. The possibility (“risk”) of

benefits is eagerly sought by the organization as a whole and does not need “management” by a

dedicated function.

“Loss”, however, can also equate to “failure to achieve anticipated gains”. This form of risk

applies (for example) to product and project investments.

Risk management can be seen as both a function and a process (see Figure 119, “Risk Management

Context”). As a function, it may be managed by a dedicated organization (perhaps called Enterprise

Risk Management or Operational Risk Management). As a process, it conducts the following activities:

• Identifying risks

• Assessing and prioritizing them

• Coordinating effective responses to risks

• Ongoing monitoring and reporting of risk management

Risk impacts some asset. Examples in the digital and IT context would include:

• Operational IT systems

• Hardware (e.g., computers) and facilities (e.g., data centers)

• Information (customer or patient records)

It is commonly said that organizations have an “appetite” for risk [149 p. 79], in terms of the amount of

risk the organization is willing to accept. This is a strategic decision, usually reserved for

organizational governance.

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 351

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 119. Risk Management Context

Risk management typically has strong relationships with the following organizational capabilities:

• Enterprise governance (e.g., Board-level committees)

• Security

• Compliance

• Audit

• Policy management

For example, security requires risk assessment as an input, so that security resources focus on the

correct priorities. Risk additionally may interact with:

• Project management

• Asset management

• Processes such as change management

and other digital activities. More detail on core risk management activities follows, largely adopted

from the COBIT for Risk publication [149].

Risk Identification

There are a wide variety of potential risks, and many accounts and anecdotes are constantly

circulating. It is critical that risk identification begins with a firm understanding of the organization’s

objectives and context.

Risk identification can occur both in a “top-down” and “bottom-up” manner. Industry guidance can

assist the operational risk management function in identifying typical risks. For example, the COBIT

for Risk publication includes a useful eight-page “Generic Risk Scenarios” section [149 pp. 67-74]

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

352 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

identifying risks such as:

• “Wrong programs are selected for implementation and are misaligned with corporate strategy and

priorities”

• “There is an earthquake”

• “Sensitive data is lost/disclosed through logical attacks”

These are only three of dozens of scenarios. Risks, of course, extend over a wide variety of areas:

• Investment

• Sourcing

• Operations

• Availability

• Continuity

• Security

and so forth. The same guidance also strongly cautions against over-reliance on these generic

scenarios.

Risk Assessment

Risk management has a variety of concepts and techniques both qualitative and quantitative. Risk is

often assumed to be the product of probability times impact. For example, if the chance of a fire in a

facility is 5% over a given year, and the damage of the fire is estimated at $100,000, the annual risk is

$5,000. An enterprise risk management function may attempt to quantify all such risks into an overall

portfolio.

Where quantitative approaches are perceived to be difficult, risk may be assessed using simple

ordinal scales (e.g., 1 to 5, where 1 is low risk, and 5 is high risk). COBIT for Risk expresses concern

regarding “the use of ordinal scales for expressing risk in different categories, and the mathematical

difficulties or dangers of using these numbers to do any sort of calculation” [149 p. 75]. Such

approaches are criticized by Doug Hubbard in The Failure of Risk Management as misleading and

potentially more harmful than not managing risk at all [133].

Hubbard instead suggests that quantitative techniques such as Monte Carlo analysis are rarely

infeasible, and recommends their application instead of subjective scales.

The enterprise can also consider evaluating scenarios that have a chance of occurring simultaneously.

This is frequently referred to as "stress" testing.

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 353

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Risk Response

He who fights and runs away lives to fight another day.

— Menander, 342 BC — 291 BC

Risk response includes several approaches:

• Avoidance

• Acceptance

• Transference

• Mitigation

Avoidance means ending the activities or conditions causing the risk; e.g., not engaging in a given

initiative or moving operations away from risk factors.

Acceptance means no action is taken. Typically, such “acceptance” must reside with an executive.

Transference means that some sharing arrangement, usually involving financial consideration, is

established. Common transfer mechanisms include outsourcing and insurance. (Recall our discussion

of Agile approaches to contract management and risk sharing.)

Mitigation means that some compensating mechanism — one or more “controls” is established. This

topic is covered in the next section and comprises the remainder of the material on risk management.

(The above discussion was largely derived from the ISACA COBIT 5 framework for Risk [150]).

Controls

The term "control objective" is no longer a mainstream term used in COBIT 5,

and the word "control" is used only rarely. Instead, COBIT 5 uses the concepts

of process practices and process activities.

— ISACA, COBIT 5 for Assurance

The term “control” is problematic.

It has distasteful connotations to those who casually encounter it, evoking images of "command and

control” management, or “controlling” personalities. COBIT, which once stood for Control Objectives

for IT, now deprecates the term control (see the above quote). Yet it retains a prominent role in many

discussions of enterprise governance and risk management, as we saw at the start of this Competency

Category in the discussion of COSO’s general concept of control. Also (as discussed in our coverage of

Scrum’s origins) it is a technical term of art in systems engineering. As such it represents principles

essential to understanding large-scale digital organizations.

In this section, we are concerned with controls in a narrower sense, as risk mitigators. Governance

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

354 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

elements such as policies, procedures, organizational structures, and the rest are used and intended to

ensure that:

• Investments achieve their intended outcomes

• Resources are used responsibly, and protected from fraud, theft, abuse, waste, and mismanagement

• Laws and regulations are adhered to

• Timely and reliable information is employed for decision-making

But what are examples of “controls"? Take a risk, such as the risk of a service (e.g., e-commerce

website) outage resulting in loss of critical revenues. There are a number of ways we might attempt to

mitigate this risk:

• Configuration management (a preventative control)

• Effective monitoring of system alerts (a detective control)

• Documented operational responses to detected issues (a corrective control)

• Clear recovery protocols that are practiced and well understood (a recovery control)

• System redundancy of key components where appropriate (a compensating control)

and so forth. Another kind of control appropriate to other risks is deterrent (e.g., an armed guard at a

bank).

Other types of frequently seen controls include:

• Separation of duties

• Audit trails

• Documentation

• Standards and guidelines

A control type such as "separation of duties” is very general and might be specified by activity type; for

example:

• Purchasing

• System development and release

• Sales revenue recognition

Each of these would require distinct approaches to separation of duties. Some of this may be explicitly

defined; if there is no policy or control specific to a given activity, an auditor may identify this as a

deficiency.

Policies and processes in their aspect as controls are often what auditors test. In the case of the website

above, an auditor might test the configuration management approach, the operational processes,

inspect the system redundancy, and so forth. And risk management would maintain an ongoing

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 355

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

interest in the system in between audits.

As with most topics in this document, risk management (in and of itself, as well as applied to IT and

digital) is an extensive and complex domain, and this discussion was necessarily brief.

Business Continuity

Business continuity is an applied domain of digital and IT risk, like security. Continuity is concerned

with large-scale disruptions to organizational operations, such as:

• Floods

• Earthquakes

• Tornadoes

• Terrorism

• Hurricanes

• Industrial catastrophes (e.g., large-scale chemical spills)

A distinction is commonly made between:

• Business continuity planning

• Disaster recovery

Disaster recovery is more tactical, including the specific actions taken during the disaster to mitigate

damage and restore operations, and often with an IT-specific emphasis.

Continuity planning takes a longer-term view of matters such as long-term availability of replacement

space and computing capacity.

There are a variety of standards covering business continuity planning, including:

• NIST Special Publication 800-34

• ISO/IEC 27031:2011

• ISO 22301

In general, continuity planning starts with understanding the business impact of various disaster

scenarios and developing plans to counter them. Traditional guidance suggests that this should be

achieved in a centralized fashion; however, large, centralized efforts of this nature tend to struggle for

funding.

While automation alone cannot solve problems such as “where do we put the people if our main call

center is destroyed”, it can help considerably in terms of recovering from disasters. If a company has

been diligent in applying Infrastructure as Code techniques, and loses its data center, it can

theoretically re-establish its system configurations readily, which can otherwise be a very challenging

process, especially under time constraints. (Data still needs to have been backed up to multiple

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

356 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

locations.)

6.4.1.3.2. Compliance

Compliance is a very general term meaning conformity or adherence to:

• Laws

• Regulations

• Policies

• Contracts

• Standards

and the like. Corporate compliance functions may first be attentive to legal and regulatory compliance,

but the other forms of compliance are matters of concern as well.

A corporate compliance office may be responsible for the maintenance of organizational policies and

related training and education, perhaps in partnership with the human resources department. They

also may monitor and report on the state of organizational compliance. Compliance offices may also be

responsible for codes of ethics. Finally, they may manage channels for anonymous reporting of ethics

and policy violations by whistleblowers (individuals who become aware of and wish to report

violations while receiving guarantees of protection from retaliation).

Compliance uses techniques similar to risk management and, in fact, non-compliance can be managed

as a form of risk, and prioritized and handled much the same way. However, compliance is an

information problem as well as a risk problem. There is an ongoing stream of regulations to track,

which keeps compliance professionals very busy. In the US alone, these include:

• HIPAA

• SOX

• FERPA

• PCI DSS

• GLBA PII

and in the European Union, the GDPR (Global Data Protection Regulation) and various data sovereignty

regulations (e.g., German human resources data must remain in Germany).

Some of these regulations specifically call for policy management, and therefore companies that are

subject to them may need to institute formal governance earlier than other companies, in terms of the

emergence model. Many of them provide penalties for the mismanagement of data, which we will

discuss further in this Competency Area and in Competency Area 11. Compliance also includes

compliance with the courts (e.g., civil and criminal actions). This will be discussed in the Section 6.4.2,

“Information Management” section on cyberlaw.

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 357

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Evidence of Notability

Risk is a fundamental business concern, along with sales and net profits. The entire insurance industry

is founded on the premise of risk management. Digital systems are subject to certain risks, and in turn

present risks to the organizations that depend on them.

Limitations

Risk is difficult - not impossible - to quantify. When risk is not correctly quantified, it can lead to

dysfunctional organizational behavior; e.g., spending disproportionate resources to mitigate a given

risk. The irony (poorly understood by many risk professionals) is that overly elaborate risk mitigation

approaches can themselves be a source of risk, in their imposition of delays and other burdens on the

delivery of value.

Related Topics

• Digital Value

• Securing Infrastructure

• Securing Applications

• Investment and Portfolio

• Sourcing

• Human Resources Management

• Governance Elements

• Assurance

• Security

6.4.1.4. Assurance and Audit

6.4.1.4.1. Assurance

Trust, but verify.

— Russian proverb

Assurance is a broad term. In this document, it is associated with governance. It represents a form of

additional confirmation that management is performing its tasks adequately. Go back to the example

that started this Competency Area, of the shop owner hiring a manager. Suppose that this relationship

has continued for some time, and while things seem to be working well, the owner has doubts about

the arrangement. Over time, things have gone well enough that the owner does not worry about the

shop being opened on time, having sufficient stock, or paying suppliers. But there are any number of

doubts the owner might retain:

• Is money being accounted for honestly and accurately?

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

358 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• Is the shop clean? Is it following local regulations? For example, fire, health and safety codes?

• If the manager selects a new supplier, are they trustworthy? Or is the shop at risk of selling

counterfeit or tainted merchandise?

• Are the shop’s prices competitive? Is it still well regarded in the community? Or has its reputation

declined with the new manager?

• Is the shop protected from theft and disaster?

Figure 120. Assurance in Context

These kinds of concerns remain with the owner, by and large, even with a reliable and trustworthy

manager. If not handled correctly, the owner’s entire investment is at risk. The manager may only

have a salary (and perhaps a profit share) to worry about, but if the shop is closed due to violations, or

lawsuit, or lost to a fire, the owner’s entire life investment may be lost. These concerns give rise to the

general concept of assurance, which applies to digital business just as it does to small retail shops. The

following diagram, derived from previous illustrations, shows how this document views assurance: as

a set of practices overlaid across governance elements, and in particular concerned with external

forces (see Figure 120, “Assurance in Context”).

In terms of the governance-management interface, assurance is fundamentally distinct from the

information provided by management and must travel through distinct communication channels. This

is why auditors (for example) forward their reports directly to the Audit Committee and do not route

them through the executives who have been audited.

Technologists, especially those with a background in networking, may have heard of the concept of

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 359

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

“out-of-band control”. With regard to out-of-band management or control of IT resources, the channel

over which management commands travel is distinct from the channel over which the system

provides its services. This channel separation is done to increase security, confidence, and reliability,

and is analogous to assurance.

Figure 121. Assurance is an Objective, External Mechanism

As ISACA stipulates:

The information systems audit and assurance function shall be independent of the area or activity being

reviewed to permit objective completion of the audit and assurance engagement. [151 p. 9]. Assurance

can be seen as an external, additional mechanism of control and feedback. This independent, out-of-

band aspect is essential to the concept of assurance (see Figure 121, “Assurance is an Objective,

External Mechanism”).

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

360 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Three-Party Foundation

Assurance means that pursuant to an accountability relationship between two

or more parties, an IT audit and assurance professional may be engaged to

issue a written communication expressing a conclusion about the subject

matters to the accountable party.

— COBIT 5 for Assurance

There are broader and narrower definitions of assurance. But all reflect some kind of three-party

arrangement (see Figure 122, “Assurance is Based on a Three-Party Model”, reflects concepts from [

148, 142]).

Figure 122. Assurance is Based on a Three-Party Model

The above diagram is one common scenario:

• The stakeholder (e.g., the Audit Committee of the Board of Directors) engages an assurance

professional (e.g., an audit firm) - the scope and approach of this are determined by the engaging

party, although the accountable party in practice often has input as well

• The accountable party, at the direction, responds to the assurance professional’s inquiries on the

audit topic

• The assurance professional provides the assessment back to the engaging party, and/or other users

of the report (potentially including the accountable party)

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 361

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

This is a simplified view of what can be a more complex process and set of relationships. The ISAE3000

standard states that there must be at least three parties to any assurance engagement:

• The responsible (accountable) party

• The practitioner

• The intended users (of the assurance report)

But there may be additional parties:

• The engaging party

• The measuring/evaluating party (sometimes not the practitioner, who may be called on to render

an opinion on someone else’s measurement)

ISAE3000 goes on to stipulate a complex set of business rules for the allowable relationships between

these parties [142 pp. 95-96]. Perhaps the most important rule is that the practitioner cannot be the

same as either the responsible party or the intended users. There must be some level of professional

objectivity.

What’s the difference between assurance and simple consulting? There are two major factors:

• Consulting can be simply a two-party relationship — a manager hires someone for advice

• Consultants do not necessarily apply strong assessment criteria

◦ Indeed, with complex problems, there may not be any such criteria. Assurance, in general,

presupposes some existing standard of practice, or at least some benchmark external to the

organization being assessed.

Finally, the concept of assurance criteria is key. Some assurance is executed against the responsible

party’s own criteria. In this form of assurance, the primary questions are “are you documenting what

you do, and doing what you document?”. That is, for example, do you have formal process

management documentation? And are you following it?

Other forms of assurance use external criteria. A good example is the Uptime Institute's data center

tier certification criteria, discussed below. If criteria are weak or non-existent, the assurance

engagement may be more correctly termed an advisory effort. Assurance requires clarity on this topic.

Types of Assurance

Exercise caution in your business affairs; for the world is full of trickery.

— Max Ehrmann, “Desiderata"

The general topic of “assurance” implies a spectrum of activities. In the strictest definitions, assurance

is provided by licensed professionals under highly formalized arrangements. However, while all audit

is assurance, not all assurance is audit. As noted in COBIT for Assurance, “assurance also covers

evaluation activities not governed by internal and/or external audit standards” [150 p. 15].

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

362 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

This is a blurry boundary in practice, as an assurance engagement may be undertaken by auditors, and

then might be casually called an “audit” by the parties involved. And there is a spectrum of

organizational activities that seem at least to be related to formal assurance:

• Brand assurance

• Quality assurance

• Vendor assurance

• Capability assessments

• Attestation services

• Certification services

• Compliance

• Risk management

• Benchmarking

• Other forms of “due diligence”

Some of these activities may be managed primarily internally, but even in the case of internally

managed activities, there is usually some sense of governance, some desire for objectivity.

From a purist perspective, internally directed assurance is a contradiction in terms. There is a conflict

of interest in that in terms of the three-party model above, the accountable party is the practitioner.

However, it may well be less expensive for an organization to fund and sustain internal assurance

capabilities and get much of the same benefits as from external parties. This requires sufficient

organizational safeguards to be instituted. Internal auditors typically report directly to the Board-level

Audit Committee and, generally, are not seen as having a conflict of interest.

In another example, an internal compliance function might report to the corporate general counsel

(chief lawyer), and not to any executive whose performance is judged based on their organization’s

compliance — this would be a conflict of interest. However, because the internal compliance function

is ultimately under the CEO, their concerns can be overruled.

The various ways that internal and external assurance arrangements can work, and can go wrong, is a

long history. If you are interested in the topic, review the histories of Enron, Worldcom, the 2008

mortgage crisis, and other such failures.

Assurance and Risk Management

Risk management (discussed in the previous section) may be seen as part of a broader assurance

ecosystem. For evidence of this, consider that the Institute of Internal Auditors offers a certificate in

Risk Management Assurance; The Open Group also operates the Open FAIR™ Certification Program.

Assurance in practice may seem to be biased towards risk management, but (as with governance in

general) assurance as a whole relates to all aspects of IT and digital governance, including

effectiveness and efficiency.

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 363

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Audit practices may be informed of known risks and particularly concerned with their mitigation, but

risk management remains a distinct practice. Audits may have scope beyond risks, and audits are only

one tool used by risk management (see Figure 123, “Assurance and Risk Management”).

Figure 123. Assurance and Risk Management

In short, and as shown in the above diagram, assurance plays a role across value recognition, while

risk management specifically targets the value recognition objective of risk optimization.

Non-Audit Assurance Examples

Businesses must find a level of trust between each other … third-party reports

provide that confidence. Those issuing the reports stake their name and

liability with each issuance.

— James DeLuccia, “Successfully Establishing and Representing DevOps in an Audit"

Before we turn to a more detailed discussion of the audit, we will discuss some specifically non-audit

examples of assurance seen in IT and digital management.

Example 1: Due Diligence on a Cloud Provider

Your company is considering a major move to cloud infrastructure for its systems. The agility value

proposition — the ability to minimize cost of delay — is compelling, and there may be some cost

structure advantages as well.

But you are aware of some cloud failures:

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

364 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• In 2013, UK cloud provider 2e2 went bankrupt, and customers were given “24 to 48 hours to get …

data and systems out and into a new environment” [90]; subsequently, the provider demanded

nearly 1 million pounds (roughly $1.5 million) from its customers in order for their uninterrupted

access to services (i.e., their data) [292]

• Also in 2013, cloud storage provider Nirvanix went bankrupt, and its customers also had a limited

time to remove their data; MegaCloud went out of business with no warning two months later, and

all customers lost all data [51], [52]

• In mid-2014, online source code repository Cloud Spaces (an early Github competitor) was taken

over by hackers and destroyed; all data was lost [291], [188]

The question is, how do you manage the risks of trusting your data and organizational operations to a

cloud provider? This is not a new question, as computing has been outsourced to specialist firms for

many years. You want to be sure that their operations meet certain standards such as:

• Financial standards

• Operational standards

• Security standards

Data center evaluations of cloud providers are a form of assurance. Two well-known approaches are:

• The Uptime Institute’s Tier Certification

• The American Institute of Certified Public Accountants' (AICPA) SOC 3 “Trust Services Report”

certifying “Service Organizations” (based in turn on the SSAE-18 standard)

The Uptime Institute provides the well-known “Tier” concept for certifying data centers, from Tier I to

Tier IV. In their words: “certification provides assurances that there are not shortfalls or weak links

anywhere in the data center infrastructure” [290]. The Tiers progress as follows [289]:

• Tier I: Basic Capacity

• Tier II: Redundant Capacity Components

• Tier III: Concurrently Maintainable

• Tier IV: Fault Tolerance

Uptime Institute certification is a generic form of assurance in terms of the three-party model; the data

center operator must work with the Uptime Institute who provides an independent opinion based on

their criteria as to the data center’s tier (and therefore effectiveness).

The SOC 3 report is considered an “assurance” standard as well. However, as mentioned above, this is

the kind of “assurance” done in general by licensed auditors, and which might casually be called an

“audit” by the participants. A qualified professional, again in the three-party model, examines the data

center in terms of the SSAE 18 reporting standard.

Your internal risk management organization might look to both Uptime Institute and SOC 3

certification as indicators that your cloud provider risk is mitigated. (More on this in Competency

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 365

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Category on Risk Management.)

Example 2: Internal Process Assessment

You may also have concerns about your internal operations. Perhaps your process for selecting

technology vendors is unsatisfactory in general; it takes too long and yet vendors with critical

weaknesses have been selected. More generally, the actual practices of various areas in your

organization may be assessed by external consultants using the related guidance:

• Enterprise Architecture with the TOGAF Architecture Development Method (ADM)

• Project Management with PMBOK

• IT processes such as incident management, change management, and release management with

ITIL or CMMI-SVC

These assessments may be performed through using a maturity scale; e.g., CMM-derived. The CMM-

influenced ISO/IEC 15504 standard may be used as a general process assessment framework.

(Remember that we have discussed the problems with the fundamental CMM assumptions on which

such assessments are based.)

According to [28]: “In our own experience, we have seen that the maturity models have their

limitations.”. They warn that maturity assessments of Enterprise Architecture at least are prone to

being:

• Subjective

• Academic

• Easily manipulated

• Bureaucratic

• Superfluous

• Misleading

Those issues may well apply to all forms of maturity assessments. Let the buyer beware. At least, the

concept of maturity should be very carefully defined in a manner relevant to the organization being

assessed.

Example 3: Competitive Benchmarking

Finally, you may wonder, “how does my digital operation compare to other companies?” Now, it is

difficult to go to a competitor and ask this. It is also not especially practical to go and find some non-

competing company in a different industry you don’t understand well. An entire industry has emerged

to assist with this question.

We talked about the role of industry analysts in Section 6.3.2, “Investment and Portfolio”.

Benchmarking firms play a similar role and, in fact, some analyst firms provide benchmarking

services.

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

366 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

There are a variety of ways benchmarking is conducted, but it is similar to assurance in that it often

follows the three-party model. Some stakeholder directs an accountable party to be benchmarked

within some defined scope. For example, the number of staff required to managed a given quantity of

servers (aka admin:server) has been a popular benchmark. (Note that with cloud, virtualization, and

containers, the usefulness of this metric is increasingly in question.)

An independent authority is retained. The benchmarker collects, or has collected, information on

similar operations; for example, they may have collected data from 50 organizations of similar size on

admin:server ratios. This data is aggregated and/or anonymized so that competitive concerns are

reduced. Wells Fargo will not be told: “JP Morgan Chase has an overall ratio of 1:300”; they will be told:

“The average for financial services is 1:250.”.

In terms of formal assurance principles, the benchmark data becomes the assessment criteria. A single

engagement might consider dozens of different metrics, and where simple quantitative ratios do not

apply, the benchmarker may have a continuously maintained library of case studies for more

qualitative analysis. This starts to shade into the kind of work also performed by industry analysts. As

the work becomes more qualitative, it also becomes more advisory and less about “assurance” per se.

6.4.1.4.2. Audit

The Committee, therefore, recommends that all listed companies should

establish an Audit Committee.

— Cadbury Report

Agile or not, a team ultimately has to meet legal and essential organizational

needs and audits help to ensure this.

— Scott Ambler, Disciplined Agile Delivery

If you look up “audit” online or in a dictionary, you will see it mainly defined in terms of finance: an

audit is a formal examination of an organization’s finances (sometimes termed “books”). Auditors look

for fraud and error so that investors (like our shop owner) have confidence that accountable parties

(e.g., the shop manager) are conducting business honestly and accurately.

Audit is critically important to the functioning of the modern economy because there are great

incentives for theft and fraud, and owners (in the form of shareholders) are remote from the business

operations.

But what does all this have to do with IT and Digital Transformation?

Digital organizations, of course, have budgets and must account for how they spend money. Since

financial accounting and its associated audit practices are a well-established practice, we won’t discuss

it here. (We discussed IT financial management and service accounting in Section 6.3.2.1, “Financial

Management of Digital and IT”.)

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 367

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Money represents a form of information - that of value. Money once was stored as a precious metal.

When carrying large amounts of precious metal became impossible, it was stored in banks and

managed through paper record-keeping. Paper record-keeping migrated onto computing machines,

which now represent the value once associated with gold and silver. Bank deposits (our digital user’s

bank account balance from Section 6.1.1, “Digital Fundamentals”) are now no more than a computer

record — digital bits in memory — made meaningful by tradition and law, and secured through

multiple layers of protection and assurance.

Because of the increasing importance of computers to financial fundamentals, auditors became

increasingly interested in IT. Clearly, these new electronic computers could be used to commit fraud in

new and powerful ways. Auditors had to start asking: “How do you know the data in the computer is

correct?”. This led to the formation in 1967 of the Electronic Data Processing Auditors Association

(EDPAA), which eventually became ISACA (developer of COBIT).

It also became clear that computers and their associated operation were a notable source of cost and

risk for the organization, even if they were not directly used for financial accounting. This has led to

the direct auditing of IT practices and processes, as part of the broader assurance ecosystem we are

discussing in this Competency Category.

A wide variety of IT practices and processes may be audited. Auditors may take a general interest in

whether the IT organization is “documenting what it does and doing what it documents” and therefore

nearly every IT process has been seen to be audited.

IT auditors may audit projects, checking that the expected project methodology is being followed. They

may audit IT performance reporting, such as claims of meeting SLAs. And they audit the organization’s

security approach — both its definition of security policies and controls, as well as their effectiveness.

IT processes supporting the applications used by financially-relevant systems, in general, will be under

the spotlight from an auditor. This is where Information Technology General Controls (ITGCs) play a

key role to assure that the data is secured and is reliable [153] for financial reporting. The IT

Governance Institute [158] further articulates how IT controls and the technology environment’s

relationship between the Public Company Accounting Oversight Board (PCAOB) and COBIT is built.

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

368 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 124. Audit Environment

Adapted from IT Control environment [158 p. 11], Figure 1.

Logical access to data, changes to applications, development of application, and computer operations

will be the key areas of focus. Each of these areas are further divided into sub-areas for controlling the

environment effectively.

Areas of control, generally, fall into these categories: SDLC, change management, logical access, and

operations. A brief note on each of these controls follows.

SDLC If changes done to applications involve data conversion, management approval should be

documented before moving the code to production, irrespective of the development methodology

chosen. Controls could be called:

• Data conversion testing

• Go-live approval

Change Management Changes to the applications need to be tested with the appropriate level of

documentation and approved through a Change Control Board. Management need to ensure that

developers do not have privileged access to the production environment, including code migration

privileges. Controls could be called:

• Change testing

• Change approval

• Developer no privileged production access

• Developer/migrator access

Logical Access Access to the applications need to be controlled through a variety of controls, such as

provisioning and deprovisioning of access; password complexity and generic identity; password

management; and access review of privileged/generic accounts and user accesses. Though not an

extensive list, management oversight across the board is needed when users are involved to ensure the

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 369

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

appropriate level of access is given and monitored. Controls could be called:

• Password settings

• User access reviews

• Role reviews

• Generic account password changes

• Access review – privileged account

• Access review – generic accounts

• Access provisioning

• Access removal

Operations In IT organizations, another key activity is to maintain and manage the infrastructure

supporting the data. Who has access to the data center, how we schedule jobs, and what we do when

jobs fail, and how we take backups and restore from backups, when needed, form key sub-areas to

manage. Controls could be called:

• Data center access

• Job scheduling and resolution

• Data backups

• Data restoration

Controls driven through policies and processes target the application landscape, which helps financial

reporting. Care needs to be taken to ensure that the prevention or detection controls are executed in a

timely manner. As an example, Logical Access – Access Provisioning is deemed a preventative control;

i.e., preventing unnecessary access to data, and Logical Access – User Access Review is deemed a

detective control; i.e., detecting access provisioned is still relevant. Each control needs to be evaluated

on its merit and ensure that there are mitigating controls.

If you are in a public company, IT controls relate directly to the SEC 10K report – an annual filing of the

company’s financial status. The formation of this report is a culmination of the various audits

conducted by internal and external auditors. Internal control over financial reporting by the Public

Company Accounting Oversight Board [218] clearly notes the implications of the control environment.

NOTE
Controls failure is an ongoing theme in The Phoenix Project, the novelization that

helped launch DevOps as a movement [165].

If the controls start to fail, the scale of control failure ranges from an individual application failing any

of the control to system design failure or the operational failure of the control [218] standard notes

that the severity of the failure as a control is deficient - a combination of deficiencies leading to

significant deficiency and a combination of deficiencies with potential for misstatement of financial

reporting leading to material weakness. There should be enough management attention for each of

these control failures and it may include application owner, control owner, and CIO including the

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

370 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Audit Committee of the Board of Directors.

Organizations need to survive in the digital economy by making choices with the limited pool of

budget available. If the IT organization cannot control the environment, the cost of compliance

significantly increases, thereby reducing the investment available for innovation.

It is better to be compliant to innovate more!

External versus Internal Audit

There are two major kinds of auditors of interest to us:

• External auditors

• Internal auditors

Here is a definition of external auditor:

An external auditor is chartered by a regulatory authority to visit an enterprise or entity and to review

and independently report the results of that review. [198 p. 319].

Many accounting firms offer external audit services, and the largest accounting firms (such as

PriceWaterhouse Coopers and Ernst & Young) provide audit services to the largest organizations

(corporations, non-profits, and governmental entities). External auditors are usually certified public

accountants, licensed by their state, and following industry standards (e.g., from the American Institute

of Certified Public Accountants).

By contrast, internal auditing is housed internally to the organization, as defined by the Institute of

Internal Auditors:

Internal auditing is an independent appraisal function established within an organization to examine and

evaluate its activities as a service to the organization. [198], p.320.

Internal audit is considered a distinct but complementary function to external audit [70], 4_39. The

internal audit function usually reports to the Audit Committee. As with assurance in general,

independence is critical — auditors must have organizational distance from those they are auditing,

and must not be restricted in any way that could limit the effectiveness of their findings.

Audit Practices

As with other forms of assurance, audit follows the three-party model. There is a stakeholder, an

accountable party, and an independent practitioner. The typical internal audit lifecycle consists of

(derived from [150]):

• Planning/scoping

• Performing

• Communicating

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 371

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

In the scoping phase, the parties are identified (e.g., the Board Audit Committee, the accountable and

responsible parties, the auditors, and other stakeholders).

The scope of the audit is very specifically established, including objectives, controls, and various

governance elements (e.g., processes) to be tested. Appropriate frameworks may be utilized as a basis

for the audit, and/or the organization’s own process documentation.

The audit is then performed. A variety of techniques may be used by the auditors:

• Performance of processes or their steps

• Inspection of previous process cycles and their evidence (e.g., documents, recorded transactions,

reports, logs, etc.)

• Interviews with staff

• Physical inspection or walkthroughs of facilities

• Direct inspection of system configurations and validation against expected guidelines

• Attempting what should be prevented (e.g., trying to access a secured system or view data over the

authorization level)

A fundamental principle is “expected versus actual”. There must be some expected result to a process

step, calculation, etc., to which the actual result can be compared.

Finally, the audit results are reported to the agreed users (often with a preliminary “heads up” cycle so

that people are not surprised by the results). Deficiencies are identified in various ways and typically

are taken into system and process improvement projects.

Evidence of Notability

Assurance as a broad topic, and audit as a narrower instance, like governance itself are fundamental

to the functioning of the economy. ISACA has published significant guidance on both topics, as have

other, broader organizations such as the International Auditing and Assurance Standards Board, or

IAASB.

Limitations

Assurance and audit in general require some clear standard or expectation against which to assess. In

terms of process, they are suitable for lower-variability problem domains. They are less applicable to

complex or chaotic domains. However, even within a chaotic situation, there will still be basic

assumptions around (for example) how money and security are to be handled. Audit, in the IT systems

context, has been important enough to drive the creation of one of the major IT/Digital Practitioner

organizations, the IS Audit and Control Association (founded in 1967 as the Electronic Data Processing

Auditors Association, or EDPAA).

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

372 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Related Topics

• Digital Value

• Securing Infrastructure

• Securing Applications

• Investment and Portfolio

• Sourcing

• Governance Elements

• Risk Management

• Security

6.4.1.5. Security

Description

A measure of a system’s ability to resist unauthorized attempts at usage or

behavior modification, while still providing service to legitimate users.

— Sandy Bacik, Enernex

You have been practicing security since you first selected your initial choice of infrastructure and

platform in Digital Infrastructure. But by now, your security capability is a well-established

organization with processes spanning the enterprise, and a cross-functional steering committee

composed of senior executives and with direct access to Board governance channels.

Security is a significant and well-known domain in and of itself. Ultimately, however, security is an

application of the governance and risk management principles discussed in the previous

sections. Deriving ultimately from the stakeholder’s desire to sustain and protect the enterprise (see

Figure 125, “Security Context”), security relies on:

• Accurate risk assessment

• A clear controls strategy

• Effective assurance practices (e.g., security audits)

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 373

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 125. Security Context

So what distinguishes security from more general concepts of risk? The definition at the top of this

section is a good start, with its mention of “unauthorized attempts” to access or modify systems. The

figure Figure 125, “Security Context” uses the term “sanctionable”, meaning violations might lead to

legal or at least organizational penalties.

Many risks might involve carelessness, or incompetence, or random technical failure, or accidents of

nature. Such concerns are sometimes termed "safety" to distinguish them from security. Security

focuses on violations (primarily intentional, but also unintentional) of policies protecting

organizational assets. In fact, "assets protection” is a common alternate name for corporate security.

“Authorization” is a key concept. Given some valuable resource, is access restricted to those who ought

to have it? Are they who they say they are? Do they have the right to access what they claim is theirs?

Are they conducting themselves in an expected and approved manner?

The security mentality is very different from the mentality found in a startup. A military analogy might

be helpful. Being in a startup is like engaging in offensive missions: search, extract, destroy, etc. It

involves travelling to a destination and operating with a single-point focus on completion.

Security, on the other hand, is like defending a perimeter. You have to think broadly across a large

area, assessing weaknesses and distributing limited resources where they will have the greatest effect.

6.4.1.5.1. Security Taxonomy

An accepted set of terminology is key. The CISSP (Certified Information Systems Security Professional)

Guide proposes the following taxonomy:

• Vulnerability

• Threat agent

• Threat

• Risk

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

374 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• Control

• Exposure

• Safeguard (e.g., control)

These terms are best understood in terms of their relationships, which are graphically illustrated in

Figure 126, “Security Taxonomy” (similar to CISSP, [124]).

Figure 126. Security Taxonomy

In implementing controls, the primary principles are:

• Availability: the asset must be accessible to those entitled to it

• Integrity: the asset must be protected from destruction or corruption

• Confidentiality: the asset must not be accessible to those not entitled to it

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 375

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.4.1.5.2. Information Classification

At a time when the significance of information and related technologies is

increasing in every aspect of business and public life, the need to mitigate

information risk, which includes protecting information and related IT assets

from ever-changing threats is constantly intensifying.

— ISACA, COBIT 5 for Security

Before we turn to security engineering and security operations, we need to understand the business

context of security. The assets at risk are an important factor, and risk management gives us a good

general framework. One additional technique associated with security is information classification. A

basic hierarchy is often used, such as:

• Public

• Internal

• Confidential

• Restricted

The military uses the well-known levels of:

• Unclassified

• Confidential

• Secret

• Top Secret

These classifications assist in establishing the security risk and necessary controls for a given digital

system and/or process.

Information also can be categorized by subject area. This becomes important from a compliance point

of view. This will be discussed in Competency Area 11, in the section on records management.

6.4.1.5.3. Security Engineering

For the next two sections, we will adopt a “dual-axis” view, first proposed in [31].

In this model, the systems lifecycle is considered along the horizontal access, and the user experience

is considered along the vertical access (which also maps to the “stack”). In the following picture, we see

the distinct concerns of the various stakeholders in the dual-axis model (see Figure 127, “Security and

the Dual-Axis Value Chain”).

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

376 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 127. Security and the Dual-Axis Value Chain

Consumer versus Sponsor Perspective

The consumer of the digital service has different concerns from the sponsor/customer (in our three-

party model). The consumer (our woman checking her bank balance) is concerned with immediate

aspects of confidentiality, integrity, and availability:

• Is this communication private?

• Is my money secure?

• Can I view my balance and do other operations with it (e.g., transfer it) confident of no

interference?

The sponsor, on the other hand, has derivative concerns:

• Are we safe from the bad publicity that would result from a breach?

• Are we compliant with laws and regulations or are we risking penalties for non-compliance (as

well as risking security issues)?

• Are our security activities as cost-efficient as possible, given our risk appetite?

Security Architecture and Engineering

Security engineering is concerned with the fundamental security capabilities of the system, as well as

ensuring that any initial principles established for the system are adhered to as development proceeds,

and/or as vendors are selected and perhaps replaced over time.

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 377

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

There are multitudes of books written on security from an engineering, architecture, and development

perspective. The tools, techniques, and capabilities evolve quickly every year, which is why having a

fundamental business understanding based on a stable framework of risk and control is essential.

This is a book on management, so we are not covering technical security practices and principles, just

as we are not covering specific programming languages or distributed systems engineering specifics.

Studying for the CISSP exam will provide both an understanding of security management, as well as

current technical topics. A glance at the CISSP Guide shows how involved such topics can be:

• The Harrison-Rizzo-Ullman security model

• The Diffie-Hellman Asymmetrical Encryption Algorithm

• Functions and Protocols in the OSI Model

Again, the issue is mapping such technical topics to the fundamentals of risk and control. Key topics we

note here include:

• Authentication and authorization

• Network security

• Cryptography

Authentication and authorization are the cornerstones of access; i.e., the gateway to the asset.

Authentication confirms that a person is who they say they are. Authorization is the management of

their access rights (can they see the payroll? reset others' passwords?).

Network security is a complex sub-domain in and of itself. Because attacks typically transpire over

the Internet and/or internal organizational networks, the structure and capabilities of networks are of

critical concern, including topics such as:

• Routing

• Firewalls

• The Domain Name Service

Finally, cryptography is the “storage and transmission of data in a form that only those it is intended

for can read and process” [124].

All of these topics require in-depth study and staff development. As of the time of writing, there is a

notable shortage of skilled security professionals. Therefore, a critical risk is that your organization

might not be able to hire people with the needed skills (consider our section on resource management).

Security and the Systems Lifecycle

Security is a concern throughout the systems lifecycle. You already know this. Otherwise, you would

not have reached enterprise scale. But now you need to formalize it with some consistency, as that is

what regulators and auditors expect, and it also makes it easier for your staff to work on various

systems.

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

378 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Security should be considered throughout the SDLC, including systems design, but this is easier said

than done. Organizations will always be more interested in a system’s functionality than its security.

However, a security breach can ruin a company.

The CISSP recommends (among other topics) consideration of the following throughout the systems

lifecycle:

• The role of environmental (e.g., OS-level) safeguards versus internal application controls

• The challenges of testing security functionality

• Default implementation issues

• Ongoing monitoring

Increasingly important controls during the construction process in particular are:

• Code reviews

• Automated code analysis

Finally, we previously discussed the Netflix Simian Army, which can serve as a form of security

control.

Sourcing and Security

Vendors come and go in the digital marketplace, offering thousands of software-based products across

every domain of interest (we call this the technology product lifecycle). Inevitably, these products have

security errors. A vendor may issue a “patch” for such an error, which must be applied to all instances

of the running software. Such patches are not without risk, and may break existing systems; they,

therefore, require testing under conditions of urgency.

Increasingly, software is offered as a service, in which case it is the vendor responsibility to patch their

own code. But what if they are slow to do this? Any customer relying on their service is running a risk,

and other controls may be required to mitigate the exposure.

One important source of vulnerabilities is the National Vulnerability Database supported by the NIST.

In this database, you can look up various products and see if they have known security holes. Using the

National Vulnerability Database (NVD) is complex and not something that can be simply and easily

“implemented” in a given environment, but it does represent an important, free, taxpayer-supported

resource of use to security managers.

An important type of vulnerability is the “zero-day” vulnerability. With this kind of vulnerability,

knowledge of a security “hole” becomes widespread before any patches are available (i.e., the

software’s author and users have “zero days” to create and deploy a fix). Zero-day exploits require the

fast and aggressive application of alternate controls, which leads us to the topic of security operations.

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 379

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.4.1.5.4. Integration of Security and Safety

The digital enterprise is becoming increasingly complex. Technological artifacts are embedded into

organizations and social systems to form complex socio-technical systems. Unanticipated combinations

of events can create losses that can become catastrophic. For example, autonomous vehicles are

involved in deadly accidents, the power grid is threatened by viruses, or cybercriminals take hospitals

hostage.

Traditional safety and security analysis techniques are increasingly less effective because they were

created for a simpler world where linear event chains and statistical tools were sufficient. New safety

and security analysis techniques that are based on systems theory are a better fit to address the digital

enterprise challenges.

In a digital world we recommend modeling the enterprise as a complex socio-technical system and use

an integrated approach to both security and safety. Young and Leveson [311] advocate this approach.

The integrated approach addresses losses due to intentional and unintentional actions: “Safety experts

see their role as preventing losses due to unintentional actions by benevolent actors. Security experts

see their role as preventing losses due to intentional actions by malevolent actors. The key difference is

the intent of the actor that produced the loss event.”

This approach makes a more efficient use of resources. It also provides a high-level strategic analysis

that prevents being stuck too early into tactical problems before the big picture is established. The

Systems Theoretic Process Analysis (STPA) Handbook (published in March 2018), authored by Nancy G.

Leveson and John P. Thomas, develops a systemic and integrated method to manage safety and security

hazards.

STPA advocates the modeling of a controller to enforce constraints on the behavior of the system.

Controls are not limited to the technology or process sphere; they can also include social controls.

6.4.1.5.5. Security Operations

Networks and computing environments are evolving entities; just because

they are secure one week does not mean they are secure three weeks later.

— Shon Harris, Guide to the CISSP

Security requires ongoing operational attention. Security operations is first and foremost a form of

operations, as discussed in Section 6.2.3, “Operations Management”. It requires on-duty and on-call

personnel, and some physical or virtual point of shared awareness (for example, a physical Security

Operations Center, perhaps co-located with a Network Operations Center). Beyond the visible presence

of a Security Operations Center, various activities must be sustained. These can be categorized into

four major areas:

• Prevention

• Detection

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

380 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• Response

• Forensics

Prevention

An organization’s understanding of what constitutes a “secure” system is continually evolving. New

threats continually emerge, and the alert security administrator has an ongoing firehose of bulletins,

alerts, patch notifications, and the like to keep abreast of.

These inputs must be synthesized by an organization’s security team into a set of security standards

for what constitutes a satisfactorily configured (“hardened”) system. Ideally, such standards are

automated into policy-driven systems configuration approaches; in less ideal situations, manual

configuration — and double-checking — is required.

Prevention activities include:

• Maintaining signatures for intrusion detection and anti-virus systems

• Software patching (e.g., driven by the technology product lifecycle and updates to the National

Vulnerability Database)

• Ongoing maintenance of user authorizations and authentication levels

• Ongoing testing of security controls (e.g., firewalls, configurations, etc.)

• Updating security controls appropriately for new or changed systems

Detection

There are many kinds of events that might indicate some security issue; systems exposed to the open

Internet are continually scanned by a wide variety of often-hostile actors. Internal events, such as

unscheduled/unexplained system restarts, may also indicate security issues. The challenge with

security monitoring is identifying patterns indicating more advanced or persistent threats. When

formalized, such patterns are called “signatures”.

One particular form of event that can be identified for systems under management is configuration

state change.

For example, if a core OS file — one that is well known and not expected to change — changes in size

one day with no explanation, this might be indicative of a security exploit. Perhaps an attacker has

substituted this file with one containing a “backdoor” allowing access. Tools such as Tripwire are

deployed to scan and inventory such files and key information about them (“metadata”) and raise

alerts if unexpected changes occur. Infrastructure managers such as Chef and Puppet may also serve

as inputs into security event management systems; for example, they may detect attempts to alter

critical configuration files and, in their re-converging the managed resource back to its desired state

can be a source of valuable information about potential exploits. Such tools also may be cited as

controls for various kinds of security risks.

We have discussed the importance of configuration management in both Digital Infrastructure and

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 381

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Section 6.2.3, “Operations Management”. In Digital Infrastructure, we discussed the important concept

of Infrastructure as Code and policy-driven configuration management; we revisited the importance of

configuration management from an operational perspective in Section 6.2.3.1.3, “State and

Configuration”. Configuration management also will re-appear in Section 6.4.2, “Information

Management” and Section 6.4.3, “Architecture”.

IMPORTANT

It should be clear by now that configuration management is one of the most

critical enabling capabilities for digital management, regardless of whether you

look to traditional ITSM practices or modern DevOps approaches.

Detection activities include:

• Monitoring events and alerts from intrusion detection and related operational systems

• Analyzing logs and other artifacts for evidence of exploits

Response

Security incidents require responses. Activities include:

• Declaring security incidents

• Marshaling resources (staff, consultants, law enforcement) to combat

• Developing immediate tactical understanding of the situation

• Developing a response plan, under time constraints

• Executing the plan, including ongoing monitoring of effectiveness and tactical correction as needed

• Keeping stakeholders informed as to situation

Forensics

Finally, security incidents require careful after-the-fact analysis:

• Analyzing logs and other artifacts for evidence of exploits

• Researching security incidents to establish causal factors and develop new preventative

approaches (thus closing the loop)

Relationship to Other Processes

As with operations as a whole, there is ongoing monitoring and reporting to various stakeholders, and

interaction with other processes.

One of the most important operational processes from a security perspective is change management.

Configuration state changes (potentially indicating an exploit in progress) should be reconciled first to

change management records. Security response may also require emergency change processes. ITSM

event and incident management may be leveraged as well.

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

382 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

NOTE
The particular concerns of security may interfere with cross-process coordination. This

is a topic beyond the scope of this document.

6.4.1.5.6. Security and Assurance

Quis custodiet ipsos custodes?

— Latin for “Who watches the watchers?"

Given the critical importance of security in digital organizations, it is an essential matter for

governance attention at the highest levels.

Security management professionals are accountable to governance concerns just as any other manager

in the digital organization. Security policies, processes, and standards are frequently audited, by both

internal auditors as well as external assurance professionals (not only auditors but other forms of

assurance as well).

The idea that an “assets protection” group might itself be audited may be hard to understand, but

security organizations such as police organizations have Internal Affairs units for just such purposes.

Security auditors might review the security processes mentioned above, or system configuration

baselines, or log files, or any number of other artifacts, depending on the goals and scope of a security

audit. Actual penetration testing is a frequently used approach: the hiring of skilled “white-hat”

hackers to probe an organization’s defenses. Such hackers might be given license to probe as far as

they possibly can and return with comprehensive evidence of what they were able to access (customer

records, payrolls, account numbers, and balances, etc.).

6.4.1.5.7. Emerging Topics

As AI plays an increasing role in the digital enterprise, it creates new hazards and can at the same time

help fight security threats. Forbes warned its readers that good bots can go bad and articles raise

chatbot security concerns.

At the same time, Machine Learning techniques applied to cybersecurity are developed; for example,

“Machine Learning and Security: Protecting Systems with Data and Algorithms" published by O’reilly

Media, February 16, 2018.

Will this end the cat-and-mouse game between attackers and defenders? Or fuel a new security arm

race? The jury is still out. That is why an holistic approach to security and safety problems is required.

It provides the context and guidance to better control a digital world where automation and AI

changes the game.

Evidence of Notability

Securing valuable assets and capabilities from unintentional and intentional harm has been a concern

of the human race since time immemorial. Digital systems provide attractive targets and their security

has been of interest since their first uses.

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 383

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Limitations

Like risk more broadly, security must balance against value at risk, or otherwise it can degenerate into

theater.

Related Topics

• Digital Value

• Securing Infrastructure

• Securing Applications

• Investment and Portfolio

• Sourcing

• Governance Elements

• Risk Management

• Security

6.4.1.6. Digital Governance

Description

The legacy of IT governance is wide, deep, and often wasteful. Approaches based on mis-applied

Taylorism and misguided, CMM-inspired statistical process control have resulted in the creation of

ineffective, large-scale IT bureaucracies whose sole mission seems to be the creation and exchange of

non-value-add secondary artifacts, while lacking any clear concept of an execution model.

What is to be done? Governance will not disappear any time soon. Simply arguing against governance

is unlikely to succeed. Instead, this document argues the most effective answer lies in a re-examination

of the true concerns of governance:

• Sustaining innovation and effective value delivery

• Maintaining efficiency

• Optimizing risk

These fundamental principles (“top-line”, “bottom-line”, “risk”) define value for organizations around

the world, whether for-profit, non-profit, or governmental. After considering the failings of IT

governance, we will re-examine it in light of these objectives and come up with some new answers for

the digital era.

From the perspective of Digital Transformation, there are many issues with traditional IT governance

and the assumptions and practices characterizing it.

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

384 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.4.1.6.1. The New Digital Operating Model

Consider the idea of “programmability” mentioned at the start of this Competency Category. A highly

“programmable” position is one where the responsibilities can be specified in terms of their activities.

And what is the fundamental reality of Digital Transformation? It is no accident that such positions

are called “programmable”. In fact, they are being “programmed away” or “eaten by software" —

leaving only higher-skill positions that are best managed by objective, and which are more sensitive to

cultural dynamics.

Preoccupation with “efficiency” fades as a result of the decreasingly “programmable” component of

work. The term “efficiency” signals a process that has been well defined (is “programmable”) to the

point where it is repeatable and scalable. Such processes are ripe for automation, commoditization,

and outsourcing, and this is in fact happening.

If the repetitive process is retained within an organization, the drive for efficiency leads to automation

and, eventually, efficiency is expressed through concerns for capacity management and the

consumption of computing resources. And when such repetitive concerns are not retained by the

organization, but instead become a matter of sourcing rather than execution, the emphasis shifts to

risk management and governance of the supplier.

The remaining uncertain and creative processes should not just be managed for “efficiency" and

need to be managed for effectiveness, including fast feedback, collaboration, culture, and so forth.

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 385

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.4.1.6.2. Project versus Operations as Operating Model

Figure 128. Governance Based on Project versus Operations

As we can see illustrated in Figure 128, “Governance Based on Project versus Operations” (similar to

[155]), ISO/IEC 38500 assumes a specific IT operating model, one in which projects are distinct from

operations. We have discussed the growing influence of product-centric digital management

throughout this document, but as of the time of writing the major IT governance standard still does not

recognize it. The ripple effects are seen throughout other guidance and commentary. In particular, the

project-centric mindset is closely aligned with the idea of IT and the CIO as primarily order-takers.

6.4.1.6.3. CIO as Order-Taker

Throughout much of the IT governance guidance, certain assumptions become evident:

• There is an entity that can be called “the Business”

• There is a distinct entity called “IT” (for “Information Technology”)

• It is the job of “IT” to take direction (i.e., orders) from “the Business” and to fulfill them

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

386 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• There is a significant risk that “IT” activities (and by extension, dollars spent on them) may not be

correctly allocated to the preferred priorities of “the Business”; IT may spend money unwisely, on

technology for its own sake, and this risk needs to be controlled

• The needs of “the Business” can be precisely defined and it is possible for “IT” to support those

needs with a high degree of predictability as to time and cost; this predictability is assumed even

when those activities imply multi-million dollar investments and months or years of complex

implementation activities

• When such activities do not proceed according to initial assumptions, this is labeled an "IT failure”;

it is assumed that the failure could have been prevented through more competent management,

“rigorous” process, or diligent governance, especially on the IT side

There may be organizations where these are reasonable assumptions. (This document does not claim

they do not exist.) But there is substantial evidence for the existence of organizations for whom these

assumptions are untrue.

6.4.1.6.4. The Fallacies of “Rigor” and Repeatability

One of the most critical yet poorly understood facts of software development and by extension

complex digital system innovation is the impossibility of “rigor”. Software engineers are taught early

that “completely” testing software is impossible [161], yet it seems that this simple fact (grounded in

fundamentals of computer science and information theory) is not understood by many managers.

A corollary fallacy is that of repeatable processes, when complexity is involved. We may be able to

understand repeatability at a higher level, through approaches like case management or the Checklist

Manifesto's submittal schedules, but process control in the formal sense within complex, R&D-centric

digital systems delivery is simply impossible, and the quest for it is essentially cargo cult management.

And yet IT governance discussions often call for "repeatability" (e.g., [198 p. 6]), despite the fact that

value that can be delivered “repeatably”, “year after year” is for the most part commodity production,

not innovative product development. Strategy is notably difficult to commoditize.

Another way to view this is in terms of the decline of traditional IT. As you review those diagrams,

understand that much of IT governance has emerged from the arguably futile effort to deliver product

innovation in a low-risk, “efficient” manner. This desire has led, as Ambler and Lines note at the top of

this Competency Category, to the creation of layers and layers of bureaucracy and secondary artifacts.

The cynical term for this is “theater”, as in an act that is essentially unreal but presented for the

entertainment and distraction of an audience.

As we noted above, a central reality of Digital Transformation is that commoditized, predictable,

programmable, repeatable, “efficient” activities are being quickly automated, leaving governance to

focus more on the effectiveness of innovation (e.g., product development) and management of supplier

risk. Elaborate IT operating models specifying hundreds of interactions and deliverables, in a futile

quest for "rigor” and “predictability”, are increasingly relics of another time.

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 387

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.4.1.6.5. Digital Effectiveness

Let’s return to the first value objective: effectiveness. We define effectiveness as “top-line” benefits:

new revenues and preserved revenues. New revenues may come from product innovation, as well as

successful marketing and sales of existing products to new markets (which itself is a form of

innovation).

Traditionally, “back-office” IT was rarely seen as something contributing to effectiveness, innovation,

and top-line revenue. Instead, the first computers were used to increase efficiency, through

automating clerical work. The same processes and objectives could be executed for less money, but

they were still the same back-office processes.

With Digital Transformation, product innovation and effectiveness is now a much more important

driver. Yet product-centric management is still poorly addressed by traditional IT governance, with its

emphasis on distinguishing projects from operations.

One tool that becomes increasingly important is a portfolio view. While PMOs may use a concept of

“portfolio” to describe temporary initiatives, such project portfolios rarely extend to tracking ongoing

operational benefits. Alternative approaches also should be considered such as the idea of an options

approach.

6.4.1.6.6. Digital Efficiency

Efficiency is a specific, technical term, and although often inappropriately prioritized, is always an

important concern. Even a digitally transforming, product-centric organization can still have

governance objectives of optimizing efficiency. Here are some thoughts on how to re-interpret the

concept of efficiency.

Consolidate the Pipelines

One way in which digital organizations can become more efficient is to consolidate development as

much as possible into common pipelines. Traditionally, application teams have owned their own

development and deployment pipelines, at the cost of great, non-value add variability. Even

centralizing source control has been difficult.

This is challenging for organizations with large legacy environments, but full lifecycle pipeline

automation is becoming well understood across various environments (including the mainframe).

Reduce Internal Service Friction

Another way of increasing efficiency is to standardize integration protocols across internal services, as

Amazon has done. This reduces the need for detailed analysis of system interaction approaches every

time two systems need to exchange data. This is a form of reducing transaction costs and therefore

consistent with Coase’s theory of the firm [63].

Within the boundary of a firm, a collaboration between internal services should be easier because of

reduced transaction costs. It is not hard to see that this would be the case for digital organizations:

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

388 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

security, accounting, and CRM would all be more challenging and expensive for externally-facing

services.

However, since a firm is a system, a service within the boundaries of a firm will have more constraints

than a service constrained only by the market. The internal service may be essential to other, larger-

scoped services, and may derive its identity primarily from that context.

Because the need for the service is well understood, the engineering risk associated with the service

may also be reduced. It may be more of a component than a product. See the parable of the the Flower

and the Cog. Reducing service redundancy is a key efficiency goal within the bounds of a system —

more to come on this in Section 6.4.3, “Architecture”.

Manage the Process Portfolio

Processes require ongoing scrutiny. The term "organizational scar tissue” is used when specific

situations result in new processes and policies, that in turn increase transactional friction and reduce

efficiency throughout the organization.

Processes can be consolidated, especially if specific procedural detail can be removed in favor of

larger-grained case management or Checklist Manifesto concepts including the submittal schedule. As

part of eventual automation and Digital Transformation, processes can be ranked as to how

“heavyweight” they are. A typical hierarchy, from “heaviest” to “lightest”, might be:

• Project

• Release

• Change

• Service request

• Automated self-service

The organization might ask itself:

• Do we need to manage this as a project? Why not just a release?

• Do we need to manage this as a release? Why not just a change?

• Do we need to manage this as a change? Why not just a service request?

• Do we need to manage this as a service request? Why is it not fully automated self-service?

There may be a good reason to retain some formality. The point is to keep asking the question. Do we

really need a separate process? Or can the objectives be achieved as part of an existing process or

another element?

Treat Governance as Demand

A steam engine’s governor imposes some load, some resistance, on the engine. In the same way,

governance activities and objectives, unless fully executed by the directing body (e.g., the Board),

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 389

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

themselves impose a demand on the organization.

This points to the importance of having a clear demand/execution framework in place to manage

governance demand. The organization does not have an unlimited capacity for audit response,

reporting, and the like. In order to understand the organization as a system, governance demand needs

to be tracked and accounted for and challenged for efficiency just as any other sort of demand.

Leverage the Digital Pipeline

Finally, efficiency asks: can we leverage the digital pipeline itself to achieve governance objectives?

This is not a new idea. The governance/management interface must be realized by specific governance

elements, such as processes. Processes can (and often should) be automated. Automation is the raison

d’etre of the digital pipeline; if the process can be expressed as user stories, behavior-driven design, or

other forms of requirement, it simply is one more state change moving from dev to ops.

In some cases, the governance stories must be applied to the pipeline itself. This is perhaps more

challenging, but there is no reason the pipeline itself cannot be represented as code and managed

using the same techniques. The automated elements then can report their status up to the monitoring

activity of governance, closing the loop. Auditors should periodically re-assess their effectiveness.

6.4.1.6.7. Digital Risk Management

Finally, from an IT governance perspective, what is the role of IT risk management in the new digital

world? It’s not that risk management goes away. Many risks that are well understood today will remain

risks for the foreseeable future. But there are significant new classes of risk that need to be better

understood and managed:

• Unmanaged demand and disorganized execution models leading to multi-tasking, which is

destructive of value and results

• High queue wait states, resulting in uncompetitive speed to deliver value

• Slow feedback due to large batch sizes, reducing effectiveness of product discovery

• New forms of supplier risk, as services become complex composites spanning the Internet

ecosystem

• Toxic cultural dynamics destructive of high team performance

• Failure to incorporate cost of delay in resource allocation and work prioritization decisions

All of these conditions can reduce or destroy revenues, erode organizational effectiveness, and worse.

It is hard to see them as other than risks, yet there is little attention to such factors in the current “best

practice” guidance on risk.

Cost of Delay as Risk

In today’s digital governance there must be a greater concern for outcome and effectiveness, especially

in terms of time-to-market (minimizing cost of delay). Previously, concerns for efficiency might lead a

company to overburden its staff, resulting in queuing gridlock, too much work-in-process, destructive

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

390 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

multi-tasking, and ultimately failure to deliver timely results (or deliver at all).

Such failure to deliver was tolerated because it seemed to be a common problem across most IT

departments. Also relevant is the fact that Digital Transformation had not taken hold yet. IT systems

were often a back office, and delays in delivering them (or significant issues in their operation) were

not quite as damaging.

Now, the effectiveness of delivery is essential. The interesting, and to some degree unexpected result, is

that both efficiency and risk seem to be benefiting as well. Cross-functional, focused teams are both

more effective and more efficient, and able to manage risk better as well. Systems are being built with

both increased rapidity as well as improved stability, and the automation enabling this provides robust

audit support.

Team Dynamics as Risk

We have covered culture in some depth in Section 6.3.1, “Coordination and Process”. Briefly, from a

governance perspective:

The importance of organizational culture has been discussed by management thinkers since at least W.

Edwards Deming. In a quote often attributed to Peter Drucker: “culture eats strategy for breakfast”. But

it has been difficult at best to quantify what we mean by culture.

Quantify? Some might even say quantification is impossible. But Google and the State of DevOps

research have done so. Google has established the importance of psychological safety in forming

effective, high-performing teams [242]. And the State of DevOps research, applying the Westrum

typology, has similarly confirmed that pathological, controlling cultures are destructive of digital value

[224].

These facts should be taken seriously in digital governance discussions. So-called “toxic” leadership (an

increasing concern in the military itself [293]) is destructive of organizational goals and stakeholder

value. It can be measured and managed and should be a matter of attention at the highest levels of

organizational governance.

Sourcing Risk

We have already covered contracting in terms of software and cloud. But in terms of the emergence

model, it is typical that companies enter into contracts before having a fully mature sourcing and

contract management capability with input from the GRC perspective.

We have touched on the issues of cloud due diligence and sourcing and security in this Competency

Area. The 2e2 case discussed is interesting; it seems that due diligence had actually been performed.

Additional controls could have made a key difference, in particular business continuity planning.

There are a wide variety of supplier-side risks that must be managed in cloud contracts:

• Access

• Compliance

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 391

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• Data location

• Multi-tenancy

• Recovery

• Investigation

• Viability (assurance)

• Escrow

We have emphasized throughout this document the dynamic nature of digital services. This presents a

challenge for risk management of digital suppliers. This year’s audit is only a point-in-time snapshot;

how to maintain assurance with a fast-evolving supplier? This leading edge of cloud sourcing is

represented in discussions such as “Dynamic certification of cloud services: Trust, but verify!":

The on-demand, automated, location-independent, elastic, and multi-tenant nature of cloud computing

systems is in contradiction with the static, manual, and human process-oriented evaluation and

certification process designed for traditional IT systems …

Common certificates are a backward look at the fulfillment of technical and organizational measures at

the time of issue and therefore represent a snapshot. This creates a gap between the common certification

of one to three years and the high dynamics of the market for cloud services and providers.

The proposed dynamic certification approach adopts the common certification process to the increased

flexibility and dynamics of cloud computing environments through using automation potential of security

controls and continuous proof of the certification status [180].

It seems likely that such ongoing dynamic evaluation of cloud suppliers would require something akin

to Simian Army techniques, discussed below.

Beyond increasing supply-side dynamism, risk management in a full Supplier Integration and

Management (SIAM) sense is compounded by the complex interdependencies of the services involved.

All of the cloud contracting risks need to be covered, as well as further questions such as:

• If a given service depends on two sub-services (“underpinning contracts”), what are the risks for

the failure of either or both of the underpinning services?

• What are the controls?

6.4.1.6.8. Automating Digital Governance

Digital Exhaust

One governance principle we will suggest here is to develop a governance architecture as an inherent

part of the delivery system, not as an additional set of activities. We use the concept of “digital exhaust”

to reinforce this.

Digital exhaust, for the purposes of this document, consists of the extraneous data, and information

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

392 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

that can be gleaned from it, originating from the development and delivery of IT services.

Consider an automobile’s exhaust. It does not help you get to where you are going, but it is an

inevitable aspect of having an internal combustion engine. Since you have it, you can monitor it and

gain certain insights as to whether your engine is running efficiently and effectively. You might even

be able to identify if you are at risk of an engine failure.

The term “digital exhaust” is also applied to the data generated from the IoT. This usage is conceptually

aligned to our usage here, but somewhat different in emphasis.

To leverage digital exhaust, focus on the critical, always-present systems that enable digital delivery:

• In Digital Infrastructure we introduced the concept of version control

• In Section 6.1.3, “Application Delivery” we introduced the idea of a continuous delivery pipeline

• In Section 6.2.3, “Operations Management” we introduced monitoring as part of operations

These systems constitute a core digital pipeline, one that can be viewed as an engine producing digital

exhaust. This is in contrast to fragmented, poorly automated pipelines, or organizations with little

concept of pipeline at all. Such organizations end up relying on secondary artifacts and manual

processes to deliver digital value.

Figure 129. Governance Based on Activities and Artifacts

The illustration in Figure 129, “Governance Based on Activities and Artifacts” represents fragmented

delivery pipelines, with many manual processes, activities, and secondary artifacts (waterfall stage

approvals, designs, plans, manual ticketing, and so forth). Much IT governance assumes this model,

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 393

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

and also assumes that governance must often rely on aggregating and monitoring the secondary

artifacts.

In contrast (see Figure 130, “Governance of Digital Exhaust”), with a rationalized continuous delivery

pipeline, governance increasingly can focus on monitoring the digital exhaust.

Figure 130. Governance of Digital Exhaust

What can we monitor with digital exhaust for the purposes of governance?

• Development team progress against backlog

• Configuration management

• Conformance to architectural standards (through inspection of source and package managers, code

static analysis, and other techniques)

• Complexity and technical debt

• Performance and resource consumption of services

• Performance of standards against automated hardening activities (e.g., Simian Army)

As noted above, certain governance objectives may require the pipeline itself to be adapted; e.g., the

addition of static code analysis, or implementation of hardening tools such as Simian Army.

Additional Automation

The DevOps Audit Toolkit provides an audit perspective on pipeline automation [85]. This report

provides an important set of examples demonstrating how modern DevOps toolchain automation can

fulfill audit objectives as well or better than “traditional” approaches. This includes a discussion of

alternate approaches to the traditional control of “separation of duties” for building and deploying

code. These approaches include automated code analysis and peer review as a required control.

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

394 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

There are a variety of ways the IT pipeline can be automated. Many components are seen in real-world

pipelines:

• Source repositories

• Build managers

• Static code analyzers

• Automated user interface testing

• Load testing

• Package managers

• More sophisticated continuous deployment infrastructure

and much more.

Additionally, there may still be a need for systems that are secondary to the core pipeline:

• Service or product portfolio

• Workflow and Kanban-based systems (one notable example is workflow to ensure peer review of

code)

• Document management

There may also be a risk repository if the case can’t be made to track risks using some other system.

The important thing to remember when automating risk management is that risks are always with

respect to some thing.

A risk repository needs to be integrated with subject inventories, such as the Service Portfolio and

relevant source repositories and entries in the package manager. Otherwise, risk management will

remain an inefficient, highly manual process.

What are the things that may present risks?

• Products/services

◦ Their ongoing delivery

◦ Their changes and transformations (releases)

◦ Their revenues

• Customers and their data

• Employees and their positions

• Assets

• Vendors

• Other critical information

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 395

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Evidence of Notability

There is substantial friction between classical governance concerns and new digital operating models.

See Jez Humble’s Lean Enterprise for one discussion [138]. The DevOps Audit Defense Toolkit provides

another window into this topic [85].

Limitations

The Lean and Agile challenge to governance arises primarily in R&D-centric environments. Classic

governance practices are well suited for purely operational environments, where they have been

honed over decades.

Related Topics

• Digital Value

• Lean Management

• DevOps

• Investment and Portfolio

• Sourcing

• Governance Fundamentals

• Governance Elements

• Risk Management

• Security

6.4.2. Information Management

Area Description

Information is nothing new to the scaling digital organization. Like other topics in this document in the

enterprise context, the digital organization has been managing information in some way since the

earliest days of your organization.

Perhaps the company started by offering a social media-oriented service. It needed to track users and

their activity. Or perhaps it started off with a focus on data science and analytics; the first product was

based on harvesting insights from large data sets. Just as this document does not cover the specifics of

programming languages or technical architectures, it also leaves the more technical aspects of data

science and analytics to other guidance.

However, it is at the largest scale that organizations require the establishment of formal

governance, control, and management techniques for information as a distinct and coherent

problem domain. Before, the practitioner might have been interested in “customer data” or “sales

data” or “supply chain data”. Now, they are concerned with data in general, and how to manage it,

wherever and whatever it is.

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

396 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

They are also concerned with information, knowledge, records, reports, and a wide variety of other

overlapping, and often difficult to define, concepts.

Information is the lifeblood of business. Simple records are the foundation of survival: lose the

customer’s order, and the business won’t be in business long. Beyond such basics, the insights that can

be gained from your data are increasingly critical competitive advantage. Whether or not the company

started with a focus on data science, it probably has data scientists at this level of scale.

The sheer scale of the data is starting to become unmanageable. It costs money to store, and how much

is needed? Lawyers start questioning whether it is truly necessary to keep certain data indefinitely;

they seem to think there is risk there.

We are also periodically confronted with seemingly wasteful duplication of data — isn’t it possible to

be a bit more efficient? Quality and security concerns are also increasing. We see competitors go out of

business due to cyberattacks, and pervasive data quality issues also can be a serious threat to your

operations and customer relationships.

Yet, when attempts are made to manage for more efficient or better-governed uses of data, the

resulting cost and bureaucracy cause concern (not to mention receiving complaints about

development delays and loss of business agility). It is an ongoing challenge, and it does not seem

anyone anywhere has it entirely figured out.

IMPORTANT

As with other Competency Areas in this document, this Competency Area will

introduce this topic “on its own terms”. It will then add additional context and

critique in subsequent Competency Categories.

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 397

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.4.2.1. Information and Value

Description

6.4.2.1.1. The Origins of Digital Information

Writing provides a way of extending human memory by imprinting

information into media less fickle than the human brain.

— AncientScripts

We have talked of representation previously, in the context of task management. Common

representation is essential to achieving common ground when human interactions are time or space-

shifted. Understanding representation is fundamental to understanding information.

Humans have been representing information since at least the creation of writing. As early as 3000

BCE, the ancient Sumerians used cuneiform to record information. Cuneiform was created by pressing

wedge-shaped sticks into wet clay. A particular impression or set of impressions corresponded to a

citizen, or how much grain they grew, or how much beer they received. Certainly, the symbols shown

are not the same as the beer, or the grain, or the long-dead Sumerian. This may seem obvious, but it

can be tempting to confuse the representation with the reality. This is known as the reification

fallacy.

6.4.2.1.2. The Measurable Value of Information

All information management can be understood as a reduction in uncertainty. And we can and should

quantify the value of having the information versus the cost of capturing and maintaining it.

Doug Hubbard, in the classic How to Measure Anything [134], asks the following questions when the

measurement is proposed (p.47):

1. What is the decision this measurement is supposed to support?

2. What is the definition of the thing being measured in terms of observable consequences?

3. How, exactly, does this thing matter to the decision being asked?

4. How much do you know about it now (i.e., what is your current level of uncertainty)?

5. What is the value of additional information?

As he states: “All measurements that have value must reduce the uncertainty of something that affects

some decision with economic consequences.” While Hubbard is proposing these questions in the

context of particular analysis initiatives, they are also excellent questions to ask of any proposal to

manage information or data.

Information management, in the context of digital systems, adds value through improving efficiency,

effectiveness, and optimizing risk (our three primary categories of value). Since digital systems started

off primarily as efficiency aids, we will discuss efficiency first.

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

398 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.4.2.1.3. Information, Efficiency, and Effectiveness

We have periodically discussed historical aspects of computing and digital systems, but not yet covered

some of the fundamental motivations for their invention and development.

As technology progressed through the late 19th and early 20th centuries, applied mathematics became

increasingly important in a wide variety of areas such as:

• Ballistics (e.g., artillery) calculations

• Cryptography

• Atomic weapons

• Aeronautics

• Stress and load calculations

Calculations were performed by “computers”. These were not automated devices, but rather people,

often women, tasked with endless, repetitive operation of simple adding machines, by which they

manually executed tedious calculations to compile (for example) tables of trigonometric angles.

It was apparent at least since the mid-19th century that it would be possible to automate such

calculation. In fact, mathematical devices had long existed; for example, the abacus, Napiers' Bones,

and the slide rule. But such devices had many limitations. The vision of automating digital calculations

first came to practical realization through the work of Charles Babbage and Ada Lovelace, who took

significant steps through the design and creation of the Difference and Analytical Engines.

After Babbage, the development of automated computation encountered a hiatus. Purely mechanical

approaches based on gears and rods could not scale, and the manufacturing technology of Babbage’s

day was inadequate to his visions — the necessary precision and power could not be achieved by

implementing a general-purpose computer using his legions of gears, cams, and drive shafts. However,

mathematicians continued to explore these areas, culminating in the work of Alan Turing who

established both the potential and the limits of computing, initially as a by-product of investigations

into certain mathematical problems of interest at the time.

Around the same time, the legendary telecommunications engineer Claude Shannon had developed

essential underpinning engineering in expressing Boolean logic in terms of electronic circuits, and

rigorous mathematical theory describing the fundamental characteristics and limitations of

information transmission (e.g., the physical limits of copying one bit of data from one location from

another) [254]. Advances in materials and manufacturing techniques resulted in the vacuum tube,

ideally suited to the combination of Shannon digital logic with Turing’s theories of computation, and

thus the computer was born. It is generally recognized that the first practical general-purpose

computer was developed by the German Konrad Zuse.

Turing and a fast-growing cohort of peers driven by (among other things) the necessities of World War

II developed both theory and the necessary practical understandings to automate digital computation.

The earliest machines were used to calculate artillery trajectories. During World War II,

mathematicians and physicists such as John von Neumann recognized the potential of automated

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 399

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

computation, and so computers were soon also used to simulate nuclear explosions. This was a critical

leap beyond the limits of manual “computers” pounding out calculations on adding machines.

The business world was also attentive to the development of computers. Punched cards had been used

for storing data for decades preceding the invention of automated computers. Record-keeping at scale

has always been challenging — the number of Sumerian clay tablets still in existence testifies to that!

Industrial-era banks, insurers, and counting-houses managed massive repositories of paper journals

and files, at great cost. A new form of professional emerged: the "white collar worker.

Any means of reducing the cost of this record-keeping was of keen interest. Paper files were replaced

by punched cards. Laborious manual tabulation was replaced by mechanical and electro-mechanical

techniques, that could, for example, calculate sums and averages across a stack of punched cards, or

sort through the stack, compare it against a control card, and sort the cards accordingly.

During World War II, many business professionals found themselves in the military, and some

encountered the new electronic computers being used to calculate artillery trajectories or decrypt

enemy messages. Edmund Berkeley, the first secretary of the Association for Computing Machinery,

was one such professional who grasped the potential of the new technology [11]. After the war,

Berkeley advocated for the use of these machines to the leadership of the Prudential insurance

company in the US, while others did the same with firms in the UK.

What is the legacy of Babbage and Lovelace and their successors in terms of today’s digital economy?

The reality is that digital value for the first 60 years of fully automated computing systems was

primarily in service of efficiency. In particular, record-keeping was a key concern. Business computing

(as distinct from research computing) had one primary driver: efficiency. Existing business models

were simply accelerated with the computer. 300 clerks could be replaced by a $10 million machine and

a staff of 20 to run it (at least, that was what the sales representative promised). And while there were

notable failures, the value proposition held up such that computer technology continued to attract the

necessary R&D spending, and new generations of computers started to march forth from the

laboratories of Univac, IBM, Hewlett-Packard, Control Data, Burroughs, and others.

Efficiency ultimately is only part of the business value. Digital technology relentlessly wrings out

manual effort, and this process of automation is now so familiar and widespread that it is not

necessarily a competitive advantage. Harvard Business Review editor Nicholas Carr became aware of

this in 2003. He wrote a widely discussed article “IT Doesn’t Matter” in which he argued that: “When a

resource becomes essential to competition but inconsequential to strategy, the risks its creates become

more important than the advantages it provides.” [56]. Carr compared IT to electricity, noting that

companies in the early 20th century had vice-presidents of electricity and predicting the same for CIOs.

His article provoked much discussion at the time and remains important and insightful. Certainly, to

the extent IT’s value proposition is coupled only to efficiency (e.g., automating clerical operations), IT is

probably less important to strategy.

But as we have discussed throughout this document, IT is permeating business operations, and the

traditional CIO role is in question as mainstream product development becomes increasingly digital.

The value of correctly and carefully applied digital technology is more variable than the value of

electricity. At this 2018 writing, the five largest companies by market capitalization — Apple, Amazon,

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

400 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Google, Facebook, and Microsoft — are digital firms, based on digital products, the result of digital

strategies based on correct understanding and creative application of digital resources.

In this world, information enables effectiveness as much as, or even more than, efficiency.

6.4.2.1.4. The Importance of Context

Information management as we will discuss in the rest of this Competency Area arises from the large-

scale absorption of data into highly efficient, miniaturized, automated digital infrastructures with

capacity orders of magnitude greater than anything previously known. However, cuneiform and

quipu, hash marks on paper, financial ledgers, punched cards, vacuum tubes, transistors, and hard

disks represent a continuum, not a disconnected list. Whether we are looking at a scratch on a clay

tablet or the magnetic state of some atoms in a solid state drive, there is one essential question:

What do we mean by that?

Consider the state of those atoms on a solid state drive. They represent the numbers 547. But without

context, that number is meaningless. It could be:

• The numeric portion of a street address

• A piece of a taxpayer identification number

• The balance on a bank account

• A piece of the data uniquely identifying DNA in a crime

The state of this data may have significant consequences. A destination address might be wrong, a tax

return mis-identified. A credit card might be accepted or declined. A mortgage might be approved or

denied. Or the full force of the law may be imposed on an offender, including criminal penalties

resulting from a conviction on the evidence stored in the computer.

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 401

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

The COBIT Enabling Information guide [145] proposes a layered approach to this problem:

Table 23. COBIT Enabling Information layers

Layer Implication

Physical The media (paper, electronic) storing the data

Empirical The layer that observes the signals from the

physical, and distinguishes signal from noise

Syntactic The layer that encodes the data into symbols (e.g.,

ASCII)

Semantic The layer providing the rules for constructing

meaning from syntactical elements

Pragmatic The layer providing larger, linguistic structuring

Social The layer that provides the context and ultimately

consequence of the data (e.g., legal, financial,

entertainment)

Without all these layers, the magnetic state of those atoms is irrelevant.

The physical, empirical, and syntactic layers (hardware and lowest-level software) are in general out of

scope for this document. They are the concern of broad and deep fields of theory, research,

development, market activity, and standards. (Digital Infrastructure on infrastructure is the most

closely related).

A similar but simpler hierarchy is:

• Data

• Information

• Knowledge

Data is the context-less raw material.

Information is data + context, which makes it meaningful and actionable.

Knowledge is the situational awareness to make use of information.

Semantic, pragmatic, and social concerns (information and knowledge) are fundamental to this

document and Competency Area. At digital scale — terabytes, petabytes, exabytes — establishing the

meaning and social consequence of data is a massive undertaking. Data management and records

management are two practices by which such meaning is developed and managed operationally. We

will start by examining data management as a practice.

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

402 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Evidence of Notability

Information management and its related value is the basis of computing and IT. Its notability is

evidenced in the history of the human race’s approaches to managing it, from cuneiform to the present

day.

Limitations

Information tends to be static and passive, where process is dynamic.

Related Topics

• Digital Value

• Computing and Information Principles

• Application Basics

• The CAP Principle

• Risk Management

• Enterprise Information Management

6.4.2.2. Enterprise Information Management

Description

6.4.2.2.1. Data Management and the DMBOK®

Data management is a long established practice in larger IT organizations. As a profession, it is

represented by the Data Management Association (DAMA). DAMA developed and supported the Data

Management Body of Knowledge (DMBOK), which is a primary influence on this Competency Category.

The Data Management Body of Knowledge (DMBOK)

The Data Management Body of Knowledge (DMBOK) [80] is similar to other frameworks presented in

this document (e.g., ITIL, COBIT, and PMBOK). It includes ten major functions:

• Data Governance

• Data Architecture Management

• Data Development

• Data Operations Management

• Data Security Management

• Reference and Master Data Management

• Data Warehousing and Business Intelligence Management

• Document and Content Management

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 403

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• Metadata Management

• Data Quality Management

Attentive readers will notice some commonalities with general areas covered in this document:

Governance, Architecture, Operations, and Security in particular. Data at scale is a significant problem

area, and so the DMBOK provides a data-specific interpretation of these broader concerns, as well as

more specialized topics.

We will not go through each of the DMBOK functions in order, but we will be addressing most of them

throughout this Competency Category.

6.4.2.2.2. Data Architecture and Development

Data and Process

In order to understand data, we must understand how it is being used. We covered process

management in Section 6.3.3, “Organization and Culture”. Data is often contrasted with process since

processes take data inputs and produce data outputs. The fundamental difference between the two can

be seen in the core computer science concepts of algorithms (process) and data structures. Data

emerges, almost unavoidably, when processes are conceived and implemented. A process such as “Hire

Employee” implies that there is an employee, and also a concept of “hire” with associated date and

other circumstances. It may seem obvious, but data structures are surprisingly challenging to develop

and gain consensus on.

The Ontology Problem

The boundaries of an entity are arbitrary, our selection of entity types is

arbitrary, the distinction between entities, attributes, and relationships is

arbitrary.

— Graeme Simsion, Preface to Kent's Data and Reality

Suppose you are discussing the concept of “customer” with a teammate. You seem to be having some

difficulty understanding each other. (You are from support and she is from sales.) You begin to realize

that you have two different definitions for the same word:

• You believe that “customer” means someone who has bought something

• She believes that “customer” includes sales leads

This is a classic issue in data management: when one term means two things. It can lead to serious

confusion and technical difficulties if these misunderstandings affect how systems are built and

operated. Because of this, it is critical to have rational and clear discussions about “what we mean”. In

a startup driven by one or two visionary founders, perhaps little or no time is needed for this. The

mental model of the problem domain may be powerfully understood by the founder, who controls the

key architectural decisions. In this way, a startup can progress far with little formalized concern for

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

404 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

data management.

But as a company scales, especially into multi-product operations, unspoken (tacit) understandings do

not scale correspondingly. Team members will start to misunderstand each other unless definitions are

established. This may well be needed regardless of whether data is being held in a database. The

concept of a "controlled vocabulary” is, therefore, key to Enterprise Information Management.

Definition: Controlled Vocabulary

“A controlled vocabulary is an information tool that contains standardized words and phrases

used to refer to ideas, physical characteristics, people, places, events, subject matter, and many

other concepts. Controlled vocabularies allow for the categorization, indexing, and retrieval of

information.” [123]

In many areas of business, the industry defines the vocabulary. Retailers are clear on terms like

“supplier”, “cost”, and “retail” (as in amount to be charged for the item; they do not favor the term

“price” as it is ambiguous). The medical profession defines “patient”, “provider”, and so forth.

However, in more flexible spaces, where a company may be creating its own business model, defining

a controlled vocabulary may be essential. We see this even in books, which provide glossaries. Why

does a book have a glossary, when dictionaries exist? Glossaries within specific texts are defining a

controlled, or highly specific, vocabulary. General-purpose dictionaries may list multiple meanings for

the same word, or not be very precise. By developing a glossary, the author can make the book more

consistent and accurate.

There are techniques for developing controlled vocabularies in efficient and effective ways. The term

“ontology engineering” is sometimes used [82]. While specialists may debate the boundaries, another

important practice is “conceptual data modeling”. All of these concepts (controlled vocabularies,

glossaries, ontologies, conceptual data models) are independent of computers. But the initial

development of controlled vocabulary is the first step towards automating the information with

computers.

Data Modeling

An information system (e.g., database) is a model of a small, finite subset of the

real world … We expect certain correspondences between constructs inside

the information system and in the real world. We expect to have one record in

the employee file for each person employed by the company. If an employee

works in a certain department, we expect to find that department’s number in

that employee’s record.

— William Kent, Data and Reality

Databases are the physical representation of information within computing systems. As we discussed

above, the data contained within them corresponds to some “real world” concept we hold.

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 405

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

There are well-known techniques for translating concepts (e.g., controlled vocabularies) into technical

database structures. The best known of these is relational data modeling.

Relational data modeling is often presented as having three layers:

• Conceptual

• Logical

• Physical

The following descriptions of the layers are typical:

Table 24. Three Data Modeling Levels

Conceptual Independent of computing platform — no

assumption of any database. Does include simple

relationships. Does not include attributes.

Logical Assumes a database, but not what kind. Includes

more detailed relationships and attributes.

Human-readable names.

Physical Intended for a specific database platform (e.g.,

Oracle or MySQL). Computer-compatible names.

Can be used to generate data definition scripts.

A simple conceptual model might appear as shown in Figure 131, “Conceptual Data Model”.

Figure 131. Conceptual Data Model

The above model might be a fragment from a sales system. It shows that their are four major entities:

• Customer

• Invoice

• Line Item

• Product

This might be elaborated into a logical model (see Figure 132, “Logical Data Model”).

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

406 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 132. Logical Data Model

The logical model includes attributes (Customer First Name). The line between them has particular

“adornments” representing a well-known data modeling notation called “crow’s foot”. In this case, the

notation is stipulating that one customer may have zero to many invoices, but any invoice must have

one and only one customer. Notice also that the entity and attribute names are human-readable.

Then, the logical model might be transformed into physical (see Figure 133, “Physical Data Model”).

Figure 133. Physical Data Model

The names are no longer human-readable in full, nor do they have spaces. Common data types such as

“name” and “date” have been replaced with brief codes (“N” and “DT”). In this form, the physical data

model can be (in theory) translated to data definition language that can result in the creation of the

necessary database tables.

Database Administration

Continuing from above: the data modeling work might have been performed by a data architect or

analyst, or a developer. Perhaps a pictorial representation is not even created (formal data modeling as

above is less likely in a startup). But at some point (assuming a relational database) the following

statement will be developed:

CREATE TABLE SALES.CUST

(CUST_ID NUMBER,

CUST_FIRST_N VARCHAR2(32),

CUST_LAST_N VARCHAR2(32))

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 407

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

In the above SQL (Structured Query Language) statement, the Customer entity has been finally

represented as a series of encoded statements an Oracle database can understand, including

specification of the data types needed to contain Customer Identifier (a number type) and the

customer’s first and last names (a 32-character long string field, called “VARCHAR” in Oracle).

If a DBA issues that statement to the Oracle database, the table will be created. Once the structure is

created, it can (within limits) hold any number of customers, in terms of knowing their first and last

names and an ID number, which might or might not be assigned automatically by the system. (Of

course, we would want many more attributes; e.g., customer address.)

IMPORTANT

Notice that this database would only work for regions where customers have

“first” and “last” names. This may not be true in all areas of the world. See

Falsehoods Programmers Believe about Names.

The Oracle software is installed on some node or machine and receives the statement. The database

adds the table suggested (see Figure 134, “Database Creates Table”).

Figure 134. Database Creates Table

Further tables can easily be added in the same manner (see Figure 135, “Multiple Tables in Database”).

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

408 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 135. Multiple Tables in Database

What is a database in this sense? The important point is that it is a common query space — you can ask

for data from either the CUST, INVOICE, or Inventory LINe (INV_LN) table or ask the database to “join”

them so you can see data from both. (This is how, for example, we would report on sales by customer.)

Patterns and Reference Architectures

Reference architectures and design patterns are examples of approaches that are known to work for

solving certain problems. In other words, they are reusable solutions for commonly occurring

scenarios. They apply to core software development, often suggesting particular class structures [108].

However, the concept can also be applied to data and system architectures; e.g., [101], [31]. David Hay

[127], and Len Silverston [258], [257], [259] have documented data models for a variety of industries.

Reference architectures also can provide guidance on data structures, as they often contain industry

learnings. Examples include:

Table 25. Reference Architectures

Organization Domain Standard(s)

TM Forum Telecommunications Frameworx, ETOM — Enhanced

Telecommunications Operating

Model, TAM, SIDS

Association for Retail Technology

Standards

Retail ARTS Model

ACORD.org Insurance ACORD Framework

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 409

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Organization Domain Standard(s)

Banking Industry Architecture

Network

Banking BIAN Service Landscape

The Open Group Exploration,

Mining, Metals, and Minerals

(EMMM™) Forum

Exploration, Mining, and

Minerals

Exploration and Mining Business

Reference Model

The Open Group IT4IT Forum Information Technology

Management

IT4IT Standard

Patterns and reference architectures can accelerate understanding, but they also can over-complicate

solutions. Understanding and pragmatically applying them is the challenge. Certainly, various well-

known problems such as customer address management have surprising complexity and can benefit

from leveraging previous work.

The above description is brief and “classic” — the techniques shown here date back decades, and there

are many other ways the same problem might be represented, analyzed, and solved. But in all cases in

data management, the following questions must be answered:

• What do we mean?

• How do we represent it?

The classic model shown here has solved many business problems at large scale. But there are critical

limitations. Continuing to expand one “monolithic” database does not work past a certain point, but

fragmenting the data into multiple independent systems and data stores also has challenges. We will

discuss these further as this Competency Category progresses.

6.4.2.2.3. Enterprise Information Management

The previous section was necessary but narrow. From those basic tools of defining controlled

vocabularies and mapping them onto computing platforms, has come today’s digital economy and its

exabytes of data.

The relational database as represented in the previous Competency Category can scale, as a single unit,

to surprising volumes and complexity. Perhaps the most sophisticated and large-scale examples are

seen in ERP (more detail on this in the Topics section). An ERP system can manage the supply chain,

financials, human resources, and manufacturing operations for a Fortune 50 corporation, and itself

constitute terabytes and tens of thousands of tables.

However, ERP vendors do not sell solutions for leading-edge Digital Transformation. They represent

the commoditization phase of the innovation cycle. A digital go-to-market strategy cannot be based

solely on them, as everyone has them. Competing in the market requires systems of greater originality

and flexibility, and that usually means some commitment to either developing them with internal staff

or partnering closely with someone who has the necessary skills. And as these unique systems scale up,

a variety of concerns emerge, requiring specialized perspectives and practices.

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

410 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

The previous Competency Category gave us the basics of data storage. We turn to some of the emergent

practices seen as Enterprise Information Management scales up:

• Master data, data integration, and the System of Record

• Reference data management

• Data quality management

Data Integration and the “System of Record”

In the last section, we analyzed a business problem as a data model and created a simple database.

Notice that if data is not in the database table, the database doesn’t know about it. Therefore, if there is

data held in other parts of the company, it must be loaded into the database before it can be combined

with that database’s other data. This can also apply to data held by cloud providers.

Let’s go back to our emergence model. Think about moving from one database to two.

In the example below, the CRM system is in the cloud, and data is also being imported from the product

database (see Figure 136, “Data Integrations”).

Figure 136. Data Integrations

The process of identifying such remote data and loading it into a database to enable work to be done is

known as “integration” and is a complex domain [129]. There are many ways data can be integrated,

and industry views of what is “good practice” have changed over the years.

NOTE

Thinking in terms of the emergence model, you have likely been integrating data in

various ways for some time. However, in a large, governed organization, you need to

formalize your understandings and approach.

Take the above diagram and multiply it by several hundred times, and you will start to get an idea of

the complexity of Enterprise Information Management at scale in the enterprise. How do we decide

what data needs to flow where? What happens if we acquire another company and can’t simply move

them over to our systems immediately? What department should properly own a given database?

These and similar questions occupy data professionals worldwide.

As we see from the above picture, the same data may exist in multiple systems. Understanding what

system is the “master” is critical. Product data should (in general) not flow from the sales database

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 411

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

back into the product system. But what about sales information flowing from the sales database back

to the CRM system? This might be helpful so that people using the CRM system understand how much

business a customer represents.

The “System of Record” concept is widely used in data management, records management, and

Enterprise Architecture to resolve these kinds of questions. It is often said that the System of Record is

the “master” for the data in question, and sustaining the System of Record concept may also be called

Master Data Management. In general, the System of Record represents data that is viewed as:

• The most complete and accurate

• Authoritative, in terms of resolving questions

• Suitable for legal and regulatory purposes

• The “source” for other systems to refer to

It is important to realize that the designation “System of Record” is a role that a given database (or

system) plays with respect to some data. The “sales” database above might be the System of Record for

invoices, but is not the System of Record for products or customers (see Figure 137, “System of

Record”).

Figure 137. System of Record

The System of Record is often the system of origin — the system where the data is first captured — but

not always. In retail, sales transactions are not considered authoritative until they pass through sales

audit, and so the System of Record for a transaction is not the cash register, which has a database in it

(see Figure 138, “Data Flow for Sales Information”).

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

412 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 138. Data Flow for Sales Information

System of Record logically would be the first place to pull data from, but sometimes due to

performance or security concerns, data may be replicated into an alternate source better suited for

distributing the data. A good example of this is a human resources system that feeds the corporate

directory; the human resources system (e.g., Oracle HR, or Workday) is the actual System of Record for

employee names and identifiers, but most people and other systems in the company will pull the data

from the directory (e.g., Microsoft Exchange — see Figure 139, “Data Flow for Human Resources Data”).

Figure 139. Data Flow for Human Resources Data

Reference Data Management

Reference data is any kind of data that is used solely to categorize other data

found in a database, or solely for relating data in a database to information

beyond the boundaries of the enterprise.

— Malcolm Chisholm, Managing Reference Data

There are various ways to categorize data. Frequently, it is categorized by business process or

functional area (sales, marketing, support, etc.). However, another important way to understand data

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 413

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

is by its non-functional characteristics. Keep in mind that some data is transactional (e.g., Invoice and

Invoice Line Item in the above example) and some is more persistent (Customer, Product).

When data is highly persistent and used primarily for categorizing across an enterprise, we may call it

“reference” data. Classic examples of reference data include:

• Geographic information (cities, states, zip codes)

• Widely used “codes” in the business (medical insurance makes extensive use of these)

• An organization’s chart of accounts

Reference data is among the first data to be shared between systems. It is often the basis for

dimensions in analytic processing, which we cover in the next Competency Category.

Commercial Data

Data is not just an internal artifact of organizations. Data can be bought and sold on the open market

like any other commodity. Marketing organizations frequently acquire contact information for email

and other campaigns. Here are examples of commercial data available through market sources:

Table 26. Commercial Data

Data type Market provider

Stock prices Bloomberg, Reuters

Credit ratings Trans-Union, Experian

Known security issues NIST Common Vulnerability database

Technology products and availability dates BDNA Technopedia

Other forms include:

• Transactions of record (e.g., real estate)

• Governmental actions (these may be nominally free from the government, but frequently are

resold by vendors who make the data more accessible)

For a detailed examination of the privacy issues relating to commercial data, especially when

governmental data is commercialized, see [86].

Data Quality

Human beings cannot make effective business decisions with flawed,

incomplete, or misleading data.

— Danette McGilvary, Executing Data Quality Projects

We touched on quality management and continuous improvement in Section 6.3.3, “Organization and

Culture”. Data is an important subject for continuous improvement approaches. Sometimes, the best

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

414 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

way to improve a process is to examine the data it is consuming and producing, and an entire field of

data quality management has arisen.

Poor data quality costs the enterprise in many ways:

• Customer dissatisfaction (“they lost my order/reservation”)

• Increased support costs (30 minutes support operator time spent solving the problem)

• Governance issues and regulatory risk (auditors and regulators often check data quality as

evidence of compliance to controls and regulations)

• Operational and supply chain issues

• Poor business outcomes

The following activities are typically seen in data quality management (derived and paraphrased from

[80]):

• Identify measurable indicators of data quality

• Establish a process for acting upon those indicators (what do we do if we see bad data?)

• Actively monitor the quality

• Fix both data quality exceptions, and their reasons for occurring

Data quality indicators may be automated (e.g., reports that identify exceptions) or manual (e.g., audits

of specific records and comparison against what they are supposed to represent).

It is important to track trending over time so that the organization understands if progress is being

made.

6.4.2.2.4. Enterprise Records Management

Not all enterprise information is stored in structured databases; in fact, most isn’t. (We will leave aside

the issues of rich content such as audio, images, and video.) Content management is a major domain in

and of itself, which shades into the general topic of knowledge management (to be covered in the

Topics section). Here, we will focus on records management. As discussed above, businesses gained

efficiency through converting paper records to digital forms. But we still see paper records to this day:

loan applications, doctor’s forms, and more. If you have a car, you likely have an official paper title to

it issued by a governmental authority. Also, we above defined the concept of a System of Record as an

authoritative source. Think about the various kinds of data that might be needed in the case of

disputes or legal matters:

• Employee records

• Sales records (purchase orders and invoices)

• Contracts and other agreements

• Key correspondence with customers (e.g., emails directing a stock broker to “buy”)

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 415

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

These can take the form of:

• Paper documents in a file cabinet

• Documents scanned into a document management system

• Records in a database

In all cases, if they are “official” — if they represent the organization’s best and most true

understanding of important facts — they can be called “records”.

This use of the word “records” is distinct from the idea of a “record” in a database. Official records are

of particular interest to the company’s legal staff, regulators, and auditors. Records management is a

professional practice, represented by the Association of Records Management Administrators

(www.arma.org). Records management will remain important in digitally transforming enterprises, as

lawyers, regulators, and auditors are not going away.

One of the critical operational aspects of records management is the concept of the retention

schedule. It is not usually in an organization’s interest to maintain all data related to all things in

perpetuity. Obviously, there is a cost to doing this. However, as storage costs continue to decrease,

other reasons become more important. For example, data maintained by the company can be used

against it in a lawsuit. For this reason, companies establish records management policies such as:

• Human resources data is to be deleted seven years after the employee leaves the company

• POS data is to be deleted three years after the transaction

• Real estate records are to be deleted ten years after the property is sold or otherwise disposed of

This is not necessarily encouraging illegal behavior. Lawsuits can be frivolous, and can “go fishing”

through a company’s data if a court orders it. A strict retention schedule that has demonstrated high

adherence can be an important protection in the legal domain.

IMPORTANT
If you or your company are involved in legal issues relating to the above, seek a

lawyer. This discussion is not intended as legal advice.

We will return to records management in the discussion below on e-discovery and cyberlaw.

Records management drives us to consider questions such as “who owns that data” and “who takes

care of it”. This leads us to the concept of data governance.

6.4.2.2.5. Data Governance

This document views data governance as based in the fundamental principles of governance from

Section 6.4.1, “Governance, Risk, Security, and Compliance”:

• Governance is distinct from management

• Governance represents a control and feedback mechanism for the digital pipeline

• Governance is particularly concerned with the external environment (markets, brands, channels,

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

416 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

regulators, adversaries)

By applying these principles, we can keep the topic of “data governance” to a reasonable scope. As

above, let’s focus on the data aspects of:

• Risk management, including security

• Compliance

• Policy

• Assurance

Information-Related Risks

The biggest risk with information is unauthorized access, discussed previously as a security concern.

Actual destruction, while possible, is also a concern; however, information can be duplicated readily to

mitigate this. Other risks include regulatory and civil penalties for mis-handling, and operational risks

(e.g., from bad data quality).

There is a wide variety of specific threats to data, leading to risk; for example:

• Data theft (e.g., by targeted exploit)

• Data leakage (i.e., unauthorized disclosure by insiders)

• Data loss (e.g., by disaster and backup failure)

The standard risk and security approaches suggested in Section 6.4.1, “Governance, Risk, Security, and

Compliance” are appropriate to all of these. There are particular technical solutions such as data

leakage analysis that may figure in a controls strategy.

A valuable contribution to information management is a better understanding of the risks represented

by data. We have discussed simple information sensitivity models (for example Public, Internal,

Confidential, Restricted). However, a comprehensive information classification model must

accommodate:

• Basic sensitivity (e.g., confidential)

• Ownership/stewardship (e.g., senior vice-president HR, HR/IS director)

• Regulatory aspects (e.g., SOX or HIPAA)

• Records management (e.g., “Human Resources”, “Broker/Client Communications”, “Patient

History”)

Beyond sensitivity, the regulatory aspects drive both regulatory and legal risks. For example,

transmitting human resources data related to German citizens off German soil is illegal, by German

law. (There are similar regulations at the European Union level.) But if German human resources data

is not clearly understood for what it is, it may be transmitted illegally. Other countries have different

regulations, but privacy is a key theme through many of them. The US HIPAA regulations are stringent

in the area of US medical data. In order to thoroughly manage such risks, data stores should be tagged

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 417

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

with the applicable regulations and the records type.

The broad topic of individuals' expectations for how data relating to them is stored and secured is

called data privacy. It drives regulations, lawsuits, standards, and is a frequent topic of news coverage

(e.g., when a mass data breach occurs). Bad data quality also presents risks as mentioned above. In

fact, [84] sees data quality as a kind of control (in the sense of risk mitigation).

E-discovery and Cyberlaw

Information systems and the data within them can be the subject of litigation, both civil and criminal.

A criminal investigation may ensue after a security breach. Civil and regulatory actions may result

from (for example) inappropriate behavior by the organization, such as failing to honor a contract. In

some cases, records are placed under a “legal hold”. This means that (whether physical or digital) the

records must be preserved. The US Federal Rules of Civil Procedure [277] covers the discovery of

information stored in computing systems. Successfully identifying the data in scope for the hold

requires disciplined approaches to records management and data classification, as described above.

IMPORTANT
Again, if you or your company are involved in legal issues relating to the above,

seek a lawyer. This discussion is not intended as legal advice.

Evidence of Notability

Information management is the basis of computing and IT. Its notability is evidenced in the existence

of professional associations like the Data Management Association and the Information and Records

Management Association, as well as the revenues of companies like Oracle and IBM for their data

management products, and finally the broad career paths available for DBAs and data scientists.

Limitations

Data management, as a discipline concerned with the general question of information, is abstract and

only arises as a formal focus of attention in larger organizations.

Related Topics

• Digital Value

• Computing and Information Principles

• Application Basics

• The CAP Principle

• Risk Management

• Information Value

• Architecture Practices

• Analytics

• Agile Information Management

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

418 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.4.2.3. Analytics

Description

6.4.2.3.1. Analytics in Context

One important aspect of digital product development is data analytics. Analysis of organizational

records has always been a part of any concern large enough to have formal records management. The

word for this originally was simply “reporting”. A set of files or ledgers would be provided to one or

more clerks, who would manually review them and extract the needed figures.

We have touched on reporting previously, in our discussion of metrics. Here is a more detailed

examination. The compilation of data from physical sources and its analysis for the purposes of

organizational strategy was distinct from the day-to-day creation and use of the data. The clerk who

attended to the customer and updated their account records had a different role than the clerk who

added up the figures across dozens or hundreds of accounts for the annual corporate report.

What do we mean by the words “analysis” or “analytics” in this older context? Just compiling totals

and averages was expensive and time-consuming. Cross-tabulating data (e.g., to understand sales by

region) was even more so. As information became more and more automated, the field of "decision

support” (and its academic partner "decision sciences”) emerged. The power of extensively

computerized information that could support more and more ambitious forms of analysis gave rise to

the concept and practice of "data warehousing” [141]. A robust profession and set of practices emerged

around data warehousing and analytics. As infrastructure became more powerful and storage less

expensive, the idea of full-lifecycle or closed-loop analytics originated.

When analyzing data is costly and slow, the data analysis can only affect large, long-cycle decisions. It

is not a form of fast feedback. The annual report may drive next year’s product portfolio investment

decisions, but it cannot drive the day-to-day behavior of sales, marketing, and customer service (see

Figure 140, “Strategic Analytics”).

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 419

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 140. Strategic Analytics

However, as analysis becomes faster and faster, it can inform operational decisions (see Figure 141,

“Operational Analytics (Closed-Loop)”).

Figure 141. Operational Analytics (Closed-Loop)

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

420 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

And, for certain applications (such as an online traffic management application on your smartphone),

analytics is such a fundamental part of the application that it becomes operational. Such pervasive use

of analytics is one of the hallmarks of Digital Transformation.

6.4.2.3.2. Data Warehousing and Business Intelligence

The reason to build a DW is to have the ability to make better decisions faster

based on information using current and historical data.

— Paul Westerman, Data Warehousing: Using the Wal-Mart Model

According to the DMBOK, “A Data Warehouse (DW) is a combination of two primary components. The

first is an integrated decision support database. The second is the related software programs used to

collect, cleanse, transform, and store data from a variety of operational and external sources … Data

warehousing is a technology solution supporting Business Intelligence (BI)” [80]. The vision of an

integrated DW for decision support is compelling and has provided enough value to support an

industry sector of specialized hardware, software, training, and consulting. It can be seen as a common

architectural pattern, in which disparate data is aggregated and consolidated for purposes of analysis,

reporting, and for feedback into strategy, tactics, and operational concerns.

Figure: Figure 142, “Data Warehousing/Business Intelligence Architecture” illustrates a Data

Warehousing/Business Intelligence (DW/BI) implementation pattern. The diagram expands on the

above contextual diagrams, showing the major business areas (sales, etc.) as data sources. (In a large

organization this might be dozens or hundreds of source systems.) These systems feed a "data services

layer” that both aggregates data for analytics, as well as providing direct services such as data

cleansing and master data management.

It is important to understand that in terms of this document’s emphasis on product-centric

development that the data services layer itself is an internal product. Some might call it more of a

component than a feature, but it is intended in any case as a general-purpose platform that can

support a wide variety of use-cases.

“Factoring out” data services in this way may or may not be optimal for any given organization,

depending on maturity, business objectives, and a variety of other concerns. However, at scale, the

skills and practices do become specialized, and so it is anticipated that we will continue to see

implementation strategies similar to this figure. Notice also that the data services layer is not solely for

analytics; it also supports direct operational services. Here are discussions of the diagrams' various

elements:

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 421

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 142. Data Warehousing/Business Intelligence Architecture

Operational applications. These are the source systems that provide the data and require data

services.

Quality analysis. This is the capability to analyze data for consistency, integrity, and conformity with

expectations, and to track associated metrics over time. (See data quality.)

Extraction and archiving. As data storage has become less expensive, maintaining a historical record

of data extracts in original format is seen more often in data warehousing. (This may use a schema-less

data lake for implementation.)

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

422 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Master data reconciliation. When master data exists in diverse locations (e.g., in multiple System of

Record) the ability to reconcile and define the true or “golden” master may be required. This is useful

directly to operational systems, as an online service (e.g., postal service address verification), and is

also important when populating the DW or mart. Master data includes reference data, and in the data

warehousing environment may be the basis for “dimensions”, a technical term for the ways data can

be categorized for analytic purposes (e.g., retail categorizes sales by time, region, and product line).

Maintaining a history of dimensions is a challenging topic; search on the “slowly changing dimension”

problem for further information.

Metadata. Commonly understood as “data about data”, we have previously encountered the concept

of metadata and will further discuss it in the next Competency Category.

Transformation and load. Converting data to a consistent and normalized form has been the basis of

enterprise data warehousing since it was first conceived. (We will discuss the schema-less data lake

approach in the next Competency Category.) A broad market segment of "Extract, Transform, Load”

(ETL) tooling exists to support this need.

Sourcing and archiving. This represents the physical data store required for the extraction and

archiving capability. Again, it may be implemented as a schema-less data lake, or as a traditional

relational structure.

Integrated DW. The integrated or enterprise DW is the classic, normalized, often massive, historical

data store envisioned originally by Bill Inmon [141]. While the development effort in creating fully

normalized DWs has limited them, they nevertheless are important, valuable, and frequently

encountered in larger organizations.

Data lake. A newer form of data aggregation is seen in the schema-less "data lake”. As discussed in the

next Competency Category, schema-less approaches accept data in native formats and defer the hard

question of normalizing the data to the reporting and analysis stage.

Data mart(s). The integrated DW is intended to provide a consistent and universal platform across the

enterprise. The data mart on the other hand is usually seen as specific to a particular organization or

problem.

Statistics. Statistical analysis of the aggregated and cleansed data is a common use-case, often

performed using commercial software or the R programming language.

Machine learning. Machine learning is broadly defined as “a field of study that gives computers the

ability to learn without being explicitly programmed”. [Arthur Samuel as quoted in Simon, waiting on

the book]. Machine learning allows computers to develop and improve algorithmic models for making

predictions or decisions. Spam filters that “learn” are a good example.

Visualization. Representing complex information effectively so that humans can understand it and

derive value is itself a challenging topic. Many graphical forms have been developed to communicate

various aspects of data. See, for example, the open source visualization library D3.js.

Ontology and inference. This includes text mining and analytics, and also the ability to infer meaning

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 423

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

from unstructured data sets. More in the next Competency Category discussion on schema-less.

Evidence of Notability

Analytics and "Big Data", and their more advanced expression in cognitive applications, are significant

areas of R&D and industry interest.

Limitations

Analytics is a broad topic, ranging from simple reporting to AI. Clarity on what the term may mean in a

given context is essential.

Related Topics

• Digital Value

• Computing and Information Principles

• Application Basics

• The CAP Principle

• Enterprise Information Management

6.4.2.4. Agile Information Management

Description

Data infrastructure, like any complex systems development effort, is most effective and least risky

when undertaken iteratively and incrementally. An organization’s analysis needs will change

unpredictably over time and so a fast feedback loop of testing and learning is essential. The enterprise

DW can support a wide variety of analysis objectives flexibly. Its challenge has always been the lead

time required to develop the data structures and ETL logic. This will be discussed further in the next

Competency Category.

6.4.2.4.1. Software versus Data

Services and applications can have their own gravity, but data is the most

massive and dense. Therefore, it has the most gravity. Data if large enough can

be virtually impossible to move [193].

— Dan McCrory

Enterprise Information Management (including data management) has had a contentious relationship

to Agile methods. There are inherent differences in perspective between those who focus on

implementing software versus those who are concerned with data and information, especially at scale.

The tendency among software engineers is to focus on the conceptual aspects of software, without

concern for the physical issues of computing. (Logical versus physical is arguably the fundamental

distinction at the heart of the development versus operations divide). Enterprise information managers

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

424 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

also are tasked with difficult challenges of semantic interoperability across digital portfolios, concerns

that may appear remote or irrelevant for fast-moving Agile teams.

As we have previously discussed, refactoring is one of the critical practices of Agile development,

keeping systems flexible and current when used appropriately. The simple act of turning one overly

large software class or module into two or three more cohesive elements is performed every day by

developers around the world, as they strive for clean, well engineered code.

DevOps and Agile techniques can be applied to databases; in fact, there are important technical books

such as Refactoring Databases by Ambler and Sadalage [19]. With smaller systems, there is little reason

to avoid ongoing refactoring of data along with the code. Infrastructure as Code techniques apply.

Database artifacts (e.g., SQL scripts, export/import scripts, etc.) must be under version control and

should leverage continuous integration techniques. Test-driven development can apply equally well to

database-related development.

But when data reaches a certain scale, its concerns start to become priorities. The bandwidth of UPS is

still greater than that of the Internet [205]. That is to say, it is more effective and efficient, past a certain

scale, to physically move data by moving the hard drives around, than to copy the data. The reasons

are well understood and trace back to fundamental laws of physics and information first understood

by Claude Shannon [254]. The concept of “data gravity” (quote above) seems consistent with Shannon’s

work.

Notice that these physical limitations apply not just to simple movement of data, but also to complex

refactoring. It is one thing to refactor code — even the SQL defining a table. Breaking an existing,

overly large database table and its contents into several more specialized tables is a different problem

if data is large. Data, in the sense understood by digital and IT professionals, is persistent. It exists as

physical indications of state in the physical world: whether knotted ropes, clay tablets, or

electromagnetic state.

If you are transforming 3 billion rows in a table, each row of data has to be processed. The data might

take hours or days to be restructured, and what of the business needs in the meantime? These kinds of

situations often have messy and risky solutions, that cannot easily be “rolled back":

• A copy might be made for the restructuring, leaving the original table in place

• When the large restructuring operation (perhaps taking hours or days) is completed, and new code

is released, a careful conversion exercise must identify the records that changed while the large

restructuring occurred

• These records must then go through the conversion process again and be updated in the new data

structure; they must replace the older data that was initially converted in step 1

All in all, this is an error-prone process, requiring careful auditing and cross-checking to mitigate the

risk of information loss. It can and should be automated to the maximum degree possible. Modern

web-scale architectures are often built to accommodate rolling upgrades in a more efficient manner

(see [178], Chapter 11: “Upgrading Live Services”). Perhaps the data can be transformed on an “if

changed, then transform” basis, or via other techniques. Nevertheless, schema changes can still be

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 425

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

problematic. Some system outage may be unavoidable, especially in systems with strong transactional

needs for complete integrity. (See earlier discussion of CAP theorem.)

Because of these issues, there will always be some contention between the software and information

management perspectives. Software developers, especially those schooled in Agile practices, tend to

rely on heuristics such as “do the simplest thing that could possibly work”. Such a heuristic might lead

to a preference for a simpler data structure, that will not hold up past a certain scale.

An information professional, when faced with the problem of restructuring the now-massive contents

of the data structure, might well say: “Why did you build it that way? Couldn’t you have thought a little

more about this?” In fact, data management personnel often sought to intervene with developers,

sometimes placing procedural requirements upon the development teams when database services

were required. This approach is seen in waterfall development and when database teams are

organized functionally.

We saw the classic model earlier in this Competency Category; in turn, define:

• Conceptual data model

• Logical data model

• Physical schema

as a sequential process. However, organizations pressed for time often go straight to defining physical

schemas. And indeed, if the cost of delay is steep, this behavior will not change. The only reason to

invest in a richer understanding of information (e.g., conceptual and logical modeling), or more robust

and proven data structures, is if the benefits outweigh the costs. Data and records management

justifies itself when:

• Systems are easier to adapt because they are well understood, and the data structures are flexible

• Occurrence, costs, and risks of data refactoring are reduced

• Systems are easier to use because the meaning of their information is documented for the end

consumer (reducing support costs and operational risks)

• Data quality is enabled or improved

• Data redundancy is lessened, saving storage and management attention

• Data and records-related risks (security, regulatory, liability) are mitigated through better data

management

Again, back to our emergence model. By the time you are an enterprise, faced with the full range of

governance, risk, security, and compliance concerns, you likely need at least some of the benefits

promised by Enterprise Information Management. The risk is that data management, like any

functional domain, can become an end in itself, losing sight of the reasons for its existence.

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

426 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.4.2.4.2. Next-Generation Practices in Information Management

Cross-Functional Teams

The value of cross-functional teams was discussed at length in Section 6.3.3.1.4, “Product and

Function”. This applies to including data specialists as team members. This practice alone can reduce

many data management issues.

Domain-Driven Design’s (DDD) Contribution to Information Management

As you try to model a larger domain, it gets progressively harder to build a

single unified model [105].

— Martin Fowler

The relational database, with its fast performance and integrated schemas allowing data to be joined

with great flexibility, has fundamentally defined the worldview of data managers for decades now.

This model arguably reached its peak in highly-scaled mainframe systems, where all corporate data

might be available for instantaneous query and operational use.

However, when data is shared for many purposes, it becomes very difficult to change. The analysis

process starts to lengthen, and cost of delay increases for new or enhanced systems. This started to

become a real problem right around the time that cheaper distributed systems became available in the

market. Traditional data managers of large-scale mainframe database systems continued to have a

perspective that “everything can fit in my database”. But the demand for new digital product

outstripped their capacity to analyze and incorporate the new data.

The information management landscape became fragmented. One response was the enterprise

conceptual data model. The idea was to create a sort of “master schema” for the enterprise, that would

define all the major concepts in an unambiguous way. However, attempting to establish such a model

can run into difficulties getting agreement on definitions. (See the ontology problem above.) Seeking

such agreement again can impose the cost of delay if gaining agreement is required for the system.

And if gaining agreement is optional, then why is agreement being sought? The risk is that the data

architect becomes “ivory tower”.

NOTE

In fact, there are theoretical concerns at the heart of philosophy with attempting to

formulate universal ontologies. They are beyond the scope of this document but if you

are interested, start by researching semiotics and postmodernism. Such concerns may

seem academic, but we see their consequences in the practical difficulty of creating

universal data models.

A pragmatic response to these difficulties is represented in the Martin Fowler quote above. Fowler

recommends the practice of DDD, which accepts the fact that “different groups of people will use

subtly different vocabularies in different parts of a large organization” [105] and quotes Eric Evans

that “total unification of the domain model for a large system will not be feasible or cost-effective” [96].

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 427

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Instead, there are various techniques for relating these contexts, beyond the scope of this document.

(See [96].) Some will argue for the use of microservices, but data always wants to be recombined, so

microservices have limitations as a solution for the problems of information management. And, before

you completely adopt a DDD approach, be certain you understand the consequences for data

governance and records management. Human resources records must be handled appropriately.

Regulators and courts will not accept DDD as a defense for non-compliance.

Generic Structures and Inferred Schemas

Schema development — the creation of detailed logical and physical data and/or object models — is

time-consuming and requires certain skills. Sometimes, application developers try to use highly

generic structures in the database. Relational databases and their administrators prefer distinct tables

for Customer, Invoice, and Product, with specifically identified attributes such as Invoice Date.

Periodically, developers might call up the DBA and have a conversation like this (only slightly

exaggerated):

“I need some tables.”

“OK, what are their descriptions?”

“Just give me 20 or so tables with 50 columns each. Call them Table1 through Table20 and Column1

through Column50. Make the columns 5,000-character strings, that way they can hold anything.”

“Ummm … You need to model the data. The tables and columns have to have names we can

understand.”

“Why? I’ll have all that in the code.”

These conversations usually would result in an unsatisfied developer and a DBA further convinced

that developers just didn’t understand data. A relational database, for example, will not perform well

at scale using such an approach. Also, there is nothing preventing the developer from mixing data in

the tables, using the same columns to store different things. This might not be a problem for smaller

organizations, but in organizations with compliance requirements, knowing with confidence what

data is stored where is not optional.

Such requirements do not mean that the developer was completely off track. New approaches to data

warehousing use generic schemas similar to what the developer was requesting. The speed of indexing

and proper records management can be solved in a variety of ways. Recently, the concept of the "data

lake” has gained traction. Some data has always been a challenge to adapt into traditional, rigid,

structured relational databases. Modern “web-scale” companies such as Google have pioneered new,

less structured data management tools and techniques. The data lake integrates data from a large

variety of sources but does not seek to integrate them into one master structure (also known as a

schema) when they are imported. Instead, the data lake requires the analysts to specify a structure

when the data is extracted for analysis. This is known as “schema-on-read”, in contrast to the

traditional model of “schema-on-write”.

Data lakes, and the platforms that support them (such as Hadoop), were originally created as high-

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

428 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

volume web data such as generated by Google. There was no way that traditional relational databases

could scale to these needs, and the digital exhaust data was not transactional – it was harvested and in

general never updated afterwards. This is an increasingly important kind of workload for digital

organizations. As the IoT takes shape, and digital devices are embedded throughout daily experiences,

high-volume, adaptable data stores (such as data lakes) will continue to spread.

Because log formats change, and the collaboration data is semi-structured, analytics will likely be

better served with a “schema-on-read” approach. However, this means that the operational analysis is

a significant development. Simplifying the load logic only defers the complexity. The data lake analyst

must have a thorough understanding of the various event formats and other data brought into the

lake, in order to write the operational analysis query.

“Schema-on-read” still may be a more efficient approach, however. Extensive schema development

done up-front may be invalidated by actual data use, and such approaches are not as compatible with

fast feedback. (Data services are also a form of product development and therefore fast feedback on

their use is beneficial; the problem again is one of data gravity. Fast feedback works in software

because code is orders of magnitude easier to change.)

Schema inference at the most general shades into ontology mining. In ontology mining, data (usually

text-heavy) is analyzed by algorithms to derive the data model. If we read a textbook about the retail

business, we might easily infer that there are concepts such as “store”, “customer”, “warehouse”, and

“supplier”. IT has reached a point where such analysis itself can be automated, to a degree. Certain

analytics systems have the ability to display an inferred table structure derived from unstructured or

semi-structured data. This is an active area of research, development, and product innovation.

The challenge is that data still needs to be tagged and identified; regulatory concerns do not go away

just because a NoSQL database is being used.

Append-Only to the Rescue?

Another technique that is changing the data management landscape is the concept of append-only.

Traditional databases change values; for example, if you change “1004 Oak Av.” to “2010 Elm St.” in an

address field, the old value is (in general) gone, unless you have specifically engineered the system to

preserve it.

A common approach is the idea of “audited” or “effective-dated” fields, which have existed for decades.

In an effective-dated approach, the “change” to the address actually looks like this in the database:

Table 27. Effective Dating

Street address From To

1004 Oak Av. 12/1/1995 9/1/2016

2010 Elm St. 9/2/2016 Present

Determining the correct address requires a query on the To date field. (This is only an example; there

are many ways of solving the problem.)

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 429

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

In this approach, data accumulates and is not deleted. (Capacity problems can, of course, be the result.)

Append-only takes the idea of effective dating and applies it across the entire database. No values are

ever changed, they are only superseded by further appends. This is a powerful technique, especially as

storage costs go down. It can be combined with the data lake to create systems of great flexibility. But

there are no silver bullets. Suppose that a distributed system has sacrificed consistency for availability

and partition-tolerance (see CAP theorem). In that case, the system may wind up with data such as:

Table 28. Effective Dating Ambiguity

Street address From To

1004 Oak Av. 12/1/1995 9/1/2016

2010 Elm St. 9/2/2016 Present

574 Maple St. 9/2/2016 Present

This is now a data quality issue, requiring after-the-fact exception analysis and remediation, and

perhaps more complicated application logic.

Finally, append-only complements architectural and programming language trends towards

immutability.

Test Data

… when teams have adequate test data to run automated tests, and can create

that data on-demand, they see better IT performance.

— Puppet Labs/DevOps Research and Assessment, 2016 State of DevOps Report

A non-obvious and non-trivial problem at the intersection of Enterprise Information Management and

DevOps is test data management.

What is test data management?

Suppose you are a developer working on a data-intensive system, one that (for example) handles

millions of customer or supply chain records. Your code needs to support a wide variety of data inputs

and outputs. At first, you just entered a few test names and addresses, like “Mickey Mouse” or “Bugs

Bunny, 123 Carrot Way, Albuquerque, New Mexico 10001”. However, this nonsensical data quickly was

shown not to work. For example, if you are testing integration with an address-scrubbing service, you

will get an error with an address in New Mexico that shows a ZIP code of 10001. (Actually, the

nonsensical data is useful in testing that particular error scenario. But that is only one of many error

scenarios.)

Based on hearing anecdotal concerns, the authors of the 2016 State of DevOps report examined test

data management practices and found that they correlated positively with “better IT performance,

lower change failure rates, and lower levels of deployment pain and rework” [44 p. 29]. In particular,

the report suggests that test data be minimized and created from a blank slate wherever possible.

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

430 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Taking data from production systems as a basis for testing is also frequently done. However, such data

must be sanitized — sensitive information such as social security number must be removed. This can

be done automatically, but then such automation must itself be developed and maintained, and the

extensive production data set may (in effect) be driving a large amount of non-value-add testing.

In general, test data management techniques will vary greatly by application and problem domain.

The primary recommendation here is to invest in solving the problem, understanding that up-front

investments in automation will pay off. The high-performing product team will have to solve the “how”

of doing it appropriately for their particular situation.

Evidence of Notability

Agile methods and data management have had an uneasy relationship since Agile’s origins. See the

writings of Scott Ambler for evidence of this topic’s notability.

Limitations

There are fundamental problems with data’s gravity in relationship to Agile methods. Multi-terabyte

data sets often cannot be "refactored" with the ease and efficiency of their accessing software.

Related Topics

• Digital Value

• Computing and Information Principles

• Agile Development

• Information Value

• Analytics

• Architecture Practices

• Agile and Architecture

6.4.2.5. Information Management Topics

Description

6.4.2.5.1. Social, Mobile, Analytics, and Cloud

Discussions of Digital Transformation often reference the algorithm SMAC:

• Social

• Mobile

• Analytics

• Cloud computing

Others would add IoT. These are not equivalent terms; in fact, they have relationships to each other

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 431

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

(see Figure 143, “Social, Mobile, Analytics, and Cloud”).

Figure 143. Social, Mobile, Analytics, and Cloud

Social media is generally external to an organization and manifests as a form of commercial data, that

provides essential insights into bow a company’s products are performing and being received.

Mobile (or mobility) has two distinct aspects: mobility as an engagement platform (e.g., for deployment

of “apps” as one product form), versus the commercial data available from mobile carriers, notably

geolocation data.

IoT can be either an internal or external data source, often extremely high volume and velocity,

requiring analysis services for sense-making and value extraction.

6.4.2.5.2. Big Data

The term "Big Data” in general refers to data that exceeds the traditional data management and data

warehousing approaches we have discussed above.

As proposed by analyst Doug Laney in 2001 [173], its most well-known definition identifies three

dimensions of scale:

• Volume

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

432 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• Variety

• Velocity

For example, high-volume data is seen in the search history logs of search engines such as Google.

High-variety data encompasses rich media and unstructured data, such as social media interactions.

High-velocity data includes telemetry from IoT devices or other sources capable of emitting large

volumes of data very quickly.

All of these dimensions require increasingly specialized techniques as they scale, and the data

management product ecosystem has continued to diversify as a result.

6.4.2.5.3. Managing the Information of Digital Delivery

NOTE
We have talked about metadata previously, and understanding business impact with

the CMDB. You should review that material before continuing.

Regarding our previous data warehousing architecture, the digital pipeline can be seen as related to

four areas (see Figure 144, “The Data Architecture of Digital Management”):

• Product management

• IT

• Support

• Operations

Figure 144. The Data Architecture of Digital Management

Assume the primary product of the organization is an information-centric digital service, based

ultimately on data. How do you manage data? How do you manage anything? In part, through

collecting data about it. Wait — “data about data"? There’s a word for that: metadata. We will take

some time examining it, and its broader relationships to the digital delivery pipeline. The association

of business definitions with particular data structures is one form of metadata. Data governance,

records management, and ongoing support for digital consumers all require some layer of

interpretation and context to enrich the raw data resource.

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 433

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Consider the following list:

Table 29. Servers and databases

Server Database

SRV001 DB0023

SRV001 DB0045

SRV002 DB0067

Not very useful, is it? Compare it to:

Table 30. Servers, databases, product, and governance information

Server Database Product Regulatory

SRV001 DB0023 Online reviews Customer privacy

SRV001 DB0045 Employee records

management

HIPAA, PII

SRV002 DB0067 Online sales PCI, PII

We could also include definitions of the tables and columns held in each of those databases. However,

what system would contain such data? There have been a couple of primary answers over the years:

metadata repositories and CMDBs.

In terms of this document’s general definition of metadata as non-runtime information related to

digital assets, both the metadata repository and the CMDB contain metadata. However, they are not the

only systems in which data related to digital services is seen. Other systems include monitoring

systems, portfolio management systems, risk and policy management systems, and much more. All of

these systems themselves can be aggregated into a data warehousing/BI closed-loop infrastructure.

This means that the digital organization, including organizations transforming from older IT-centric

models, can apply Big Data, machine learning, text analytics, and the rest of the techniques and

practices covered in this Competency Category.

NOTE
We will examine a full “business of IT/digital delivery pipeline” architecture in the next

Competency Category.

Evidence of Notability

Considered in each specific topic area.

Limitations

Considered in each specific topic area.

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

434 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Competency Category "Topics in Information Management" Example Competencies

• Identify the themes of social, mobile, analytics, and cloud as modern digital channels and platforms

• Identify the data management concerns of the digital pipeline itself

Related Topics

• Digital Value

• Enterprise Information Management

6.4.3. Architecture

Area Description

Regardless of starting off as a digital startup, or as an older organization now digitally transforming,

the digital world is complex and getting more so.

The prior decisions that might have been made quickly and casually by a product or project team

become harder. The increasing challenges are due to both internal and external factors. Decisions

made years ago come back to haunt current strategies with a vengeance. With scale, management

needs some way of making sense across digital operations of mind-numbing complexity. Should a firm

invest in 15 new internally developed microservices, or sunset 12 existing ones and implement a

commercial package developed by a trusted partner? When there are 1,500 applications or services in

the digital portfolio, how do we know that the proposed number 1501 is not redundant or outright

conflicting with existing services?

Architecture provides tools to manage such problems, but doing so is difficult and controversial. Is the

architecture merely the drawings of HiPPOs? How can the organization maintain an experimental and

hypothesis-driven approach in the midst of all the complexity? How do we know that their

understanding of the digital operation is current and up-to-date? How much should an organization

spend on keeping it so? What happens when management decides to set direction using these same

abstractions, and architects find themselves now enforcing what had originally started as mere

explanation and sense-making?

Vendor relationships become a two-edged sword, providing increased value with access to higher

levels of vendor resources, but at the cost of greater lock-in. Pure open-source strategies inevitably give

way to monetized relationships, as the risk of not having support becomes unacceptable.

Portfolio management in terms of IT means looking at long-lived IT investments regarding their

overall benefit, cost, and risk to the organization. This can and should be done regardless of whether

the IT investment is external or internal-facing. Products, services, and applications are the most

useful portfolio constructs, although assets, technology products, and even projects also figure into

longer-horizon value management. Enterprise Architecture benefits from a tight alignment with IT

portfolio management, as well; it is not clear that a firm boundary between them could be drawn.

This Competency Area is, in a way, summative: it reflects all of the concerns discussed in the previous

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 435

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Competency Areas. Every Competency Area represents topics of interest to the architect. Now, we

discuss a language and way of thinking to merge these concerns.

IMPORTANT

As with other Competency Areas in the later part of this document, we are going

to introduce this topic “on its own terms”. We will then add additional context

and critique in subsequent sections.

6.4.3.1. Why Architecture?

Description

The word “architecture” is usually associated with physical construction: buildings, landscapes, civil

infrastructure, and so forth. It was appropriated by systems engineers at IBM around 1960 to describe

the problems of designing complex information processing hardware and software. This leads to some

confusion, and occasional questions from “real” architects as to why IT people are calling themselves

“architects”. Perhaps a different choice of word would have been advisable.

In our journey to date, we have covered:

• Business motivations and context

• Infrastructure

• Applications

• Products and/or services

• Organization and process

• Data and information

We have also covered the practices by which ideas and intentions are established and translated by

investment into actions, including:

• Investment of time and resources towards digital objectives (e.g., through project management)

• Acquisition of technologies and external services (i.e., sourcing)

• Hiring of employees

• Governance of digital organizations for risk, security, and other purposes

As we have progressed in our journey and scaled our company up, all these areas have continued to

evolve. Specialization emerges. You have people with deep experience in cloud architectures and

individuals with deep experience in e-records management and compliance. You do not have too many

who are deep in both.

Your product portfolio (internal and external) is now in the hundreds or thousands. Some were built

with the latest technology, and others run on older technologies now perceived to be dead ends.

However, investing in rewriting or re-platforming them would not provide as much value as other

uses of the funds, so you have to manage the risk of the older technology.

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

436 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Investment decisions become harder. You are far beyond the days when you had a one-product focus.

You have multiple interacting products and multiple interacting teams, and the relationship between

the teams and outputs is not one-to-one. Understanding the business case for the investment gets

harder; when you have a thousand services over multiple business units, how do you know if someone

is proposing a redundant new one?

Moreover, there are the big headaches. A major commercial product version is going off support, and

it is the perfect time to think about a rewrite or re-platform (say into the cloud). However, the moving

pieces and interdependencies are formidably complex, and if you get the analysis wrong, the business

impact will be severe. You acquire another firm, with a lot of overlapping activities, and start to see the

need for “Business Architecture” to clarify your understanding of business processes, organizations,

and capabilities. Alternatively, a major outage hits the business hard, and all of a sudden the

organizational priority (from the Board on down) is “fix this, so it never happens again”. Everything

else is to go “on hold”. Except, of course, it cannot.

In response to these and a thousand other complexities of digital management as organizations scale

up, a general-purpose coordination capability emerges sometimes called Enterprise Architecture. In

this Competency Category, we will discuss its definition, organizational dynamics, and value

proposition.

6.4.3.1.1. Defining Enterprise Architecture

The fundamental concepts or properties of a system in its environment

embodied in its elements, relationships, and in the principles of its design and

evolution. [157]

— ISO/IEC/IEEE 42010

The Enterprise Architecture is the organizing logic for business processes and

IT infrastructure, reflecting the integration and standardization requirements

of the company’s operating model. The Enterprise Architecture provides a

long-term view of a company’s processes, systems, and technologies so that

individual projects can build capabilities - not just fulfill immediate needs. [

237]

— Ross, Weill

Enterprise Architecture (EA) is the representation of the structure and

behavior of an enterprise’s IT landscape in relation to its business

environment. It reflects the current and future use of IT in the enterprise and

provides a roadmap to reach a future state. [28 p. 35]

— Bente et al., Collaborative Enterprise Architecture

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 437

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

The purpose of Enterprise Architecture is to optimize across the enterprise the

often fragmented legacy of processes (both manual and automated) into an

integrated environment that is responsive to change and supportive of the

delivery of the business strategy.

— The Open Group, The TOGAF Standard, Version 9.2

“Architecture” as a term by itself is something you have encountered since your earliest days as a

startup. Perhaps you used it to describe the choice of technologies you used for your products. Or the

most important components in your application. Or the common services (e.g., authentication) you

developed to support multiple products. The architecture concept is therefore not something new or

foreign. But what does it mean to say we have an “Enterprise” Architecture? Enterprise Architecture

is nothing but the unification of this document’s topics into a common, formalized, scalable

framework for understanding. It means we are “doing architecture” comprehensively, considering

the enterprise itself as a system to be architected. It also may mean we have a program for sustaining

the work of those doing architecture in the technical, application, solution, data, process, or business

domains.

In terms of our emergence model, Enterprise Architecture assumes multi-product, “team of teams”

problems. As an overall domain of practice, Enterprise Architecture encompasses a variety of specialist

domains (some of which we have already encountered) as we will discuss in the next Competency

Category. Some of those domains do make sense at smaller, single-product contexts (e.g., software

architecture).

There are numerous definitions of Enterprise Architecture. See, for example, [157], [237], [28 p. 35]. It

can be defined as:

• An organizational unit

• An organizational capability

• A formalized program

• A professional discipline or set of practices

• A process or process group; an ongoing activity or activities

• A large-scale artifact (i.e., an integrated model consisting of catalogs, diagrams, and matrices)

maintained on an ongoing basis for communication and planning

• An integrated and standardized language for reasoning about complexity

In general, definitions of Enterprise Architecture characterize it as a coordination and problem-solving

discipline, suited to large-scale problems at the intersection of digital technology and human

organization. An important function of architecture is supporting a shared mental model of the

complex organization. We were first introduced to the importance of shared mental models in Section

6.2.2, “Work Management” and this need has only increased as the organization became more

complex. Enterprise Architecture provides the tools and techniques for sustaining shared mental

models of complexity at scale.

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

438 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

It may be useful to compare architecture to the activity of map-making. In map-making we have:

• The actual terrain

• The capability of map making: surveying, drawing, etc.

• The process of surveying and mapping it

• The resulting map as a document (i.e., artifact)

And once the map is made, you might use it for a wide variety of purposes, and you also might find

that once you start to use the map, you wish it had more information. Similarly, in Enterprise

Architecture, it is important to remember that there are different concerns:

• Operational reality

• The capability of representing it for planning and analysis (“being” an architect or an architecture

organization; having the skills and tools)

• The process of representing and analyzing the operational reality (“doing” architecture)

• The actual representation (the “architecture” as a “thing” — a model, an artifact, etc.; recall our

previous discussion of information representation)

And, like a map, once you have the architecture, you can use it for a wide variety of purposes, but also

you may find it incomplete in various ways.

6.4.3.1.2. Architecture Organization

There are three major themes we will discuss in terms of the overall organizational positioning of

Enterprise Architecture:

• The line versus staff concept and its origins

• Contrasting the concepts of “business model” versus “operating model”

• The other major organizational units of interest to Enterprise Architecture

Architecture as Staff Function

We saw in Section 6.4.1, “Governance, Risk, Security, and Compliance” how governance emerges, as a

response to scale and growth, and the concerns for risk and assurance in the face of increasing

pressures of the external environment. One important response has been the emergence of the line

versus staff distinction. As Christian Millotat (and many others) have noted: "[m]any elements that

have become integral parts of managerial economics and organizing sciences can be traced back” to

military staff systems [197 p. 7]. These include:

• Collecting and combining knowledge so that decisions are as well informed as possible

• Supporting specialized roles and functions (e.g., legal experts, engineers)

• Operating supply chains and other services that function best when shared

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 439

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Staff functions in the enterprise include planning, coordination, and operations; broadly speaking, and

with key differences depending on the industry, the following are considered “staff":

• Financial management

• Human resources management

• Legal services

• Purchasing and vendor management (varies w/company and industry; for example, in retail

“merchandising” is a line function)

• IT (however, with Digital Transformation this is increasingly overlapping with R&D and driven

directly by line management)

• Facilities management

• Strategic planning and forecasting

While the following are considered “lines” (analogous to the warfighting units in the military):

• Sales

• Marketing

• Operations

• R&D (varies w/company and industry)

Enterprise Architecture has as a key part of its mission the task of collecting and combining knowledge

to support decision-making. Therefore, an Enterprise Architecture organization can be seen as a form

of staff organization. Most often it is seen as a specialized staff function within the larger staff function

of IT management, and with the increased role of digital technology, there are corresponding pressures

to “move Enterprise Architecture out of IT” as we will discuss below.

The classic line/staff division is a powerful concept, pervasive throughout organizational theory. But it

has important limitations:

• Staff organizations can “lose touch”, become insular and self-serving and indeed accumulate power

in dangerous and unaccountable ways; ror this reason, officers are rotated between line and staff

positions in the US military

• Staff “expertise” may matter less and less in complex and chaotic environments requiring

experimental and adaptive approaches

• If a feedback loop involves both line and staff organizations, it risks being delayed; the delay

waiting for “headquarters approvals” has been a common theme in line/staff organizations

In the history of line versus staff relations, we see tensions similar to those between Enterprise

Architecture and advocates of Agile methods. The challenges, debates, and conflicts have only changed

in their content, but not their essential form.

But in many cases, centralizing staff expertise and the definition of acceptable practices for a domain is

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

440 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

still essential. See the discussion of matrix organizations and even feature versus component teams.

Enterprise Architecture and the Operating Model

In terms of overall positioning, Enterprise Architecture is often portrayed as mediating between

strategy and portfolio management (see Figure 145, “EA Context, Based on Ross”, derived from [237

p. 10], Figure 1-2).

Figure 145. EA Context, Based on Ross

Notice the distinction between Enterprise Architecture as a capability and as an artifact. The practice

of Enterprise Architecture is not the same as the actual Enterprise Architecture. For the purposes of

this document, we define Enterprise Architecture’s concerns as essentially the enterprise operating

model: process, data, organizational capabilities, and systems.

One of the most frequently used visualizations of Enterprise Architecture’s concerns is the Zachman

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 441

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Framework (see Figure 146, “A Variation on the Zachman Framework”, loosely based on [313] and

succeeding work).

Figure 146. A Variation on the Zachman Framework

We were exposed to the data modeling progression from conceptual to logical to the physical data

model in Section 6.4.2, “Information Management”. The Zachman Framework generalizes this

progression to various views of importance to organizations, as shown in the columns:

• What

• How

• Where

• Who

• When

• Why

Overall, the Zachman Framework represents the range of organizational operating model concerns

well. Certainly, sustaining a large and complex organization requires attention to all its concerns. But

what good does it do to simply document the contents of each cell? Such activity needs to have

relevance for organizational planning and strategy; otherwise, it is just waste.

Peer Organizations

It is reasonable to associate the Business Model Canvas with strategy, and the Zachman Framework

with the Enterprise Architecture as an artifact (see Figure 147, “Business Model versus Operating

Model”).

This distinction helps us position the Enterprise Architecture group with respect to key partner

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

442 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

organizations:

• Organizational strategy

• Portfolio and investment management

• I&O

Organizational Strategy

The operating model needs to support the business model, and so, therefore, Enterprise Architecture

needs a close and ongoing relationship with organizational strategists, whether they are themselves

line or staff. Defining digital strategies is a challenging topic; we have touched on it in Section 6.1.1.1,

“Digital Context”, Section 6.2.1, “Product Management”, and Section 6.3.2, “Investment and Portfolio”.

Further discussion at the enterprise level will be deferred to a future edition of this document.

Portfolio and Investment Management

Architecture needs to be tied to the organization’s investment management process. This may be easier

said that done, given the silos that exist. As Scott Bernard notes: “Enterprise Architecture tends to be

viewed as a hostile takeover by program managers and executives who have previously had a lot of

independence in developing solutions for their own requirements” [29], Case Study Scene 1.

Many organizations have a long legacy of project-driven development, in which the operational

consequences of the project were too often given short shrift. The resulting technical debt can be

crippling. Now that there is more of a move towards “you build it, you run it” the operability aspects of

systems are (perhaps) improving. However, ongoing scrutiny and management are still needed at the

investment front end, if the enterprise is to manage important objectives like vendor leverage,

minimizing technical debt, reducing investment redundancy, controlling the security perimeter, and

keeping skills acquisition cost efficient (more on this below in the section on Enterprise Architecture

value).

Portfolio management is discussed in depth in a subsequent Competency Category.

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 443

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 147. Business Model versus Operating Model

Infrastructure and Operations (I&O)

Finally, the Enterprise Architecture group often has a close relationship with I&O groups. This is

because in organizations where operations is a shared service, the risks, and inefficiencies of technical

fragmentation are often most apparent to the operations team. In organizations where operations is

increasingly distributed to the application teams (“you build it, you run it”) the above may be less true.

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

444 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Other staff organizations that may develop close relationships with Enterprise Architecture include

vendor management and sourcing, risk management, compliance, and security. Notice that some of

these have strong governance connections (although we do not consider “governance” itself to be an

organization, which is why it was not included in the discussion above).

6.4.3.1.3. The Value of Enterprise Architecture

Enterprise Architecture often struggles to demonstrate clear, quantifiable value to the organization.

Architects are usually among the most experienced and therefore expensive staff in the organization.

It may seem to make historical and intuitive sense that architecture as a staff function is necessary. Yet,

demonstrating this takes some thought and effort. Statements like “promoting enterprise-wide

thinking” easily provoke skepticism. What are the benefits of so-called “enterprise-wide thinking"? And

who receives them?

The following outcomes are often asserted for Enterprise Architecture:

• Shortening planning and decision-making (e.g., through curating information)

• Curating a shared enterprise language and mental model

• Increased speed of delivering new functionality

• Reduced and simplified portfolios

• Reducing duplication and rework

• Reducing headcount (e.g., in processes)

Illustrated in Figure 148, “Architecture Impacts on Enterprise Value” is a high-level impact mapping

representation.

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 445

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 148. Architecture Impacts on Enterprise Value

The diagram suggests a number of specific, measurable outcomes from typical Enterprise Architecture

goals. Without exploring every line of value:

• A reduced technology portfolio can and should result in improved sourcing, improved support,

improved security, reduced IT staffing spend, and potentially reduced development time; for

example, vendors may offer more favorable terms when their products are preferred standards

throughout an organization - a smaller product portfolio is easier to secure

• Better understanding of the current estate should reduce investigation times and outages, and

reduce the risk of regulatory violations; for example, if regulators require evidence that employee

medical records have not been removed from the country, architecture’s curating of that

information will expedite the compliance response

• Ensuring systems are adaptable (e.g., they have service interfaces) and resilient (they are designed

for operability) should improve both time-to-market over the product’s lifecycle, and ultimately

effectiveness in customer acquisition and retention

These are not intangible suggestions. We have previously studied the work and influence of Don

Reinertsen, who emphasizes the critical importance of an economic model.

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

446 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

IMPORTANT

Some might say that architecture’s value is “intangible”. If you are tempted to

say this, you should read Douglas Hubbard’s How to Measure Anything: Finding

the Value of “Intangibles” in Business [134].

We close this section by discussing two current value concepts and how architecture contributes (or

detracts) from them:

• Cost of delay

• Technical debt

Reducing Cost of Delay

We have covered the concept of cost of delay previously, at the team and product level. However, this

powerful concept can also be applied at higher levels. Cost of delay is not a concept familiar to most

architects. It poses two important challenges:

• How can architecture help reduce the cost of delay within the product portfolio?

• How can architecture not, itself, introduce un-economical cost of delay?

As we have discussed previously, the definition of cost of delay is intuitive. It is the opportunity cost of

not having a given product or service available for use: the foregone revenues, the cost of the

workarounds and inefficiencies. If the architecture process becomes the critical path for a product or

service’s release (a common experience), then the architecture process is responsible for that product’s

or service’s cost of delay.

The cost of delay can take various forms, some of them significant. For example, suppose there is a

need to demonstrate a product to key clients at a trade show. This could be the company’s best

opportunity to develop business; the sales team estimates $12 million in funnel opportunities based on

previous experience that should result in at least $2 million in sales in the year, with projections of

another $1 million in maintenance and renewals. However, if the product is not ready, these benefits

will not materialize. If everything else is ready, but the architecture process is delaying product

readiness, then the architecture process is incurring $2 million in the cost of delay. This is bad. The

architecture process is clearly impacting significant business objectives and revenue.

But the question still needs to be asked: “what benefits do we receive from having an architecture

process?”. We discussed such benefits above. Are these benefits adding up to $2 million a year? No?

Then your architecture process does not make good economic sense. On the other hand, what if the

architects were kept out of the picture, and the product team chooses an untested technology, instead

of re-using a well-known and reliable approach already proven for that company? What if that

decision were the cause of missing the trade show? What if it can be shown that re-usable components

identified as architecture standards were increasing the speed of delivery, and reducing the cost of

delay, because they are reducing the need for product teams to perform risky (and yet redundant) R&D

activities?

Quantifying these benefits across a portfolio is difficult, but should be attempted. Cost of delay can and

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 447

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

should be calculated at the portfolio level, and this can provide “enterprise-level decision rules” that

can help an organization understand the cost and value of operating model changes [229 pp. 35-38]

including instituting processes (such as change management or technology lifecycle management), or

even the establishment of Enterprise Architecture itself.

Technical Debt Revisited

We touched on technical debt in Section 6.1.3, “Application Delivery”'s discussion of refactoring.

Technical debt is a metaphor first introduced by Ward Cunningham [78] in the context of software,

widely discussed in the industry. It can be applied more broadly at the portfolio level, and in that

sense, is sometimes discussed in Enterprise Architecture. Debt exists in the form of obsolete products

and technologies; redundant capabilities and systems; interfaces tightly coupled where they should be

loose and open, and many other forms.

Technical debt, like the cost of delay, can and should be quantified. We will discuss approaches to that

in the Competency Category on portfolio management.

Scaling the Enterprise Mental Model

We have often referred to the concept of common ground through this document. The architecture

supports common ground understanding at scale, by curating a shared mental model for the

organization. In doing so, it enables the “right emergent behaviors” (as Adrian Cockcroft suggests). It

also enables communication across diversity and may improve staffing flexibility and mobility among

teams.

Evidence of Notability

Architecture has been a metaphor for digital systems strategy and design since the 1960s. It has given

rise to multiple professional organizations, and frameworks, and much literature.

Limitations

Architecture (all practices) is encountering resistance from digital-first organizations and its messaging

and value proposition needs to evolve.

Related Topics

• Digital Value

• Digital Infrastructure

• Application Delivery

• Product Management

• Investment and Portfolio

• Organization

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

448 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.4.3.2. Architecture Practices

Description

Before we get into a detailed discussion of architecture domains, let’s talk in general about what

architects do and some common practices and themes.

As we mentioned previously, architecture itself as a term shows up in many ways - as role, artifact,

program, and organization.

In this Competency Category, we will look at:

• The relationship of architecture and governance

• Architecture as a management program

• The importance of visualization as a practice in architecture

• The IT lifecycles

• Architecture and the quest for “rationalization”

6.4.3.2.1. Architecture and Governance

Enterprise Architecture has a clear relationship to governance as we discussed it in Section 6.4.1,

“Governance, Risk, Security, and Compliance”. It provides a framework for managing long lifecycle

concerns and various forms of enterprise risk, especially as related to digital and IT systems.

Architecture is an important part of the governance equation. Architecture becomes the vehicle for

technical standards that are essential risk controls; a risk management organization cannot achieve

this alone.

Enterprise Architecture, therefore, may have a role in defining policies, especially at the mid-tier of the

policy hierarchy — neither the highest enterprise principles, nor the most detailed technical standards,

but rather policies and standards related to:

• Choice of certain enterprise products expected to be heavily leveraged (e.g., common database and

middleware products)

• Design patterns for solving recurring requirements (e.g., user authentication, load balancing, etc.)

• System of Record identification and enforcement

As discussed in Section 6.4.1.2.2, “Mission, Principles, Policies, and Frameworks”, there needs to be

traceability from tactical standards to strategic codes and principles. The preference for a given

database should not be a policy, but having a process that establishes such a preference would be; that

is, a policy should exist saying (for example): “there shall be a Technology Lifecycle Management

process with the following objectives and scope”. Where appropriate, such policies might also be

linked to specific risks as controls or governance elements.

As for all policies, it is important to have some sort of sunset mechanism for Enterprise Architecture

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 449

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

guidance. As Bente et al. note: Many Enterprise Architecture-originated policies that appear obsolete

today have not always been meaningless … A frequent example is the uncontrolled proliferation of newly-

hyped technologies by the IT crowd, and the Enterprise Architecture group’s rigid attempt to reinstitute

order. Once the technology has matured, the Enterprise Architecture rules often appear overly strict and

suppress a flexible use of the appropriate technology [28], p.19.

The issue with the quote above is that the overall benefits of having (for example) a Technology

Lifecycle Management process are not usually quantified in terms of cost and risk avoidance. Without

an overall governance mandate and value proposition, Enterprise Architecture activities may seesaw

in response to the “issue of the moment”. This is not a recipe for sustainable architecture, whose most

important value proposition lies in the long term. Architecture, as a component of coherent

governance, requires no less.

As we discussed in Section 6.4.1, “Governance, Risk, Security, and Compliance” governance emerges in

part as a response to external forces. Architecture often plays a consultative role when external forces

become governance issues; for example:

• Data custody and System of Record, and relationship to records management

• Vendor relationship strategies

• Security risks and controls

Governance is also concerned with efficiency, which also becomes a key architecture concern with

associated practices:

• IT portfolio rationalization

• Business process optimization

• Shared services and APIs re-use

• Master and reference data management

Finally, does Enterprise Architecture promote effectiveness? Effectiveness is often seen as the primary

responsibility of “the line” in line/staff paradigms. However, as the impact model suggests, establishing

a foundation of re-usability and limiting technical choices can increase the speed with which new

products and services are delivered.

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

450 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.4.3.2.2. Architecture as a Management Program

Figure 149. Large-Scale Architecture Program

The above section discussed the relationship of architecture to governance. As we covered in Section

6.4.1, “Governance, Risk, Security, and Compliance”, governance is not management. Here, we will

cover the topic of architecture as a management program of activity, in part through examining an

example large-scale architecture program.

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 451

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Architecture as a program refers to a coordinated set of:

• Processes

• Job roles

• Standards and practices

• Artifacts

• Organizations

• Cadenced and ad hoc activities

intended to serve a key coordination role. Illustrated in Figure 149, “Large-Scale Architecture Program”

is a large-scale, coordinated architecture program in a large enterprise. Notice that this is not a single

organization. The Architecture Program in this example spans a centralized Enterprise Architecture

group as well as teams of Line of Business (LOB) architects.

The Enterprise Architecture organization might report to a Chief Technical Officer (CTO), the Chief of

Staff for the Office of the CIO, or the head of Corporate Strategy and Planning. It is a centralized

organization with a small staff of domain architects and an Architecture Standards organization that

owns two key cross-functional architecture processes.

LOBs have dedicated IT organizations, and these organizations have Chief Architects with their own

staff. In terms of our discussion of line/staff organization, it is as if the line organization has its own

staff function within it; another way to think about it is that the line/staff division is fractal (that is, it

reproduces at different scales).

Within the central Enterprise Architecture organization, we have a number of director-level Domain

Architects. These architects might focus on particular business problems (e.g., Supply Chain) or

architectural domains (e.g., Data and Information, or Security).

It is the responsibility of the Domain Architects to create Domain Architectures, which are documents

that lay out an overall point of view on a particular domain and often serve as standards. These

architectures may be created according to a methodology such as the TOGAF ADM, with the support of

a repository-based tool and language such as ArchiMate notation or various standards from the Object

Management Group.

The domain architects also serve as a senior consulting pool and are assigned to significant programs

and projects as needed.

The Architecture Standards organization is responsible for two organization-wide architecture

processes:

• Architecture Review

• Technology Lifecycle Management

The Architecture Review process is part of the investment process, when initiatives are initially

scoped and direction set. The process requires architects to review significant proposed investments in

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

452 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

new systems for consistency with standards (e.g., the Domain Architectures and approved

technologies). In terms of the previous section’s impact model, this process is attempting to support

many of the lines of value through controlling redundancy and ensuring re-use and application of

previously learned architectural lessons.

The Technology Lifecycle Management process is the means by which new vendor and open source

products are approved as fit-for-purpose and/or preferred within the organization. In terms of the

previous section’s impact model, this process is tasked with reducing the portfolio of vendor products

which reduces cost and risk as shown.

Both of these processes are enterprise-wide processes. They are owned, defined, and modified by the

Architecture Standards organization, but projects and products across the enterprise follow these

processes.

Finally, the Architectural Governance Council brings together the senior architects from the central

Enterprise Architecture organization and the LOB Chief Architects. It is a virtual organization

operating on a quarterly cadence, responsible for setting direction and resolving the most difficult

questions that may emerge from the architecture processes and domain architectures.

Overall, this may seem like a complex structure, but similar structures are in place in IT organizations

with budgets of $1bn or more. It would be questionable to see comparable structures in much smaller

organizations. However, this structure is useful to examine; organizations of various sizes might

choose to use different parts of it.

6.4.3.2.3. Modeling and Visualization

We discussed the importance of visual management in Section 6.2.2, “Work Management”. Making

information visually available to help create common ground is an important Lean practice (see

Andon).

The word “architect”, whether in a building or digital context, is often associated with visualizations:

blueprints, sketches, specialized notations, and so forth. Drawings have been used to represent

structures for likely as long as writing has existed.

Judging simply by its history, visualization is, therefore, an essential tool for humans dealing with

large-scale complexity (and erecting buildings has always been one of the more complex domains of

human activity). In digital and IT contexts, however, visualization has certain challenges and notable

skeptics. Adrian Cockcroft, the former CTO of Netflix, stated: “Our architecture was changing faster

than you can draw it … As a result, it wasn’t useful to try to draw it.” [37]

Even in construction and engineering trades that rely on blueprints as a source of truth, keeping them

up-to-date requires considerable discipline and process. In faster-moving digital organizations, visual

models are almost always out-of-date unless they have been specifically refreshed for a purpose, or

unless there is a strong formal process in place (and the value of such a process may be difficult to

establish). That doesn’t mean that diagrams will go away. Co-located teams use whiteboards and dry-

erase markers and will continue to use them. There are important cognitive and human factor reasons

for this that will not go away. Because of these facts, it is useful to understand some of the

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 453

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

fundamentals of how humans interpret visual data.

Human Visual Processing

Dan Moody notes [199]:

Visual representations are effective because they tap into the capabilities of the powerful and highly

parallel human visual system. We like receiving information in a visual form and can process it very

efficiently: around a quarter of our brains are devoted to vision, more than all our other senses combined

[63]. In addition, diagrams can convey information more concisely [27] and precisely than ordinary

language [8, 68]. Information represented visually is also more likely to be remembered due to the picture

superiority effect [38, 70] … Visual representations are also processed differently: according to dual

channel theory [80], the human mind has separate systems for processing pictorial and verbal material.

Visual representations are processed in parallel by the visual system, while textual representations are

processed serially by the auditory system …

As the above quote shows, there are clear neurological reasons for diagramming as a communication

form. To expand a bit more on the points Dan Moody is making:

Human vision uses parallel processing. This means that a given image or visual stimulus is

processed by many neurons simultaneously. This is how we can quickly recognize and act on threats,

such as a crouching tiger.

A large percentage of our brain is devoted to visual processing. You will see figures quoted from

25% to 66% depending on whether they are “pure” visual tasks or vision-driven tasks involving other

brain areas.

The old saying "a picture is worth a thousand words" is consistent with the science. Diagrams can be

both faster and more precise at conveying information; however, this has limits.

Finally, pictures can be more memorable than words.

Visualization in Digital Systems

Figure 150. The First Software Flowchart

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

454 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Architects and architecture are known for creating diagrams — abstract graphical representations of

complex systems. The first known instance of applying graphical techniques to a digital problem was

in 1947 (see Figure 150, “The First Software Flowchart”
[11]

[294]), and visual notations have evolved

along with the field of computing ever since. Notable examples include:

• Early flowcharting templates

• The Gane-Sarson data-flow diagram notation

• The Chen entity-relationship notation

• The Barker entity-relationship notation, including the “crow’s foot” to indicate cardinality

• Harel state charts

• The Unified Modeling Language™ (UML®)

(We touched on data modeling in Section 6.4.2, “Information Management”). We will examine the

ArchiMate modeling language, a standard of The Open Group, for a current and widely-used notation,

in more detail in a future Competency Category.

Research at Microsoft suggests that developers use diagrams for four purposes:

• Sharing

• Grounding (defining ambiguous interpretations)

• Manipulating

• Brainstorming

They argue “diagrams support communicating, capturing attention, and grounding conversations [4].

They reduce the cognitive burden of evaluating a design or considering new ideas [13]” [58].

But visual notations have been problematic in the Agile community; as Fowler notes [103]. There is no

question that some IT professionals, including perhaps some of the most skilled software engineers,

find little of use in diagrams. As Martin Fowler says: “people like Kent [Beck, eXtreme Programming

originator] aren’t at all comfortable with diagrams. Indeed, I’ve never seen Kent voluntarily draw a

software diagram in any fixed notation”. However, it seems likely that Kent Beck and others like him

are members of a programming elite, with a well-honed mental ability to process source code in its

“raw” form.

However, if we are building systems to be operated and maintained by humans, it would seem that we

should support the cognitive and perceptual strengths of humans. Because diagrams are more readily

processed, they are often used to represent high-level system interactions — how a given service,

product, or application is related to peer systems and services. Building such depictions can be helpful

to fostering a shared mental model of the overall system objectives and context. The more complex

and highly-scaled the environment, the more likely such artifacts will be encountered as a means to

creating the mental model.

The strength of human visual processing is why we will (probably) always use graphical

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 455

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

representation to assist in the building of shared mental models. Specialists in the syntax and

semantics of such designs will therefore likely continue to play a role in complex systems development

and maintenance. Currently, if we seek to hire such a specialist, we recruit some kind of architect —

that is, the professional role with the skills.

Note that flowcharts, data models, and other such diagrams tend to be associated more with the idea of

“solutions” or “software” architecture. We will cover the architecture domains in the next Competency

Category, including examples of Business Architecture diagrams.

Limitations of Visualization

Visualization has a number of limitations:

• It may be better suited for static structures than for dynamic processes

• Diagrams may have no real information content

• Diagrams are difficult to maintain, and there are diminishing returns the more they are elaborated

and refined (e.g., for archival purposes)

• Conversely, diagrams become less accessible the more complex they are

• Visualization can result in distorted understandings

• Ultimately, diagrams rely on deeper shared understandings that must be understood and managed

Despite the familiarity of simple flowcharting, visual notations don’t scale well in terms of

representing program logic. Therefore, for dynamic or procedural problems, they tend to be used

informally, as sketch or whiteboarding, or at the business analysis level (where the flowchart

represents business logic, not detailed software). Dynamic processes also change more often than the

static structures, and so must be updated more frequently.

More static structures, including data and class models and systems interactions, are still often

represented visually and in the case of data models can be transformed from conceptual

representations to physical schema.

However, any diagram, whether of a dynamic or static problem, can reach a level of density where it is

no longer useful as a visual explanation. As diagrams become more complex, their audience narrows

to those most familiar with them. Past a certain point, they exceed the limits of human visual

processing and then are of little use to anyone.

This brings up broader concerns of the limits of human cognition; recent research shows that it is

difficult for humans to hold more than four things in working memory — this is lower than previous

estimates [204]. Diagrams with more than four to seven elements risk being dismissed as unusable.

Another issue with some diagrams is that they do not give a good sense of perspective or scale. This is

sometimes seen in the Business Architecture practice of “capability mapping”. For example, suppose

you see a diagram such as shown in Figure 151, “Simple Capability Map”.

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

456 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 151. Simple Capability Map

Diagrams like this are common, but what does it mean that all the boxes are equally sized? Are there

as many lawyers as sales people? Operations staff? It is not clear what the advantage is to putting

information like this into a graphical form; no interactions are seen, and the eight areas could more

easily be expressed as a list (or “catalog” in the terms we will introduce below). This brings us to the

final problem listed above: visualizations rely on some common ground understanding. If boxes and

lines are used for communication, their meaning should be agreed — otherwise, there is a risk of

misunderstanding, and the diagram may do more harm than good.

Regardless of the pitfalls, many architecture diagrams are valuable. Whether drawn on a whiteboard,

in Powerpoint™ or Omnigraffle™, or in a repository-based architecture tool, the visualization concisely

represents a shared mental model on how the organizations will undertake complex activities. The

diagram leverages the human preference for visual processing, accessing the powerful parallel

processing of the visual cortex. Ultimately, the discussions and negotiations the architect facilitates on

the journey to driving organizational direction are the real added value. The architect’s role is to

facilitate discussions by abstracting and powerfully visualizing so that decisions are illuminated and

understood across the team, or broader organization.

6.4.3.2.4. Repositories and Knowledge Management

Artifacts are generally classified as catalogs (lists of things), matrices (showing

relationships between things), and diagrams (pictures of things).

— The TOGAF Standard, Version 9.2

The question was asked above: “why put things into a picture when a report is all that is needed?”. We

know that sometimes a picture is worth a thousand words, but not always. And sometimes the

picture’s components need more description than can conveniently fit on the actual diagram. This

brings us to the topic of Enterprise Architecture as knowledge management. Knowledge management

is a broad topic, with a scope far beyond this document. But in the context of a digital organization,

architecture can serve as an important component of an overall knowledge management strategy.

Without some common ground of understanding, digital organizations struggle, and Enterprise

Architecture can help.

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 457

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Catalogs, Diagrams, Matrices

As the previous quote from the TOGAF standard indicates, architecture can elegantly be represented

as:

• Catalogs

• Diagrams

• Matrices

For example, consider the image shown in Figure 152, “Process and Function Diagram”.

Figure 152. Process and Function Diagram

It can be read as saying that the “Quote to Cash” process depends on the following functions:

• Sales

• Contracts

• Accounts Receivable

Notice that a matrix (see Figure 153, “Process and Function Matrix”) can be read in the same way.

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

458 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 153. Process and Function Matrix

“Quote to Cash”, which appeared as a chevron in the diagram, is now one of a list:

• Quote to Cash

• Procure to Pay

• Hire to Retire

This list can be called a “catalog”. Similarly, there is another catalog of functions:

• Sales

• Contracts

• Accounts Receivable

• Vendor Management

• Accounts Payable

• Human Resources

• IT

• Payroll

• Benefits

The functions appeared as rounded rectangles in the diagram.

There are pros and cons to each approach. Notice that in about the same amount of space, the matrix

also documented the dependencies for two other processes and six other functions. The matrix may

also be easier to maintain; it requires a spreadsheet-like tool, where the diagram requires a drawing

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 459

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

tool. But it takes more effort to understand the matrix.

Maintaining a catalog of the concepts in a diagram becomes more and more important as the diagram

scales up. Over time, the IT operation develops significant data by which to manage itself. It may

develop one or more definitive portfolio lists, typically applications, services, assets, and/or technology

products. Distinguishing and baselining high-quality versions of these data sets can consume many

resources, and yet managing the IT organization at scale is nearly impossible without them. In other

words, there is a data quality issue. What if the boxes on the diagram are redundant? Or inaccurate?

This may not matter as much with a tight-knit team working on their whiteboard, but if the diagram is

circulated more broadly, the quality expectations are higher.

Furthermore, it is convenient to have data such as a master lists or catalogs of processes, systems,

functions, or data topics. We might also want to document various attributes associated with these

catalogs. This data can then be used for operational processes, such as risk management, as we have

discussed previously. For these reasons and others, Enterprise Architecture repositories emerge.

Architecture Data Management

When we establish a catalog of architectural entities, we are engaging in master data management. In

fact, the architectural concepts can be represented as a form of database schema (see Figure 154, “A

Simple Metamodel”).

Figure 154. A Simple Metamodel

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

460 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

NOTE
A data model that organizes data about data and its related systems can be called a

metamodel.

Material that we first saw in diagram form can be stored in a database. Systems that enable this are

called Enterprise Architecture repositories. Their data schemas are often called metamodels.

Architecture repositories require careful management. A common anti-pattern is to acquire them

without considering how the data will be maintained. The concepts in the repository can be subjective,

and if it is intended that they be of high data quality, investments must be made. Some kind of

registration process or decision authority must exist for the creation of (for example) a new, official

“system” record. Misunderstandings and disagreements exist about the very meaning of terms like

“system” or “technology”. (We discussed some of the general issues in Section 6.4.2, “Information

Management”, with the ontology problem.) Such issues are especially difficult when Enterprise

Architecture repositories and metamodels are involved. Frequent topics:

• Is an “application” different from a “service"? How?

• What is the relationship between a “capability” and a “function"? Or a “capability” and a “process?”

• How can we distinguish between “systems” and “technologies"?

• What is the relationship between a “product” and a “service”, especially if the service is a market-

facing digital one?

• What is the relationship between:

◦ Value chain

◦ Value stream

◦ Process

◦ Activity

◦ Task

And so on. We might expect that there would be industry standards clarifying such issues, and in some

cases there are. In other cases, either there are no standards, or the standards are obsolete or

conflicting.

Finally, there are a number of other systems that may interoperate with the architecture repository.

The most important of these is the CMDB or CMS that underlies the ITSM tooling. These tools also need

to know at least about systems and technologies and may be interested in higher-level concepts such as

business capability. However, they usually do not include sophisticated diagramming capabilities or

the ability to represent a system’s future state.

Other tools may include project management systems, portfolio management systems, risk

management systems, service-level management systems, and others. Application and service master

data, in particular, is widely used, and if the Enterprise Architecture repository is a System of Record

for this data there will be many outbound interfaces.

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 461

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

An Economic View

NOTE The discussion below also applies to the CMDB as well as other similar repositories.

Part of the challenge of any repository is what data to manage. How do we think more systematically

about this? First, we need to understand why we want to assemble this data in a ready-to-query

repository. There are two major reasons why we store data:

• There are no other sources for it - if we don’t establish a System of Record, the data will go

unmanaged, and we won’t know what servers we have, or what applications we are running

• There may be other sources for the data, even System of Record, but we need an operational data

store to bring the various data sources together in a way that makes them more efficient to query

For either kind of data, you need to have an economic understanding of why you want it. Suppose you

need to find out what applications you are running because you want to rationalize them. You could

invest weeks of research into the question, costing perhaps tens of thousands of dollars worth of yours

and others’ time, to create a one-time spreadsheet.

But what happens when there are multiple purposes for the data? You find out that the security group

also wants a master list of applications and has been compiling a different spreadsheet, for example.

What happens when the same engineers and managers are asked for the same data over and over

again because there is no repository to maintain this organizational memory?

The challenge is, when does it make economic sense to pre-aggregate the data? The economic graph

shown in Figure 155, “Economic Value of the Enterprise Architecture Repository” may assist in

thinking about this.

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

462 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 155. Economic Value of the Enterprise Architecture Repository

The graph may be familiar to those of you who studied economics. On the left, you have the

assumption of no architecture repository, and on the right, you have a comprehensive architecture

repository. With a less comprehensive architecture repository, you are paying some cost in research

and outage impacts. You also are incurring more risk, which can be quantified. On the other hand,

with a comprehensive architecture repository, you incur more costs in maintaining it. You need

processes that have a direct cost to operate, as well as imposing indirect costs such as the cost of delay

(e.g., if updating the architecture repository slows down the release schedule).

But in the middle is a sweet spot, where you have “just enough” architecture repository data. This

optimal architecture repository scope represents the real savings you might realize from instituting

the architecture repository and the necessary processes to sustain it.

This is not a complete business case, of course. Your projected savings must be offset against the costs

of acquisition and operations, and the remaining “benefit” needs to exceed your organization’s hurdle

rate for investments.

6.4.3.2.5. The IT lifecycles

We have discussed products and the various ways digital organizations deliver them, from simple

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 463

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

work management to more sophisticated project and process management approaches. Now, we need

to refine our understanding of the products themselves and how they are managed.

We previously discussed the relationship between feature versus component teams in Competency

Area 4. In Competency Area 9, we touched on the idea of shared services teams. Both of these ideas are

now expanded into what is called the "four lifecycle model”.

The four lifecycle model was first documented in [31]. The four lifecycles are:

• The application service lifecycle

• The infrastructure service lifecycle

• The asset lifecycle

• The technology product lifecycle

Each of these lifecycles reflects the existence of a significant concept, that is managed over time as a

portfolio. (More on IT portfolio management practices in Competency Area 12.)

First, bear in mind that services are kinds of products. Digital value is usually delivered as a service,

and shares standard service characteristics from an academic perspective, including the idea that

services are produced and consumed simultaneously (e.g., an account lookup) and are perishable (a

computer’s idle time cannot be recovered if it goes unused).

The first two concepts (application and infrastructure service) below reflect these characteristics; the

second two (asset and technology product) do not.

An application service is a business or market-facing digital product, consumed by people whose

primary activities are not defined by an interest in IT; for example, a bank customer looking up her

account balance, or an Accounts Payable systems operator. In terms of “feature versus component”, the

concept of application is more aligned to “feature”. An example would include an Online Banking

system or a Payroll system.

The application service lifecycle is the end-to-end existence of such a system, from idea to

retirement. In general, the realization such a system is needed originates externally to the IT capability

(regardless of its degree of centralization). SaaS usage is also tracked here.

An infrastructure service is, by contrast, and as previously discussed, a digital or IT service primarily

of interest to other digital or IT services/products. Its lifecycle is similar to that of the application

service, except that the user is some other IT service. An example would be a storage area network

system managed as a service or the integrated networking system required for connectivity in a data

center. Product as a Service and IaaS are also tracked here.

Note that in terms of our service definition discussion, the above lifecycle concepts are service

systems. The lifecycle of service offerings is a business lifecycle having more to do with the go-to-

market strategy on the part of the firm. We covered this to some extent in Competency Area 4 and

revisited it in Competency Area 12.

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

464 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

An asset is a valuable, tangible investment of organizational resources that is tracked against loss or

misuse, and optimized for value over time. It can sit unused and still have some value. Examples

would include a physical server or other device, or a commercial software license. Whether assets can

be virtual is a subject of debate and specific to the organization’s management objectives (Given the

licensing implications of virtual servers, treating them as assets is not uncommon.)

The asset lifecycle is distinct from the service lifecycles, following a rough order including standard

supply chain activities:

• Forecast

• Requisition

• Request quote

• Order

• Deliver

• Accept

• Install/configure

• Operate

• Dispose

A contract reserving cloud capacity is also an asset.

Finally, a technology product is a class of assets, the “type” to the asset “instance”. For example, the

enterprise might select the Oracle relational database as a standard Technology Product. It might then

purchase ten licenses, which are assets.

The technology product lifecycle is also distinct from both the service and asset lifecycles:

• Identify technical requirement or need

• Evaluate options

• Select product (may kick off asset lifecycle)

• Specify acceptable use

• Maintain vendor relationship

• Maintain product (e.g., patching and version upgrades)

• Continuously evaluate product’s fitness for purpose

• Retire product from environment

Cloud services need to be managed in terms of their version and interoperability concerns.

The challenge in digital management is “lining up the lifecycles” so that transactional value flows

across them (see Figure 156, “Multiple Lifecycle Model”, similar to [31]).

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 465

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 156. Multiple Lifecycle Model

This can be very difficult, as each lifecycle has a logic of its own, and there may be multiple

interdependencies. A technology product may come to the end of its market life and drive expensive

changes up the stack. Conversely, new application requirements may expose deficiencies in the

underlying stack, again requiring expensive remediation. Technology product vulnerabilities can

prove disruptive, and the asset lifecycle (representing either physical depreciation and refresh cycles,

or time-bound licensing) is a significant cost driver.

6.4.3.2.6. The “Rationalization” Quest

“Rationalization” is often listed as one of the major outcomes of Enterprise Architecture. What is

meant by this? Let’s return to our scenario of one company acquiring another. As the newly merged

company takes stock of its combined assets, it becomes clear that decisions need to be made. Among

other areas, redundant systems exist for:

• Marketing

• Human resources

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

466 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• Accounting

The digital pipelines also are inconsistent, one being based on Github and Travis CI, the other being

based on local Git and Jenkins.

Decisions need to be made as to which systems will be “go-forward”. While the teams involved will

have strong input into the system decisions that affect them and will do most of the work, there is

concern that some overall view and coordination of the effort is required. What if teams cannot come

to a consensus? What if there is an opportunity to save money by standardizing on one vendor to

support multiple diverse teams? For these reasons, the company assigns an architect to work closely

with the overall merger program.

A merger is a dramatic example of a rationalization scenario. Established, ongoing companies, even

without mergers, find that redundancy tends to accumulate. This is a normal outcome of the

innovation and commoditization cycle; when technologies are new, organizations may experiment

with several providers. When they become more standardized, and commoditized, the desire for

efficiency drives rationalization.

One of the challenges for rationalization is whether the economics and business context of any given

rationalization effort are well understood. Consistency as an end in itself is not necessarily valuable.

The impacts on enterprise value must be established: will the organization actually benefit from

improved vendor leverage, operational integration, or a reduced security attack surface? If not,

perhaps seeking “rationalization” is not the best use of organizational resources.

Evidence of Notability

Architecture implies a set of practices that can be controversial. Its use as a management program, its

use of repositories, and its emphasis on visualization are all notable aspects that are often debated as

to their value.

Limitations

Architecture practices such as those discussed here are typically seen only in large organizations

requiring institutional continuity.

Related Topics

• Digital Infrastructure

• Application Delivery

• Product Management

• Operations-driven Demand

• Process Management

• Structuring Investment

• Enterprise Information Management

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 467

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.4.3.3. Architecture Domains

In the last section, we discussed what architects do. The focus was primarily architects in a “team of

teams” environment, not strictly at the level of a single product team. However, while this Competency

Area has a strong Enterprise Architecture orientation, it is also about the practice of “architecture”

more generally. In this Competency Category, we will break down the different forms of architecture

and their relationships.

We have seen the Zachman Framework previously. The higher levels are considered “business” or

“operating model” concerns. Meanwhile, the lower levels are more technical. In discussing the various

domains of architecture, however, a simpler structure is useful. The numerous columns in the

Zachman Framework don’t necessarily translate to specific architecture domains (for example, there

are many data architects representing the “what” column, but not many who specialize strictly in

questions of timing — the “when” column). Similarly, we can simplify the number of rows by

consolidating them into three.

The ArchiMate modeling language, a standard of The Open Group, is discussed later in the Competency

Area. It uses a framework that can be viewed as a simplification of the Zachman model (see Figure 157,

“Simplified View of the ArchiMate Framework”).

Figure 157. Simplified View of the ArchiMate Framework

As we look at the overall structure of the architecture disciplines, we have three disciplines that

correspond to the columns. We will call these “perspectives":

• Data Architecture

• Process Architecture

• Capability Architecture

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

468 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

And three disciplines that correspond to the hierarchical layers:

• Business Architecture

• Application Architecture

• Technology Architecture

Does this mean that we have nine flavors of architecture, one for each intersection? Not necessarily.

Some intersections make more sense than others, and some tend to merge with their neighbors. For

example, see the DMBOK [80], which covers the gamut of information and data topics from high-level

glossaries all the way down to physical database administration. Data architects can and do work

across all levels in their perspective.

6.4.3.3.1. Architecture Perspectives

Data Architecture

From top to bottom, the data architecture (“what”) perspective includes concepts such as:

• The universe or domain of discourse

• Ontologies, semantics, and conceptual models

• Logical data models

• Data subjects and records

• Classes

• Entities/attributes/relationships

• Tables/columns/constraints

We covered data architecture in depth in Section 6.4.2, “Information Management”.

Process Architecture

Process architecture is concerned with why and how activities are performed. It includes the detailed,

step-by-step understanding of activities, in a transparent way. From top to bottom, it includes concepts

such as:

• Value chain

• Value stream

• Business process

• Algorithm

• Workflow

• Activity

• Procedure

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 469

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• Task

• Step

Importantly, processes cross organizations. An “onboard employee” process, as we have seen, may

require participation from multiple organizations. We covered process management in depth in

Section 6.3.1, “Coordination and Process”.

Capability Architecture

The last column in the figure Figure 157, “Simplified View of the ArchiMate Framework” represents

steady-state activities. “Hire Employee” is a process; “Manage Human Resources” is a capability. We do

not necessarily know all the steps or details; we just know that if we ask the function or capability for

some result, it can produce it. This perspective includes:

• Function and its relatives

• Function

• Capability

• Service (sometimes)

We discussed functional organization previously in Competency Area 9. Note that there is little

consensus (and as of the time of writing much industry debate) around whether functions are the

same as capabilities; this document sees them as at least similar. Capability is an important concept in

Business Architecture, as it has emerged as the preferred concept for investment. We do not invest in

data, or process, except as they are realized by a supporting capability. A comprehensive graphical

depiction of “capabilities” may be used to help visualize portfolio investments, sometimes using

green/yellow/red color coding — this is called "capability heat mapping”.

6.4.3.3.2. Architecture Layers

Business Architecture

The Open Group Open Business Architecture (O-BA) Standard defines Business Architecture as: "The

formalized description of how an organization uses its essential competencies for realizing its strategic

intent and objectives."

The TOGAF Standard, Version 9.2 defines Business Architecture as: "A representation of holistic, multi-

dimensional business views of: capabilities, end-to-end value delivery, information, and organizational

structure; and the relationships among these business views and strategies, products, policies,

initiatives, and stakeholders."

The TOGAF Series Guide: Business Models covers the Osterwalder Business Model Canvas extensively.

In so doing, it highlights that the concept of the business model is of interest for Business Architects.

Because of this, it is helpful to view Business Architecture as the component of Enterprise Architecture

most concerned with the business model, in addition to the operating model.

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

470 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

More specifically, there are a number of concerns that Business Architecture includes:

• Value Streams

• Capabilities

• Organization

• Information

• Stakeholders

• Vision, Strategies, and Tactics

• Initiatives and Projects

• Decisions and Events

• Metrics and Measures

• Products and Services

• Policies, Rules, and Regulations

from [50 p. 2]. The reader might notice some overlap with governance elements, which also include

Information, Policies, and Organization.

On the other hand, we do not expect to see in Business Architecture the following:

• Specific technology products

• Software architectures (design patterns, class models, etc.)

• Detailed deployment diagrams

• Specific project plans

• Detailed flowcharts

• Specific devices

Application Architecture

Application, or application systems, like data, process, and capability, is a fundamental and widely-

used architecture perspective, as well as a layer. It can be defined as "a fixed-form combination of

computing processes and data structures that support a specific business purpose” [32 p. 125]. An

application system is practically relevant, obtainable, and operable. (You can buy, or realistically build,

one of these.)

Application architecture can have two meanings:

• The architecture of a given application

• The architecture of application interactions

For this document, we will leave the architecture of a given application for solutions and software

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 471

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

architecture. Application architecture is the interaction of multiple applications (which may include

digital products and/or services, depending on organization terminology). In a complex, multi-product

environment, application architecture tends to focus on the interfaces and interactions between the

application systems. It is often a concern when systems are considered for retirement or replacement

(for example, when a comprehensive ERP solution is brought in to replace several dozen home-grown

applications).

Application architecture is also concerned with the application lifecycle, as covered at the start of this

section.

Technical Architecture

Where Business Architecture intersects with the business model, technical architecture overlaps with

actual engineering and operations. In particular, technical architecture tends to be concerned with:

• Identification of new technical platform capabilities: for example, does the organization need to

bring in a NoSQL platform? Private cloud?

• Choice of vendor products, once a technical need is established

• Establishing infrastructure services as appropriate

• Defining appropriate usage, including infrastructure design patterns

• Tracking the lifecycles of the selected products and dependent services, and making appropriate

plans

6.4.3.3.3. Other Forms of Architecture

There are other kinds of architecture that don’t fit neatly into this arrangement:

• Solutions architecture

• Software architecture

• Information architecture (UX-related definition)

• Adaptive systems architecture

Solutions Architecture

Solutions architecture, especially, is a loose term. In general, it is restricted to one product, or a few

products which are working together, as a “solution” to a business problem. Within that scope, it may

incorporate concepts from infrastructure to Business Architecture. It also connotes more technical

concerns.

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

472 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Software Architecture

Architecture represents the significant design decisions that shape a system,

where significant is measured by cost of change.

— Grady Booch

The rapid evolution of software technology has fueled the growth of digital business. Following

Internet giants’ lead, some enterprises from the old economy are framing themselves as tech

companies; for example, Banco Bilbao Vizcaya Argentaria (BBVA): “If you want to be a leading bank,

you have to be a technology company.”.

Internet giants did succeed at retaining the agility of startups while they grow at a fast pace and

operate at a global scale. They paid special attention to loose-coupling and team autonomy and they

learned how to master distributed computing at scale.

Since loose-coupling and distributed computing at scale are software architecture concerns, digital

enterprises have to develop robust software architecture capabilities.

DDD has deeply influenced the software engineering discipline by shifting the attention to the domain.

The most significant source of complexity of much software is not technical. It is in the domain itself,

the activity or business of the user.

When this domain complexity is not dealt with in the design, it won’t matter

that the infrastructural technology is well conceived. A successful design must

systematically deal with this central aspect of the software.

— Eric Evans

The premise of DDD is that:

• For most software projects, the primary focus should be on the domain and domain logic

• Complex domain designs should be based on a model

DDD provides strategy patterns that help design loosely-coupled systems. The modular nature of a

software system architected with DDD makes it cloud-native friendly by design. The code quality

improves because domain concepts are made explicit.

The code is more readable (even by business people) and easier to maintain. Value objects drive a

coding style that promotes immutability which makes distributed systems safer. Domain code is more

immune from future technology obsolescence because it isolates and protects "domain" code from

"technical" code which is more subject to technology obsolescence.

Marc Andreessen once wrote: "Software is eating the world." Evidence of this is the increasing scope of

software technology usage. For example, IT infrastructure is becoming a software discipline.

Infrastructure as Code and SDNs handle computing and networking resources as software objects.

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 473

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

From a DDD perspective this opens domain modeling well beyond business into technology domains.

AI technologies such as Deep Machine Learning push the limits of automation. Software can now

perform more and more activities that used to be exclusively performed by human beings such as

driving a car or performing a medical diagnosis.

Software becomes a key component of complex product and service systems; for example, an

automated parking or a self-service system. This has two implications:

• Software architecture is morphing into system architecture (systemic meaning of system)

• Business people have to understand software engineering as they understand marketing or finance

Information Architecture (Alternate Usage)

Information architecture may mean the higher, more business-relevant levels of data architecture.

However, the term also is used in relation to application architecture, in the sense of how the user

understands the meaning and data represented by a website or application, or even just the navigation

structure of a website.

Adaptive Systems Architecture

Complex Adaptive Systems (CAS) are composed of elements, called agents, that

learn or adapt in response to interactions with other agents … The activities of

semi-autonomous agents are only partially controlled by current input. So

agents can examine different courses of action prior to execution. [130]

— John Holland

In a digital world, aligning business and IT is no longer sufficient. You have to architect the enterprise

in such a way that it can adapt to emerging customer and business needs.

The information systems of large organizations are becoming more complex which increases

coordination efforts, raises failure rates of large transformation projects, or lowers the enterprise’s

agility.

The CAS theory provides key concepts to help design systems that can evolve while complexity is

maintained under control (i.e., co-evolution, interconnected autonomous agents, self-organization).

Enterprise Architecture needs to evolve toward an Adaptive Enterprise Model that facilitates its co-

evolution with the environment and delegates decision-making to the lowest possible level.

The enterprise develops and delivers products and services that meet the ever-changing needs of

customers and markets. Cross-functional features teams or squads led by product owners are given the

autonomy to experiment and evolve products and services.

At the enterprise level, strategy defines the purposes that help align autonomous teams. Business

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

474 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

models define how the enterprise will co-evolve within its eco-system. Operating models define how

the required business capabilities will be supported.

The emergence of product platforms helps reuse capabilities that several products or services need.

Product platforms accelerate the creation of new products and lower their development and

production costs.

Figure: Figure 158, “Toward an Adaptive Enterprise Model” represents an evolution of the classical

enterprise model. It complements it with concepts borrowed from Agile requirements, Lean Start-up

and LPPD.

Figure 158. Toward an Adaptive Enterprise Model

Let’s now zoom in on customer experience. In the old paradigm the enterprise would capture

customer requirements and build products and services that meet those. The approach is mainly

driven by market studies that try to "guess" what customers need.

In the digital world, guessing is replaced by observation and experimentation. The focus shifts to

modeling the "Jobs to be Done" [61] by customers. The rapid development and experimentation of an

MVP helps the enterprise confirm its direction or pivot to a different concept.

The art of architecting itself moves from a pure top-down role to a coaching role where capability

modeling and modularity principles help define the Minimum Viable Architecture (MVA).

Figure: Figure 159, “The Customer Experience’s Paradigm Shift” illustrates the shift toward an outside-

in approach. It has the following benefits:

• Distinguishing the problem space from the solution space opens innovation opportunities

• Focusing on capabilities helps improve the enterprise’s business and operating models

• Fast iterations transform the enterprise into a learning organization capable of adapting to

changing customer expectation

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 475

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Figure 159. The Customer Experience’s Paradigm Shift

Evidence of Notability

There are a wide variety of architectural practices and approaches frequently addressed and debated

within industry. They are codified within the TOGAF standard [279] as well as other literature.

Limitations

Architecture often manifests as an impulse to plan in advance; however, in complex situations it is

difficult to plan before a full understanding of the problem is achieved. This is a well-known problem

in software engineering.

Related Topics

• Digital Infrastructure

• Application Delivery

• Product Management

• Operations-driven Demand

• Process Management

• Structuring Investment

• Enterprise Information Management

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

476 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.4.3.4. Agile and Architecture

Description

The relationship between architecture (both “enterprise” and other forms of architecture) and current

Agile, DevOps, and digital product development approaches is too often troubled. However, the hope is

that this document has given you a set of tools for resolving these concepts in a productive way.

6.4.3.4.1. The Agile Critique of Architecture

The goal of Enterprise Architecture is to act as a guide, perhaps a pathfinder, who takes the enterprise on

a transformational journey - from an incoherent and complex world with LOB separation, product-

specific stovepipes, legacy systems estate, and costly operation to a more rationally organized and useful

state with multiservice, revenue-generating platforms and an efficient operational regime. On the way,

radical surgeries may be required to eliminate duplication, reduce costs, improve reliability, and increase

agility in the business. Enterprise Architecture acts as a strategic foundation for business enablement. [28

p. 9]

Product development organizations often experience architecture and its goals as unwarranted

interference, imposing a high cost of delay with little apparent return on investment. Architecture

approvals can be required on:

• Application designs

• Database designs

• Selection of technology products

and other such topics. When development cannot proceed without those approvals - or if the approvals

come at the cost of expensive rework - the experience can often be challenging. Bente et al. warn: “if

Enterprise Architects claim to be the only decision-making body in technical matters, there is a huge

risk that they create a bottleneck … The practical consequence is that projects deliberately circumvent

the Enterprise Architects …” [28 p. 19].

Enterprise Architecture has presented itself as a solution to complexity, long IT time scales, business

frustration, and other various IT problems. These issues are at this writing being solved, but not by

architecture — at least not visibly. Instead, visible and publicized progress has come through the

increasing adoption of Agile and DevOps practices rethinking open-loop, slow feedback, batch-oriented

delivery. Architecture has been challenged on several fronts:

• It failed to realize the emergent issue of too much enterprise work-in-process, instead championing

the proliferation of enterprise processes and their associated queues

• Architects' motivation for “efficiency” and interest in capability mapping did not help the cause of

cross-functional teams

◦ Instead, functional silos were reinforced as supply-centric “capabilities”, and the project-centric

anti-pattern of “bringing the team to the work” was promoted as enterprise standard operating

procedure — despite the growing evidence of Scrum and Agile success. The iterative,

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 477

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

experimental narrative of Lean Startup did not originate from Enterprise Architecture.

• Despite a professed interest in systems theory, architecture has failed to adopt a workable systems

perspective on digital delivery

◦ It did not recognize the fundamental problems of stage-gated delivery, big bang releases, queue

proliferation, and so forth. Architecture “gap” analysis resulted in project recommendations,

again “bringing the team to the work”.

• Architecture has often deserved the criticism of “top-down planning”, which in complex systems

domains too often doesn’t work

◦ Architects frequently fall into the trap of the HiPPO. A sense of Lean Startup experimentation,

of placing bets on options and testing hypotheses, is not part of the mainstream Enterprise

Architecture culture. Instead, the architecture is presented as an established fact, with

“governance” to ensure conformity. Hypothetical “synergies” emerging from “common

platforms” are often offered as justification for architecture, with little follow-up in measuring

actual value delivered.

Justifications for architecture often invoke “complexity” in the portfolio of systems. In response,

architecture has often given in to the desire for a complete “radical surgery” systems re-engineering,

the temptation of the “clean slate”. But as Jez Humble accurately notes:

A common response to getting stuck in a big ball of mud is to fund a large systems replacement project.

Such projects typically take months or years before they deliver any value to users, and the switchover

from the old to the new system is often performed in “big bang” fashion. These projects also run an

unusually high risk of running late and over budget and being canceled. Systems re-architecture should

not be done as a large program of work funded from the capital budget. It should be a continuous activity

that happens as part of the product development process. [137], Chapter 10.

Architecture methodology, with its focus on identifying capability gaps for feeding into the project

portfolio process, has perhaps been too prone to supporting these large, troubled programs. As we

know from our earlier Competency Areas, large system changes are inherently risky, and any

intervention into a complex system is better undertaken as a series of smaller, incremental changes

with frequent monitoring and assessment.

6.4.3.4.2. The Architecture Critique of Agile

The Agile community has its own blind spots and challenges. Speed is seen as a good in itself, too often

without an economic model. Agile teams often clash with enterprise governance processes that have

sound compliance and financial benefits. Phrases like “you aren’t gonna need it” are used to justify

lapses of due diligence on critical capabilities, and standard platforms and vendors are seen as

unreasonable limitations on team autonomy — to the point where it seems some teams' interest is

primarily in padding their resumes with as many new technologies as possible, regardless of the long-

term consequences for the organization.

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

478 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

The Limitations of Cost of Delay

Cost of delay is a real and often overlooked issue, in understanding the net value of architecture. But it

is only a factor and does not eliminate the value proposition of architecture. If the cost of delay is only

a few hundred dollars a month, but the risk or technical debt represents millions, then the delay may

be appropriate. Don Reinertsen, who has done more than anyone to promote the idea of cost of delay,

emphasizes that all decision-making must take place within an economic framework and that means

that the other architectural impact factors on organization value must also be considered [230],

Chapter 2.

Documentation

Documentation has been a core concern of the Agile movement, being mentioned in one of the four

core principles of the Agile Manifesto:

"Working software over comprehensive documentation.” [8]

When documentation primarily takes the form of secondary artifacts, it is appropriate to question the

need for it. “The code is the documentation”, some will argue. While it is true that good coding

practices result in easier-to-understand (and maintain) source code, the code cannot be the only

documentation. As Ruth Malan notes:

… for systems of sufficient scope and complexity to warrant teams (of teams) working on (incremental)

implementation and evolution, the sheer mass of code can make it hard to discover the essential structure

from bottom-up decisions made entirely through the medium of code. [186]

In terms of systems theory, a complex software system has emergent behavior, not obvious from just

looking at its components. Because the system’s behavior can’t be reduced to its pieces, “self-

documenting code” can only go so far. The behavior of the assembled components as a system needs to

be represented somehow, in a way that transcends the mere mechanics of the pieces. Abstraction is

necessary to understand and communicate emergent behavior, and this leads inevitably to visual

representation. Without some attention to documenting overall context and systemic intent and

behavior, the effectiveness of the overall human/computer system degrades. For example, Alistair

Cockburn reports that the Chrysler Comprehensive Compensation project, one of the first widely

reported Agile projects, was eventually halted, and:

… left no archived documentation … other than two-sentence user stories, the tests, and the code.

Eventually, enough people left that the oral tradition and group memory were lost. [65 pp. 41-43]

In short, failure to sustain a shared mental model of a complex system is a risk that may result in loss

of that system’s value.

Sourcing and Technology Standards

Agile and DevOps are software development-centric, and have transformed that world. However,

digital organizations don’t always build everything. There is a complex web of supplier relationships

even for organizations with robust software development capabilities, and many organizations would

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 479

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

still prefer to “buy rather than build”. Software may be consuming the world, but that doesn’t mean

everyone employs — or should employ — software developers. Agile has not had a primary focus on

sourcing, and evaluating commercial software is not a common Agile topic.

Suppose you have an idea for a digital product, and you know that you will be (at least in part)

assembling complex services/products produced by others? Suppose further that these provided

services overlap (the providers compete)? You need to carefully analyze which services you are going

to acquire from which provider. You will need a strategy, and who is it that analyzes these services and

their capabilities, interfaces, non-functional characteristics, and makes a final recommendation as to

how you are going to bring them all into one unified system?

It is easy to say things like: “the teams get to define their own architecture”, but at some point, the

enterprise must reckon with the cost of an overly diverse supplier base. This is a very old topic in

business, not restricted to IT. At the end of the day, supplier and sourcing fragmentation costs real

money. Open source, Commercial-Off-The-Shelf (COTS), cloud, in-house … the options are bewildering

and require experience. In a sense, the supplier base itself is an inventory, subject to aging and

spoilage. (We can consider this another way of understanding technical debt.) A consistent evaluation

approach is important (preferably under an economic framework; see Reinertsen & Hubbard). And at

some point, product development teams should not have to do too much of their own R&D on possible

platforms for their work.

Architecture as Emergent

The Agile Manifesto is well known for saying: “The best architectures, requirements, and designs

emerge from self-organizing teams” [8]. This is one of the more frequently discussed Agile statements.

Former Netflix CTO Adrian Cockcroft has expressed similar views (quote above).

A key question is whether “architecture” is considered at the single product or multi-product level. At

the single product level, collaborative teams routinely develop effective software architectures.

However, when multiple products are involved, it is hard to see how all the architectural value

scenarios are fulfilled without some investment being directed to the goals of cross-product

architectural coordination. It helps when rules of the road are established; both Amazon and Netflix

have benefited from having certain widely-accepted platform standards, such as “every product

communicates through APIs”. Netflix had for a long time a long-term commitment to Amazon cloud

services; it was not acceptable for teams there to decide on a whim to deploy their services on Google

Compute Engine™ or Microsoft Azure™, so at least in that sense Netflix has an architecture. The

question gets harder when layered products and services with complex lifecycle interactions are

involved.

Microservices can reduce the need for cross-team coordination, but coordination needs still do emerge.

For example, Mike Burrows of Google provides a detailed description of the Chubby lock service [49],

which is a prototypical example of a broadly-available internal service usable by a wide variety of

other products.

The purpose of a lock service is to “allow its clients to synchronize their activities and to agree on basic

information about their environment”. Chubby was built from the start with objectives of reliability,

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

480 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

availability to a “moderately large set of clients”, and ease of understanding. Burrows notes that even

with such a cohesive and well-designed internal service, they still encounter coordination problems

requiring human intervention. Such problems include:

• Use (“abuse”) in unintended ways by clients

• Invalid assumptions by clients regarding Chubby’s availability

Because of this, the Chubby team (at least at the time of writing the case study) instituted a review

process when new clients wished to start using the lock manager. In terms of Competency Area 7, this

means that someone on the product team needed to coordinate the discussions with the Chubby team

and ensure that any concerns were resolved. This might conceivably have involved multiple iterations

and reviews of designs describing intended use.

Thus, even the most sophisticated microservice environments may have a dependency on human

coordination across the teams.

6.4.3.4.3. Towards Reconciliation

So how do we reconcile Agile with architecture practices, especially Enterprise Architecture and its

concerns for longer lifecycles, aggregate technical debt, and governance? We need to understand why

we look to architecture, what utilizing it means, and how it ultimately adds value, or doesn’t, in the

organization.

Why: Creating the Context

One principle throughout this document has been “respect the team”, because true product value

originates there. If teams are constantly fragmented and their cohesion degraded by enterprise

operating models and governance mandates, their ability to creatively solve business problems is

hampered. Command and control replace emergence, motivation declines, and valuable creativity is

lost. Enterprise Architecture must first and foremost protect the precious resource that is the

high-performing, collaborative, creative team. As we have discussed, imposing multiple governance

checkpoints itself adds risk. And while it is inevitable that the team will be subject to organization-

wide mandates, they should be given the benefit of the doubt when autonomy collides with

standardization.

When Enterprise Architecture takes on true Business Architecture questions, including how digital

capabilities are to be enabled and enhanced, Agile insights become an input or kind of requirement to

Business Architecture. What capabilities require high-performing, cross-functional teams? What

capabilities can be supported by project-based temporary teams? And what capabilities should be

outsourced? The more valuable and difficult the work, the more it calls for the careful development of

a common mental model among a close-knit team over time. Driving organizational capability

investment into long-running team structures becomes a strategy that organizational architects should

consider as they develop the overall organizational portfolio.

Architecture adds value through constraining choices. This may seem counterintuitive, but the choice

is often between re-using a known existing platform or engaging in risky R&D of alternatives. R&D

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 481

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

costs money, and itself can impose a delay on establishing a reliable digital pipeline. But ultimately, the

fundamental objective remains customer and product discovery. All other objectives are secondary;

without fulfilling customer needs, architectural consistency is meaningless. Optimizing for the fast

creation of product information, tested and validated against operational reality, needs to be top of

mind for the architect.

What: The Architecture of Architecture, or the Digital Pipeline Itself

The digital pipeline ultimately is a finely-tuned tool for this creation of information. It, itself, has an

architecture: business, application, and technical. It operates within an economic framework. To

understand the architecture of the digital pipeline is in a sense to understand the “architecture of

architecture”.

As we have discussed above, architecture, like staff functions generally, is in part a coordination

mechanism. It collects and curates knowledge and sustains the organization’s understanding of its

complex systems. Architecture also identifies gaps and informs the investment process, in part through

collecting feedback from the organization.

If architecture’s fundamental purpose is enabling the right emergent behavior, there are still questions

about how it does so. Architecture adds value in assisting when:

• Systems are too big for one team

• Features are too complex to be implemented in one iteration

• Features require significant organizational change management

As a coordination mechanism, it can operate in various ways including planning, controlling, and

collaborating. Each may be appropriate for a given challenge or situation. For example, different

approaches are required depending on whether the product challenge is flower or cog. A flower is not

engineered to fill a gap. A cog is. Market-facing experiments need leeway to pivot, where initiatives

intended to fill a gap in a larger system may require more constraints and control. And how do

architects know there is a gap? It should be an hypothesis-driven process, that needs to establish that

there is a valuable, usable, feasible future state.

How: Execution

As an executing capability, architecture operates in various ways:

• Planning and analysis

• Governance and approvals

• Collaboration and guidance

Ideally, planning and analysis occur “upstream” of the creation of a product team. In that guise,

architecture functions as a sort of zoning or planning authority — “architecture” is not a process or

organization directly experienced by the product team. In this ideal, there is no conflict with product

teams because once the team is formed, the architect’s job is done. However, this assumes that all the

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

482 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

planning associated with launching a new product or capability was done correctly, and this itself is a

kind of waterfall assumption. Some form of feedback and coordination is required in multi-product

environments.

It is in the “governance and approval” kind of activity that conflict is most likely to emerge. Cadence

and synchronization (e.g., coordination strategies) with the potential to block teams from pursuing

their mission should be very carefully considered. If there is a process or a queue of architecture

approvals, it at least should be operated on cost of delay of the work it is blocking. And more generally,

across the organization, the process should be tested against an economic model such as establishing a

nominal or portfolio-level cost of delay. Like other processes, architecture itself can be assessed against

such a baseline.

Queued approvals are only one way of solving issues. A rich and under-utilized approach is using

internal market-type mechanisms, where overall rules are set, and teams make autonomous decisions

based on those rules. Don Reinertsen, in the Principles of Product Development Flow, discusses how

Boeing implemented distributed decision-making through setting trade-off rules for cost and weight.

Rather than constantly routing design approvals through a single control point, Boeing instead set the

principle that project managers could “purchase” design changes up to $300 per unit, to save a pound

of weight. As Reinertsen notes:

The intrinsic elegance of this approach is that the superiors didn’t actually give up control over the

decision. Instead, they recognized that they could still control the decision without participating in it.

They simply had to control the economic logic of the decision. [230 p. 42]

One particular work product that architects often are concerned with is documentation. The desire for

useful documentation, as mentioned above, reflects architecture’s goals of curating a common ground

for collaboration. As Bente notes: “In an Agile project, explicit care must be taken to ensure proper

documentation; for example, by stating it as part of the condition of satisfaction of a user story or in

the definition of done.” [28 p. 170]

Architecture Kata

Toyota Kata was discussed in Section 6.3.3, “Organization and Culture”. In Lean Enterprise, Jez Humble

et al. argue that it can provide a useful framework for architecture objectives. Toyota Kata emphasizes

end-state goals (“target conditions”) and calls for hands-on investigation and response by participating

workers, not consultants or distant executives. Architecture can benefit by understanding “gaps” in the

sense of Toyota’s target conditions, and then support teams in their collaborative efforts to understand

and achieve the desired state. The architectural impact model can assist in thinking through suitable

target conditions for architecture:

• Top-line impact through re-use (lowering cost of delay)

• Bottom-line impact through portfolio rationalization

• Risk impact through minimizing attack surface and re-use of known good patterns and platforms

Keeping the target operating condition specific is preferable. When architecture scopes problems too

broadly, the temptation is to undertake large and risky transformation programs. As an alternative,

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 483

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Humble suggests the "strangler pattern”, proposed by Martin Fowler in 2004 [102]. This pattern uses as

a metaphor Australian “strangler” vines that grow around trees until the original tree dies, at which

point the strangler vine is now itself a sturdy, rooted structure.

To use the strangler pattern is not to replace the system all at once, but rather to do so incrementally,

replacing one feature at a time. This may seem more expensive, as it means that both the old and new

systems are running (and cost savings through sunsetting the old system will be delayed). But the risk

of replacing complex systems is serious and needs to be considered along with any hoped-for cost

savings through replacement. Humble and Molesky suggest:

• Start by delivering new functionality - at least at first

• Do not attempt to port existing functionality unless it is to support a business process change

• Deliver something fast

• Design for testability and deployability

The strangler pattern is proven in practice. Paul Hammant provides a large number of strangler

pattern case studies, including:

• Airline booking application

• Energy trading application

• Rail booking application

and others [120].

Of course, there are other ways architecture might add value beyond system replacement, in which

case the strangler pattern may not be relevant. In particular, architects may be called on to closely

collaborate with product teams when certain kinds of issues emerge. This is not a governance or

control interaction; it is instead architecture as a form of shared consulting “bench” or coordination

mechanism. Not every product team needs a full-time architect, the reasoning goes, so architects can

be assigned to them on a temporary basis; e.g., for one or a few sprints, perhaps of the technical

“spike” (discovery/validation/experimentation) variety.

6.4.3.4.4. The Challenge of the “Hands-On” Architect

Architect is a broad category. It includes individuals who are talented at single-product designs, as well

as those tasked with managing the overall interactions between hundreds of systems.

The solution architect needs to have hands-on technical ability. Many Agile authors are dismissive of

“ivory-tower” architects who do not do “hands-on” work and, in fact, if an architect is going to sit with

a technical team as a solutions advisor they clearly need the technical skills to do so. On the other

hand, not all architects operate at the solutions level, nor are the problems they face necessarily

programming problems.

It is well and good for architects to maintain some technical facility, but in the case of true, portfolio-

level Enterprise Architects, how to do so may not be obvious. What if someone’s portfolio includes

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

484 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

multiple platforms and languages? It is simply not possible to be hands on in all of them. Some of the

most challenging systems may be a complex mix of commercial product and customization; e.g., ERP or

core banking systems. Choosing to be “hands on” may not even be welcomed by a given team, who

may see it as meddlesome. And other teams may feel the architect is “playing favorites” in their choice

of platform to be “hands on” with.

Clearly, if the organization is running primarily on (for example) Node.js, having strong JavaScript

skills is important for the architect. But in more heterogeneous environments the architect may find

strong data management skills to be more useful, as often interfaces between systems become their

primary concern.

Another form of being “hands on” is maintaining good systems administration skills, so that the

architect can easily experiment with new technologies. This is different from being adept in a given

programming language. One recent positive trend is lightweight virtualization. In years past,

experimenting with new products was difficult on two fronts:

• First, obtaining high-performance computing resources capable of running demanding software

◦ Sometimes these resources needed unusual OSs (e.g., “in order to try our software, you have to

run it on a specific version of a well-known OS on a specific hardware platform” — not a

capability most architects had in their back pocket).

• Second, obtaining a demonstration version of software from vendors, who would usually start a

sales cycle if you asked for it

Times have changed. Demonstration versions of software are increasingly available with little

overhead or risk of triggering unwanted sales calls. Platform requirements are less diverse. And

lightweight virtualization (e.g., the combination of Vagrant and Virtualbox) now makes it possible for

architects to be hands on; modern laptops can run multiple virtual machines in cluster architectures.

Significant experimentation can be carried out in working with systems of various characteristics.

Being able to evaluate technologies in such a virtual lab setting is arguably even more useful than

being a “coding architect”. Product team developers do the programming; the architect should be more

concerned with the suitability and feasibility of the integrated platform.

Evaluating Architecture Outcomes

Finally, how do we evaluate architecture outcomes? If an organization adopts an experimental, Toyota

Kata approach, it may find that architecture experiments run on long time horizons. Maintaining an

organizational focus on value may be challenging, as the experiments don’t yield results quickly.

Curating a common ground of understanding may sound like a fine ideal, but how do we measure it?

First, the concept of Net Promoter Score is relevant for any service organization, internal or external.

Its single question: “Based on your experience, on a scale of 1-10 would you recommend this product

or service to a friend?” efficiently encapsulates value in a single, easy to respond to query.

As digital pipelines become more automated, it may be possible to evaluate their digital exhaust impact

on architecture services:

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 485

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

• Are architecture standards evident in the source and package managers?

• Are platform recommendations encountering performance or capacity challenges?

In a world of increasing connectivity and automation, there is no reason for architects in the

organization to lack visibility into the consequences of their recommendations. Ultimately, if the cost of

operating the coordination mechanism that is architecture exceeds the value it provides, then

continuing to operate it is irrational.

Evidence of Notability

Agile, DevOps, and architecture often come into contact and even conflict. This friction carries many

consequences for organizations wishing to digitally transform, yet not abandon the benefits of

architecture.

Limitations

The intersection of Agile and architecture is most significant in organizations that are performing their

own digital R&D (i.e., software development).

Related Topics

• Agile Development

• DevOps

• Product Management

• Work Management and Lean

• Lean Product Development

• Structuring Investment

• Sourcing

• Agile Information Management

6.4.3.5. Architecture, Digital Strategy, and Portfolio

Description

The aggregate digital investments of any large enterprise are massive. Whether capital or expense,

whether internally hosted or externally sourced, the IT portfolio consumes tremendous amounts of

time, money, and expertise. In this chapter, we have discussed architecture in terms of catalogs,

diagrams, and matrices, sometimes stored in architecture repositories. But architecture repositories

are in general not analytic tools. Nor is architecture an analytic discipline (it is not usually strongly

quantitative). Architecture too often relies heavily on interviews and expert opinions, approaches that

are sometimes critiqued as relying on the “HiPPO”. Portfolio management can be a means to bring in a

more quantitative approach.

We first discussed portfolio management in Section 6.3.2.3, “Portfolio Management”. How do we define

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

486 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

portfolio? [32] defines it as: “things of consequence managed over a long time horizon”. The concept of

the TOGAF catalog is a good place to start. Frequently, portfolio management starts at the application

level; the application portfolio can be seen as a sort of alternate “chart of accounts” by which digital

investments can be grouped.

Portfolios are intended to provide a consistent basis for comparison and understanding. Items in the

portfolio should be comparable. They may rely on both objective and subjective data points:

• Objective data

◦ Business revenue/value

◦ Cost

◦ Risks

◦ Staffing

◦ Service levels, changes, incidents

◦ Product obsolescence (quantifiable technical debt)

• Subjective data

◦ Usability

◦ Customer satisfaction (net promoter score)

◦ Engineering assessments (subjective perceptions of technical debt)

Digital investments and costs typically include some or all of the following:

• Hardware investment, depreciation or leasing

• Software licensing (typically 15%-20% annually of initial acquisition, required for vendor support)

• Floor space; i.e., real estate charges

• Facilities infrastructure: power, High Volume Air Conditioning (HVAC), raised floor, racks, etc.

• Network connectivity and related infrastructure (e.g., directory services software, security

perimeters, and the like)

• Operational software infrastructure: monitoring systems, batch schedulers, backup systems, and so

on, all with their own associated costs

• Operations and support staff; staffing typically can come in various flavors:

◦ Data center operations monitors

◦ Help desk operators

◦ Application specialists

◦ Senior engineers

◦ Senior IT executives and customer relationship managers

◦ Business-side lead users and process and information specialists

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 487

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

◦ Vendor relationship owners and contract managers

6.4.3.5.1. Application Value Analysis

APM may concern itself with any or all of the following:

• Business or financial value of applications in terms of what they support/enable

• Application functions (examined for redundancy)

• Application total cost of ownership

• Application complexity

• Fitness and currency of underlying technical products

• Application service performance

• Application customer feedback

A four-box is often used for application value analysis:

Table 31. Standard IT portfolio “4-box”

Low Technical Fitness High Technical Fitness

High Business Value Re-engineer or replatform

Consider outsourcing carefully

Invest as needed to exploit value

Low Business Value Retire if possible or outsource Improve understanding of

customer requirements

Retire service if no longer

serving a purpose but reclaim/re-

use platform, capabilities, and

assets

6.4.3.5.2. Application Rationalization

What does it mean to rationalize"? There are three steps:

• Take an inventory of the items to be rationalized

• Categorize them to identify redundancy

• Consolidate redundancy

This implies some basis for classification so that the investments can be compared. This is where

industry taxonomies, such as found in industry reference architectures, may help. You may call your

application “Peoplesoft HR”, “Workday”, or even an internal brand like “HR2020”, but a reference

taxonomy categorizes it as simply a “Human Resources Management System”.

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

488 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Data integrations may also be a way to identify redundancy. When two systems start exchanging more

and more data, a useful question is whether there is still a need for both or if a more economical,

integrated solution is possible. Just beware of the risk of overly ambitious consolidation efforts.

Through analysis and understanding of redundancy and business and technical value, applications

(and related concepts such as services and capabilities) can be managed as a coherent investment

strategy. For further information, see the books referenced at the end of this chapter.

Evidence of Notability

Architecture is often called on to rationalize complex assemblies of systems; for example, in the case of

an organizational merger. This is some of the most challenging and high-value work in the digital/IT

industry.

Limitations

A fully rational, planned approach to portfolio rationalization is extremely difficult, as complex

portfolios are dynamic sociotechnical systems and radical interventions frequently give rise to

unexpected, emergent responses.

Related Topics

• Product Management

• Financial Management of Digital and IT

• Sourcing

• Portfolio Management

• Project Management

• Governance

• Architecture

6.4.4. Context IV and DPBoK Conclusion

At this writing, there is much debate on how to unify the value and insights of team-based Agile

development, with the coordination and governance needs of the large enterprise. Thinking in terms

of the following is recommended as the digital enterprise experience requires their formalization:

• Governance

• Information

• Architecture

However, it is critical not to lose track of the product vision and value you started with at the outset of

our emergence journey. Without fast feedback enabling responsive digital services for the customer,

none of the rest of it matters.

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 489

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6.4.4.1. Context IV Architectural View

Figure 160. Architectural View

As the organization grows to the largest scale and the longest time horizons (forward and backward),

additional components are required for architecture, governance/policy, assurance, portfolio

management, service brokering, Supplier Integration and Management (SIAM), and advanced IT

financial management. Suggested components at this final context are:

• Enterprise Architecture Component

• Policy Component

• Service Portfolio Component

• Offer Consumption Component

• Catalog Consumption Component

• Chargeback/Showback Component

• Usage Component

• Service Level Component

Some of these might arguably appear in earlier phases. Correctly assigning them should be based on

empirical research, not anecdote.

Context IV "Architectural View" Learning Objectives

• Identify the IT4IT components suitable for Context IV

6.4. Context IV: Enduring Enterprise Chapter 6. The Body of Knowledge

490 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Related Topics

• Portfolio Management

• Policy Management

• Architecture

• Architecture, Digital Strategy, and Portfolio

• Financial Management of Digital and IT

Footnotes

[1] Based upon https://twitter.com/signalsciences/status/1103081590224183297

[2] Similar to https://en.wikipedia.org/wiki/V-Model_(software_development), accessed 2016-11-12.

[3] Cloud Security Alliance, Security Guidance for Critical Areas of Focus in Cloud Computing version 4

[4] Image credit https://www.flickr.com/photos/portland_mike/5445434245/, downloaded 2016-11-13, Mike Krzeszak,

Flickr, Creative Commons.

[5] Image credit https://commons.wikimedia.org/wiki/File:OODA.Boyd.svg, full diagram originally drawn by John Boyd

for his briefings on military strategy, fighter pilot strategy, etc. Patrick Edwin Moran author, downloaded 2017-04-07,

Creative Commons license.

[6] If any reader can supply a clear citation, please add it.

[7] Image credit https://commons.wikimedia.org/w/index.php?curid=4282986, By I, John Manuel Kennedy T., CC BY-SA

3.0, downloaded 2016-10-31, fair use.

[8] Note that ITIL 4 has renamed "processes" as "practices".

[9] Credit: Brian Barnier used this analogy at an ISACA meeting around 2011.

[10] Synthesized from various sources including ISO 38500 and COBIT.

[11] Public domain assumed.

Chapter 6. The Body of Knowledge 6.4. Context IV: Enduring Enterprise

Digital Practitioner Body of Knowledge™ Standard 491

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Appendices

Appendix A: Abbreviations

ADM

Architecture Development Method

AI

Artificial Intelligence

ALM

Application Lifecycle Management

API

Application Programming Interface

APM

Application Portfolio Management

BABOK

Business Analysis Body of Knowledge

BAI

Build, Acquire, and Implement

BI

Business Intelligence

BIM

Business Integration Method

BPA

Business Process Automation

BPM

Business Process Management

BPMN

Business Process Modeling Notation

BPO

Business Process Outsourcing

Appendix A: Abbreviations Appendices

492 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

BPR

Business Process Re-engineering

BYOD

Bring Your Own Device

CAP

Consistency, Availability, and Partition-tolerance

CAS

Complex Adaptive System

CIO

Chief Information Officer

CISSP

Certified Information Systems Security Professional

CLD

Causal Loop Diagram

CMDB

Configuration Management Database

CMM

Capability Maturity Model

CMMI

Capability Maturity Model Integration

CMO

Chief Marketing Officer

CMS

Configuration Management System

CNCF

Cloud Native Computing Foundation

COBIT

Control Objectives for Information Technology

COO

Chief Operating Officer

Appendices Appendix A: Abbreviations

Digital Practitioner Body of Knowledge™ Standard 493

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

COTS

Commercial Off-The-Shelf

CPU

Central Processing Unit

CRM

Customer Relationship Management

CSA

Cloud Security Alliance

CSP

Cloud Service Provider

CTO

Chief Technical Officer

CVE

Common Vulnerability and Exposures

CWE

Common Weaknesses Enumeration

DBA

Database Administrator

DDD

Domain-Driven Design

DEEP

Detailed, Estimated, Emergent, Prioritized

DMBOK

Data Management Body of Knowledge

DPM

Digital Product Management

DSS

Deliver, Service, and Support

DW

Data Warehouse

Appendix A: Abbreviations Appendices

494 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

EBM

Enterprise Business Management

EDM

Evaluate, Direct, and Monitor

EDP

Electronic Data Processing

EDPAA

Electronic Data Processing Auditors Association

ERM

Enterprise Resource Management

ERP

Enterprise Resource Planning

ESM

Enterprise Service Management

ETL

Extract, Transform, Load

FOSS

Free and Open-Source Software

GPL

GNU General Public License

GRC

Governance, Risk Management, and Compliance

HIPAA

Health Insurance Portability and Accountability Act

HiPPO

Highest Paid Person’s Opinion

HVAC

High Volume Air Conditioning

IaaS

Infrastructure as a Service

Appendices Appendix A: Abbreviations

Digital Practitioner Body of Knowledge™ Standard 495

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

IaC

Infrastructure as Code

IDEF

Integration DEFinition

IGOE

Input/Guide/Output/Enabler

I&O

Infrastructure and Operations

I/O

Input/Output

IoT

Internet of Things

ISACA

IS Audit and Control Association

ITGC

Information Technology General Control

ITIL

IT Infrastructure Library

ITPA

IT Process Automation

ITSM

IT Service Management

JVM

Java Virtual Machine

KPI

Key Performance Indicator

LOB

Line of Business

LPPD

Lean Product and Process Development

Appendix A: Abbreviations Appendices

496 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

MEA

Monitor, Evaluate, and Assess

MVA

Minimum Viable Architecture

MVP

Minimum Viable Product

NIST

National Institute of Science and Technology

NVD

National Vulnerability Database

OODA

Observe, Orient, Decide, Act

OS

Operating System

OWASP

Open Web Application Security Project

PaaS

Platform as a Service

PaaS

Product as a Service

PCI

Payment Card Industry

PDCA

Plan–Do–Check–Act or Plan–Do–Check–Adjust

PLM

Product Lifecycle Management

PMBOK

Project Management Body of Knowledge

PMI

Project Management Institute

Appendices Appendix A: Abbreviations

Digital Practitioner Body of Knowledge™ Standard 497

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

PMO

Project Management Office

POS

Point of Sale

PSI

Potentially Shippable Increment

R&D

Research and Development

RACI

Responsible, Accountable, Consulted, Informed

RAM

Random Access Memory

RDS

Relational Database Service

RFI

Request for Information

RFP

Request for Proposal

RFQ

Request for Quote

SaaS

Software as a Service

SBCE

Set-Based Concurrent Engineering

SAFe

Scaled Agile Framework

SCM

Supply Chain Management

SDLC

Software Development Lifecycle

Appendix A: Abbreviations Appendices

498 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

SDN

Software-Defined Network

SIAM

Service Integration and Management

SLA

Service-Level Agreement

SOA

Service-Oriented Architecture

SOX

Sarbanes-Oxley (Act)

SPM

Service Portfolio Management

SQL

Structure Query Language

SRE

Site Reliability Engineering

SSDLC

Secure Software Development Lifecycle

STPA

Systems Theoretic Process Analysis

TBM

Technology Business Management

UML

Unified Modeling Language

URI

Uniform Resource Identifier

UX

User Experience

VLAN

Virtual LAN

Appendices Appendix A: Abbreviations

Digital Practitioner Body of Knowledge™ Standard 499

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

VSM

Value Stream Map

WBS

Work Breakdown Structure

WSJF

Weighted Shortest Job First

XP

eXtreme Programming

Appendix A: Abbreviations Appendices

500 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Index

@

10 deploys a day, 100

24x7, 198

A

A/B testing, 136, 190

ACORD Framework, 409

ACORD.org, 409

AKF scaling cube, 210, 217, 308

ALM, 236

APIs, 217

for boundary spanning, 224

APMt, 488

ARTS Model, 409

ASCII, 80

Abbott, Martin, 199, 207, 210, 262, 273, 300, 301,

304

Abrashoff, Capt. D. Michael, 318

Adobe, 314

Adzic, Gojko, 133

Agile, 100, 234, 247, 254, 348

and architecture, 477

Agile Alliance, 138

Agile Manifesto, 96, 479

on documentation, 479

Agile methods, 145

relationship to data management, 424

Agile movement, 230, 250, 307

Allspaw, John, 204

Alta Vista, 298

Amazon, 99, 128, 217, 224, 298, 400, 480

API mandate, 128, 224, 388

shopping cart experiment, 129

two-pizza team rule, 128

Ambler, Scott, 266, 367

Anderson, David, 150, 151

Andon, 153, 219, 235

Andon board, 320

Andon cord, 153

AngularJS, 347

Apple, 52, 135, 400

Genius Bar, 135

Application Lifecycle Management, 236

ArchiMate, 468

Arnold, Josh, 168

Art of Scalability, The, 210

Asciidoc, 78

Association for Retail Technology Standards, 409

Association of Records Management

Administrators, 416

Availability, 208

abacus, 399

accounting standards, 257

and design-in-process, 256

ad hoc requests, 313

analytics, 419, 431

closed-loop, 421

annual budgeting, 249

append-only, 429

application

defined, 89

application architecture, 471

application development, 90

application lifecycle, 472

application monitoring, 195

application performance monitoring, 193

application service, 464

application service lifecycle, 464

application versus infrastructure, 270

applications, 88, 349

history of, 89

applications versus infrastructure and operations,

186

architecture, 217

Agile and, 477

and visualization, 453

as management program, 451

definition, 437

architecture catalogs, 460

architecture repository, 457

architecture styles, 217

architecture!as catalogs, diagrams, matrices, 458

artifact, 149, 221, 322

artifacts, 224, 325

Index

Digital Practitioner Body of Knowledge™ Standard 501

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

assembler, 89

assembly line, 242

asset, 465

defined, 465

asset lifecycle, 465

asset management, 352

assets protection, 374

assurance, 358, 361

compared to out-of-band management, 359

distinguished from consulting, 362

forms of, 362

three-party model, 361

assurance versus audit, 362

assurance versus consulting, 362

audit, 352, 367

external versus internal, 371

authentication and authorization, 378

authorizations and approvals, 334

autonomy, 317

B

BABOK, 134

BIAN Service Landscape, 410

BPM, 326

Bacik, Sandy, 373

Bad Apple theory, 204

Balanced Scorecard, 237

Bamboo, 109

Banking Industry Architecture Network, 410

Barker entity-relationship, 455

Barnier, Brian, 332

Beck, Kent, 96, 103

Bell, Steve, 257

Bente, Stefan, 437, 449

Berkeley, Edmund, 89, 400

Beyond Budgeting, 253

Big Data, 432

applied to capacity management, 200

Black Friday, 199

Boeing, 483

Booch, Grady, 473

Boyd, John, 180

Brooks' Law, 128

Brooks, Fred, 103, 310

Burroughs, 400

Burrows, Michael, 480

Burrows, Mike, 158

Business Analysis Body of Knowledge, 134

Business Model Canvas, 54, 470

backup, 487

balancing feedback, 176

banking, 53

batch processes, 325

batch scheduler, 487

batch size, 98, 151

behavior, 349

beneficial variability, 131

best practice, 347

big room, 222

binary, 89

binary files, 79

blameless postmortems, 319

blamelessness, 203

blueprints, 453

boundary-spanning liaison and coordination

structures, 223

branching, 107

build management, 109, 236, 350

business case analysis, 55

business context, 273

business continuity, 356

business management, 241

study of, 241

business performance reviews, 334

C

CAP principle, 208

CAP theorem, 426

CAPEX, 249

CIO as order-taker, 386

CISSP, 346, 374

CMDB, 198, 433, 462

CMMI, 347

CNCF, 111

COBIT, 324, 331, 339, 347, 354

Enabling Information, 402

Manage Relationships Process, 324

COBIT for Risk, 352

Index

502 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

COBOL, 89

COSO, 333

CPU utilization, 193

CRM system, 411

Cadbury Report, 331, 367

Cagan, Marty, 125, 142

Card Wall, 150

Chalup, Strata, 202, 207

Change management, 202

ChatOps, 201, 236

as synchronization mechanism, 222

Cheaper by the Dozen, 241

Checklist Manifesto, 387

Checklist Manifesto, The, 172

Chen entity-relationship, 455

Chief Engineer, 160

Chief Operations Officer, 185

Chisholm

Malcom, 413

Christensen, Clayton, 132

Chubby locking service, Google, 480

Church, Alonzo, 65

Coase, Ronald, 256, 388

Cockburn, Alistair, 97, 479

Cockcroft, Adrian, 448

Cohn, Mike, 142, 146, 217, 222, 270, 274, 307

Comella-Dorda, Swati, 255

Committee of Sponsoring Organizations of the

Treadway Commission, 334

Computing processes, 193

Configuration Management Database, 198

Consistency, 208

Continental Airlines, 315

Control Data, 400

Conway’s law, 300

Corporate Executive Board, 307

Customers, 278

Cyber Monday, 199

cable TV, 67

cadence, 223

canary deployments, 136, 190

capability architecture, 470

capability heat mapping, 470

capacity analysis, 94

capacity management, 199, 326

Big Data and, 200

capital budget, 249

card wall, 232

cargo cult, 387

cargo cult thinking, 220

history of, 220

case management, 173, 239, 387

causal analysis, 204

centers of excellence, 299, 304

certification, 312

change, 216

change control

project, 99, 266

change management, 352

change process, 190

channel separation, 360

chatroom, 201

checklist, 321

checklists, 239, 333

clickwrap, 263

clickwrap agreement, 261

cloud

private, 74, 90

public, 90

cloud computing, 65, 73, 250, 309, 431

Infrastructure as a Service, 74

Platform as a Service, 74

Software as a Service, 74

distinguished from virtualization, 74

financial implications of, 250

origins of, 73

pros and cons of, 262

codes of ethics, 357

cognitive load, 325

cohesion, 112

collaboration, 138, 152

time and space shifting and, 154

command and control, 354

commander’s intent

in military orders, 318

commercial data, 414

commit, concept of, 81

commoditization, 410

Index

Digital Practitioner Body of Knowledge™ Standard 503

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

common ground, 152, 225, 448, 453

communities of practice

for boundary spanning, 223

competencies, 349

competitive strategy, 51

competitors, 335

compilers, 89

complex systems failures, 203

compliance, 346, 352, 357, 376, 445

computability, 65

computer architecture, 65

computers

humans as, 399

computing, 65

history of, 399

conceptual data model, 405

conditional logic, 171

conference bridge, 201

configuration management, 78, 80, 350

declarative versus imperative, 78, 84

policy-based, 84

software, 107

containers, 68, 190, 199

continuous delivery, 100, 136, 181, 189, 189, 230

continuous deployment, 110

continuous improvement, 240

monitoring and, 196

continuous integration, 108, 109, 236

contract management, 260

contracts, 335

Agile influences on, 266

software development, 265

time/materials versus fixed-price, 266

control, 334

control activities, 334

control chart, 243

control objective, 354

control theory, 175

controlled vocabulary, 405

controls, 449

types of, 355

coordinated execution, 225

coordinating committees, 349

coordination, 217, 274

Strode taxonomy of mechanisms, 221

coordination role

for boundary spanning, 223

coordination strategies, 226

and architecture, 483

corporate compliance, 357

cost accounting, 251, 257

cost of delay, 163, 224, 245, 256, 273, 304, 427, 447,

479, 483

examples, 164

failure to manage as risk, 390

limitations of, 479

counterfactual, 204

coupling, 112

cross-functional teams, 134, 141

cross-organizational coordination, 349

crow’s foot notation, 407

cryptography, 378

culture, 349

and motivation, 317

as lagging indicator, 316

as risk, 390

defined, 316

cuneiform, 398

customer, 52

problem of defining, 404

customer intimacy, 51

cybercriminals, 335

cyberlaw, 418

cycle time, 151

D

DBA, 408

DDD, 427

DEEP acronym, 145

DMBOK, 403, 421, 469

DW, 424

Data Management Body of Knowledge, 403

Define/Measure/Analyze/Implement/Control, 244

Dekker

old versus new views, 204

Dekker, Sidney, 204

Dell Technologies, 52

Deloitte Consulting, 314

Index

504 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

approach to performance reviews, 314

Deming, W. Edwards, 151, 243, 323

Desiderata, 362

DevOps, 99, 100, 169, 189, 230, 348

and systems thinking, 182

technical aspects of, 100

Digital Product or Service Catalog, 275

Digital Transformation, 124, 125, 185, 384

and IT governance, 384

Digital sourcing, 260

Duvall, Paul, 104

data

System of Record, 411

commercial, 414

reference, 413

relationship to process, 404

data architecture, 469

data attributes, 407

data center, 73, 251

data governance, 416

data gravity, 424

data lake, 423, 428

data management, 402

functional silo, 426

relationship to Agile, 424

value of, 426

waterfall approaches, 426

data mart, 423

data modeling, 406

data privacy, 418

data protection, 417

data quality, 414, 422, 426, 430

data services layer, 421

data splitting as scaling strategy, 210

data warehouse

definition, 421

data warehousing, 419

database, 408, 408

database product, 270

databases

append-only, 429

decision sciences, 419

decision support, 419

defined process, 245, 321

definition of done, 154

demand, 219, 346

demand management, 150, 216, 235, 239

dependency, 218, 229

defined, 218

deployment management, 83, 350

design patterns, 409

design specifications, 325

design thinking, 135, 137, 185

design-in-process, 256

diagrams

developer use of, 455

types of, 455

diffusion theory, 50

digital effectiveness, 388

digital exhaust, 236, 392, 429, 485

as risk mitigation, 392

digital logic, 65

digital pipeline

architecture of, 482

digital product, 247

digital stakeholders, 52

digital value, 52, 273

delivered as a service, 464

direct versus indirect costs, 251

direct/monitor/evaluate, 339

disaster recovery, 356

discrete event simulation, 238

dojo, 312

dot-com boom, 298

dual-axis value chain, 64, 186

E

E-discovery, 418

ECI matrix, 229

ERP, 230

ERP system, 410

ETOM, 409

Ehrmann, Max, 362

Electronic Data Processing Auditors Association,

368

England, Rob, 174

Enhanced Telecommunications Operating Model,

409

Index

Digital Practitioner Body of Knowledge™ Standard 505

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Enterprise Architecture, 261, 437

and peer organizations, 442

benefits of, 445

compared to map-making, 439

definition, 437

Enterprise Information Management, 410

relationship to Agile, 424

Enterprise Resource Planning, 226

Enterprise Service Management (ESM)/Enterprise

Business Management (EBM, 281

Eric, Evans, 473

Ernst & Young, 371

Etsy, 204

Etsy®, 99

Evans, Eric, 427

Exploration and Mining Business Reference

Model, 410

Extract, Transform, Load, 423

eXtreme Programming, 96, 96, 103

education and training, 312

effective dating, 429

effectiveness, 241

efficiency, 241, 348, 388

in a digital context, 388

element manager, 195

email, 148

emergence model, 336

emergent behavior, 479

empirical process control, 245, 321

employee performance, 313

end-user experience, 194

enterprise, 336

enterprise conceptual data model, 427

enterprise governance, 352, 354

environments, 188

need for questioned, 190

epic, 91, 216

escalation, 169

estimation, 145, 146, 243

Agile scales, 146

ethics, 349

event aggregation, 198

event management, 193

excess capacity

costing distortions due to, 252

execution model, 322

extrinsic motivation, 317

F

FERPA, 357

FORTRAN, 89

FOSS, 263

Facebook, 99, 136, 209, 298, 401

Federal Rules of Civil Procedure, 418

Fisher, Michael, 199, 207, 210, 262, 273, 300, 301,

304

Fisher, Tom, 135

Flickr®, 99

Foreign Corrupt Practices Act, 345

Forrester, 264

Forsgren, Nicole, 79

Fowler, Martin, 103, 323, 427, 483

Frameworx, 409

Fraser, Robin, 253, 259

Friendster, 298

facilities design, 222

facilities management, 251

feature, 216

feature branch, 236

feature toggle, 189

feature versus component teams, 308

features versus components, 269

feedback, 99, 129, 145, 163, 175, 247, 325, 390, 419

field services, 186

finance, 337

floor space, 487

flowcharting, 455

four lifecycle model, 464

fractional allocation, 235, 312

framework

defined, 322

frameworks, 344

commercial incentives, 348

software versus process, 347

free and open-source software, 263

free-rider problem, 315

full absorption, 251

functional organization, 302

Index

506 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

functional splitting as scaling strategy, 210

functions, 304

G

GDPR, 357

GE, 314

GLBA PII, 357

GNU General Public License, 263

Gane-Sarson data-flow diagram, 455

Gartner, 264

Gawande, Atul, 172

Gilbreth, Lillian and Frank, 241

Goal, The, 151

Goldratt, Eli, 151, 323

Google, 206, 209, 298, 401, 429

Chubby locking service, 480

Gothelf, Jeff, 139

Governance, Risk Management, and Compliance,

351

generic data structures, 428

glossaries, 405

governance, 336

defined, 331

understood as user stories, 390

governance/management interface, 340

governing body, 336

graphical user interface, 195

used in infrastructure management, 195

H

HIPAA, 344, 357

HTML, 347

HTTP, 347

HVAC, 487

Hadoop, 428

Hamel, Gary, 217

Hammer, Michael, 232

Harel state charts, 455

Harnish, Verne, 42

Harris, Shon, 346, 380

Harvard Business Review, 314

Hastings, Reed, 237

Hewlett-Packard, 400

HiPPO, 131, 163, 435, 478

Highest Paid Person’s Opinion, 131

Hogan, Christina, 202, 207

Holland, John, 474

Home Depot, 52

Hope, Jeremy, 253, 259

Housman, Michael, 311

Hubbard, Doug, 351, 353

Hubbard, Doug>, 398

Hubbard, Douglas, 446

Hudson, 109

Humble, Jez, 478

Humphrey, Watts, 323

Huntzinger, James R., 258

Hybrid cloud, 280

hardening guidelines, 345

hardware, 487

harmonic cadencing, 223

heavyweight project management, 301

help desk, 169

help desk operators, 186

high-queue states, 163

higher education governance, 336

hiring process, 310

human error, 204

human factors, 203

human resource management, 310

human resources, 233

human resources department, 357

human visual processing, 454

hypervisor, 68

hypothesis testing, 136, 273

I

I&O, 304, 444

IAASB, 372

IBM, 400, 436

flowchart template, 455

IEEE, 347

IETF, 347

ISACA, 331, 333, 360, 368

ISAE3000, 362

ISO 22301, 356

ISO 31000, 351

ISO 38500, 339

ISO 9000, 347

Index

Digital Practitioner Body of Knowledge™ Standard 507

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ISO/IEC, 347

ISO/IEC 15504, 347

ISO/IEC 20000, 347

ISO/IEC 21500, 347

ISO/IEC 27031:2011, 356

ISO/IEC 38500, 347, 386

ISO/IEC 42010, 347

ISO/IEC IEEE, 438

IT

decline of traditional model, 286, 387

history of, 297

IT asset management, 263

IT audit, 367

history of, 368

interest in process, 368

IT failure, 387

IT financial management, 249

IT governance, 331, 387

and Digital Transformation, 384

as demand, 389

IT lifecycles, 263

IT management frameworks, 321

IT portfolio

origins of term, 269

IT project portfolio, 249

IT security, 373

Availability/Integrity/Confidentiality principles,

375

and assurance, 383

and dual-axis model, 376

and systems lifecycle, 378

definition, 373

information classification, 376

operations, 380

patching, 379

sourcing and, 379

talent demand, 378

zero-day vulnerability, 379

IT security operations

detection, 381

forensics, 382

prevention, 381

response, 382

IT service costing, 257

IT systems

fragility of, 187

IT value, 52

IT versus the business, 386

IT4IT Standard, 410

ITIL, 312, 324, 347

Service Level Management Process, 324

Incident management, 202

Industrial Revolution, 241

Information Systems, 175

Information Technology, 175

Infrastructure as Code, 77, 104, 188, 190, 356

Institute of Internal Auditors, 371

Internal Affairs, 383

International Auditing and Assurance Standards

Board, 372

International Standards Organization, 347

Intuit, 299

IoT, 429

Ivancsich, Franz, 256

immutability, 430

impact mapping, 133, 339

incident, 169, 216

industrial engineering, 241

industry analysts, 264

industry framework, 322

inferred schemas, 428

information, 349

importance of context, 401

information architecture, 474

information classification, 417

information radiator, 154

information resource management, 349

information theory, 65

infrastructure, 349

infrastructure and operations, 186

infrastructure and operations versus applications,

186

infrastructure engineering, 308

infrastructure service, 464

innovation, 159

innovation cycle, 348, 410

integration team

for boundary spanning, 223

Index

508 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

integration testing, 110

intellectual property, 261

internal compliance, 363

internal investment, 246

competition for, 246

internal market economics, 258

internal market mechanisms, 483

internal service, 389

internal venture funding, 255

interrupt-driven, 169, 186

interrupt-driven work, 148

intrinsic motivation, 317

invisible inventory, 157

J

JVM, 117

Japan, 150

Japanese industrial practices, 150

JavaScript, 89

Jenkins, 109

Johnson, Hilary, 140

Jones, Dan, 259

Juran, Peter, 151, 244

jUnit, 103

K

Kan, Steven, 244

Kanban, 148, 169, 219

Kanban bins, 320

Kanban board, 150, 232

Kanban versus Scrum, 157

Kim, Gene, 156, 295

Klein, Gary, 152

Kniberg, Henrik, 299

kata

defined, 320

knowledge management, 457

L

Landis, Sean, 315

Landis, Sean, Huggy, 311

Larman, Craig, 220, 307

Lean, 100, 234, 244

Lean Accounting, 253

Lean Product Development, 100, 155, 220, 247, 273

beneficial variability, 131

relationship to IT finance, 256

Lean Startup, 137, 137, 144, 269

Lean Startup), 163

Lean UX, 135, 137, 139

Lean manufacturing, 157

Limoncelli, Tom, 185, 202, 207

Little’s Law, 155

Log file, 193

Lotus Software, 311

large project failures, 95

law, 337

laws, 335

leading/lagging indicators, 237

learned helplessness, 274

learning progression, 42

liability, 261

lifecycle

service, 63

line versus staff, 439

load testing, 110

local optimization, 238, 322, 323

log data, 429

logging library, 196

logical data model, 406

logs, 118

long tail, 244

M

MVP, 57

Maarit, Laanti, 252

Markdown, 78

Marquette, Capt. L. David, 318

Massachusetts Institute of Technology, 317

Matts, Chris, 256

McCrory, Dan, 424

McGilvary, Danette, 414

McGregor, Douglas, 317

Menander, 354

Microsoft, 314, 401, 455

Minimum Viable Product, 57

Minor, Dylan, 311

Monte Carlo analysis, 353

Moody, Dan, 454

Index

Digital Practitioner Body of Knowledge™ Standard 509

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Multi-cloud, 279

MySpace, 298

Mythical Man-Month, The, 103, 310

mainframe, 250

time-sharing, 73

major incident, 216

mastery, 317

meetings

as synchronization mechanism, 222

memory, 66

memory hierarchy, 66

mental model, 149, 152, 448, 479

mental models, 438

merge hell, 107

metadata, 423, 433

metamodel, 461

metrics hierarchy, 237

microservice, Google Chubby, 480

microservices, 217, 428, 435, 480

mobile, 431

mobile device, 59

moment of truth, 59

monitoring, 350, 487

agents, 194

application, 195

business impact, 198

continuous improvement and, 196

in-band versus out-of-band, 192

monitoring tool, 201

motivation, 317

multi-product environments, 483

multi-tasking, 157, 235, 239, 308, 313, 324, 390

multi-tenancy, 74

N

NIST, 379

NIST Special Publication 800-34, 356

Napiers' Bones, 399

Napoleonic wars, 318

Narayan, Sriram, 299

National Vulnerability Database, 379

Netflix, 99, 131, 136, 190, 480

Simian Army, 205

approach to culture of, 237

Network, 193

Nike, 52

Nordstrom, 52

network, 487

network security, 378

networking, 67

non-profits, 336

normal distribution, 243

O

OODA loop, 180, 225

OPEX, 249

OS, 68

Obeya, 161

Ohno, Taiichi, 257

Omnigraffle™, 457

Open Group, The!Exploration, Mining, Metals, and

Minerals (EMMM) Forum, 409

Open Group, The!IT4IT Forum, 409

Open Space, 223

OpenTracing, 193

Oracle, 408, 408

Organization for International Standardization,

347

Osterwalder, Alex, 54

O’Reilly books, 77

on-call, 186

ontology, 404

ontology mining, 429

open-loop, 124, 162, 220, 302, 314

open-loop versus closed-loop, 179

operational demand, 205

operational drills, 205

operational excellence, 51

operational risk management, 351

operations, 137

organizational learning, 349

organizational scar tissue, 389

organizational strategy, 419

organizational structure, 349

outcome-based relationship, 334

outcomes, 273

Index

510 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

P

PCI DSS, 357

PMBOK, 312, 323, 347, 351

Parkhill, Douglas, 73

Partition-tolerance, 208

Patton, Jeff, 142

Performance metrics, 193

Phoenix Project, The, 156, 313

Pichler, Roman, 131, 141, 307

Pink, Daniel, 317

Plan/Do/Check/Act, 244

Platform as a Service, 90

Poppendieck, Mary and Tom, 100

Powerpoint™, 457

Prescriptive method

defined, 140

PriceWaterhouse Coopers, 371

Problem management, 202

Process management

project management and, 230

Product Development and Management

Association, 128

Product development, 148

Product discovery versus design, 137

Project Management Institute®, 351

Project Management Office, 247, 247

Project management

process management and, 230

Prudential, 89

Puppet State of DevOps Report, 79, 430

Puppet State of DevOps Report!, 319

package management, 79, 81, 110, 263, 350

as proxy for upstream, 82

package repository, 190

paper record-keeping, 368

paravirtualization, 68

party line, 74

peer code reviews, 154

penetration testing, 383

people management, 310

performance management, 199

performance reviews, 313

performance-based pay, 334

physical data model, 406

pivoting, 57

plan-driven approaches, 144

planning fallacy, 144, 321

policies, 344

policy hierarchy, 449

policy management, 352, 357

policy-aware state management, 188

portfolio management, 350, 487

post-mortems, 203, 204

postmodernism, 427

power distribution units, 60

practice

defined, 303

primary artifacts, 325

principal-agent problem, 332

principle of co-location, 222

principles, 344

principles and codes, 345

prioritization, 145, 147, 168

private companies, 337

problem, 216

problem management, 203

process

as career identity, 233, 311

as organizational scar tissue, 389

breadth of concept, 240

countability, 326

defined, 232

disadvantages of, 237

improvement, 240

measuring, 236

naming, 326

proliferation, 238

relationship to data, 404

repeatability, 232

process activities, 354

process architecture, 469

process automation, 234

process control, 241

process framework, 149

process inputs and outputs, 324

process management, 155, 224, 232, 464

as coordination, 229

contrasted with project management, 229

Index

Digital Practitioner Body of Knowledge™ Standard 511

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

process management versus product/project, 126

process modeling, 238

process police, 234

process practices, 354

process proliferation, 238

process simulation, 238

processes as controls, 349

product, 216

defined, 124

product backlog, 141, 145, 273

grooming, 145

product design, 135

product development, 303

as information creation, 247

distinguished from production, 159

product discovery, 129, 269

tacit versus explicit, 129

techniques, 129

product leadership, 51

product management, 102, 123, 123, 247

Amazon influences on, 128

defined, 124

old school versus new school, 131

versus product marketing, 125

product management versus project/process, 126

product manager versus owner, 143

product owner, 239, 307

product owner versus manager, 143

product roadmap, 144, 273

product team, 138

organizing, 138

production

distinguished from product development, 159

production environment

difficulty of simulating, 189

professional consensus, 322

professional manager, 332

program, 216

program manager

as coordination role, 223

programmable responsibilities, 333

programming language

C, 89

COBOL, 89

FORTRAN, 89

Java, 89

JavaScript, 83, 89

R statistical, 423

Ruby Basic, 89

SQL, 407, 425

Visual Basic, 89

imperative versus declarative, 84

low-level, 89

progressive specification, 146

project

fractional allocations, 235

project management, 149, 224, 236, 285, 352, 464

as coordination, 228

as execution management, 228

as investment management, 247

project management versus product/process, 126

project manager

as coordination role, 223

promotion of functionality, 189

provisioning, 169

psychological safety, 138, 204, 301

publicly owned company, 336

purpose, 317

Q

Qualpro, 131

Quinlan, Terry, 257

queue, 390

queues, 155, 224, 324

queuing, 304

operations-driven demand and, 205

queue starvation, 205

R

R programming language, 423

R&D, 159

RACI analysis, 229

Rao, Huggy, 311

Reference architectures, 409

Reinertsen, Don, 131, 146, 148, 151, 155, 178, 222,

235, 245, 256, 304, 318, 446, 483

Request management, 202

Robertson, David, 437

Ross, Jeanne, 437

Index

512 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Rother, Mike, 220

Routing, 169

Royce, Walker, 94

Rubin, Ken, 157

Ruby on Rails, 82, 89

Rummler, Geary, 232

racks, 487

rationalization, 466

real estate, 487

reconciliations, 334

records management, 376, 415

and DDD, 428

and generic data structures, 428

reductionism, 323

refactoring, 103, 425

large data sets, 425

reference data, 413

regulations, 335

reification fallacy, 398

reinforcing feedback, 176

in business context, 179

relational database, 410, 427

release, 216

release management, 111

defined, 111

release planning, 144

repeatability, 230, 236

repositories

economics of, 462

representation, 398

request, 216

requirements, 91, 134

perishability of, 157

resource contention, 219

retention schedule, 416

return codes, 193

rigor, 387

risk

appetite for, 351

defining, 351

digital exhaust as mitigation, 392

information related, 417

new kinds of, 390

probability times impact, 353

response, 354

supplier-based, 391

risk assessment, 353

Monte Carlo analysis, 353

problem of ordinal scales, 353

risk management, 350, 357, 373, 390, 445

Agile development as form of, 97

related capabilities, 352

risk repository, 395

rolling release, 110

root cause analysis, 204

S

SAFe, 162, 252, 270

SBCE, 161

SIDS, 409

SMAC, 431

SOA, 113

SOX, 357

SQL, 425

SRE, 206

Schlarman, Steve, 346

Schneider matrix, 317

Schneider, William, 317

Schwaber, Ken, 245, 307, 315

Scrum, 134, 140, 145, 148, 315, 348

Scrum master, 140

Team member, 140

defined, 140

empirical process control and, 245

product owner, 140

Scrum Board, 150

Scrum master, 239, 307

Scrum of Scrums

for boundary spanning, 223

Scrum versus Kanban, 157

Scrumban, 158

Security Operations Center, 380

Senge, Peter, 175

Service Catalog, 304

Service Integration and Management (SIAM, 280

Service-Level Agreement, 187

Set-Based Concurrent Engineering, 161

Shannon, Claude, 65, 399, 425

Index

Digital Practitioner Body of Knowledge™ Standard 513

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Sharp, Alex, 238

Shewhart, Walter, 243

Silicon Valley, 99, 298

Simian Army, 205, 379, 392

Sims, Chris, 140

Simsion, Graeme, 404

Sirkia, Rami, 252

Site Reliability Engineering, 206

Sloss, Benjamin Treynor, 206

Smith, Preston, 304

Spotify, 299, 305

Data/Insight/Belief/Bet model, 131

Spotify model, 299

Spotify™, 131

Spring, 89

State of DevOps, 319

Strode, Diane, 218, 221, 224, 225, 235

Strode, Diane!coordination effectiveness

taxonomy, 224

Strode, Diane!coordination taxonomy, 221

Strode, Diane!cube derived from, 225

Struts, 89, 347

Sumerians, 398

Sutherland, Jeff, 140, 245

Sutton, Robert, 311

System of Record, 411, 423

schema-less, 428

schema-on-read versus schema-on-write, 428

schemas

inferred, 428

secondary artifacts, 325

security, 352, 373, 445

as risk management, 373

security architecture, 377

security auditors, 383

security engineering, 377

self-managing teams, 307

self-organizing teams, 238

self-service, 309

semantic interoperability, 425

semiotics, 427

separation of duties, 355

serverless, 199

service

characteristics of, 464

defined, 464

service brokering, 259

service desk, 169

service level, 187

service offering, 464

service virtualization, 189

services, 349, 464

sharding, 210

shared service, 250

mainframe example, 250

shared services, 270, 304

shared team members

for boundary spanning, 223

shareholders, 336

shell script, 77

single-piece flow, 151

skills, 349

skunkworks model, 306

slide rule, 399

social media, 431

social organization, 337

socio-technical system, 323

software

frameworks, 347

history of, 89

software architecture, 473

software asset management, 263

software configuration management, 107

software crisis, 95

software developers, 186

software development, 88, 94

software engineering, 137

software licensing, 264, 487

software pipeline, 236

software testing

impossibility of doing so completely, 387

solutions architecture, 472

source code, 80

source control, 79, 80, 236, 349

sourcing, 260, 480

specialists, 227

sponsor, 52

sprint backlog, 141

Index

514 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

staff, 487

staff versus line, 439

stakeholders, 336

standard

defined, 346

standardization, 348

standardized policies, 344

standards, 335, 449

standards and processes, 345

standards bodies, 322

state, managing, 187

static code analysis, 395

statistical process control, 243, 322, 384

stock exchanges, 336

storage, 66

storage area network, 464

story, 146, 149, 216

strangler pattern, 484

submittal schedule, 239

submittal schedules, 387

for boundary spanning, 223, 224

sunset dates, 346

supplier risk, 390

suppliers, 260

too many, 480

synchronization, 222

system

defined, 175

system replication as scaling strategy, 210

systems engineering, 90, 94, 104, 137

systems operators, 186

systems thinking, 324

and DevOps, 182

T

TAM, 409

TCP/IP, 347

TM Forum, 409

TOGAF, 347, 457

Taylor, Frederick, 241

Taylorism, 242, 384

Technology Business Management (TBM, 283

Terminology

Can, 27

May, 27

Shall, 27

Shall not, 27

Should, 28

Will, 28

Text editor, 80

The Open Group

ArchiMate, 468

The Open Group!TOGAF framework (TOGAF), 457

Theory X versus Theory Y, 317

Theory of Constraints, 152

Toyota, 151, 160, 320

Toyota Kata, 235, 323, 483

Toyota Production System, 151

Training Within Industry, 151

Travis CI, 109

Treacy and Wiersma, 51

Turing, Alan, 65, 399

team, 122

Agile definition of, 138

psychological safety and, 138

team dynamics

as risk, 390

team of teams, 336

team persistence, 301

technical debt, 104, 205, 325, 448

technology lifecycle, 450

technology product, 465

technology product lifecycle, 347, 465

telecommunications, 67

test data management, 430

test-driven development, 100, 103

testing in production, 99, 190

threats, 335

three-party model, 371

ticket, 149, 169, 201

ticket storm, 198

ticketing, 148, 169, 198, 304

tickets, 224

time and space shifting, 154

time tracking, 312

toil, Google SRE concept, 206

toxic command, 319

toxic hire

Index

Digital Practitioner Body of Knowledge™ Standard 515

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

costs of, 311

training, 230

transactional friction, 324

twelve-factor app, 114

two-pizza team, 128

U

UPS, 425

USS Santa Fe, 318

UX design, 236

Unicode, 80

Unified Modeling Language™, 455

Univac, 400

Uptime Institute, 362

Users, 278

unit costing for services, 251

usability engineering, 136

usability testing, 110

use-case, 91

user, 52

as product, 53

user experience testing, 190

user story, 146

user story mapping, 91

utilization, 199

V

V-model, 95

Visual Basic, 89

vacuum tube, 399

variance from project plan, 243

variation, 241

vendor management, 261

vendor management and sourcing, 445

vendor scorecards, 261

venture capital portfolio, 337

verifications, 334

version control

branch, 81

commit, 81

types of, 79

versioning file systems, 79

verticals

banking, 345

insurance, 89

manufacturing, 186

retail, 199, 429

virtual machine, 190

virtualization, 76

and cloud, 73

and managed services, 73

capacity benefits of, 69

vision and mission, 345

visual cortex, 457

visual processing

human, 153

visualization, 153

volumetrics, 94

von Neumann, John, 65

W

W3C, 347

Wal-Mart, 52

Weill, Peter, 437

Westerman, Paul, 421

Westrum typology, 319

WiFi, 347

Womack, James, 259

Woolley, Anita, 138

World War II, 89, 150

waste, 235

waterfall, 103, 266, 325, 426

incompatibility with web-scale digital

products, 99

waterfall development, 94, 303

web-scale, 425

web-scale systems, 99

whistleblowers, 357

white collar worker, 400

whiteboard, 457

work management, 147, 232, 464

work order, 149, 216

work orders, 224

work-in-process, 151, 155, 157, 163, 256, 324

workflow, 169, 236

workflow tools, 236

X

XP, 348

Index

516 The Open Group Standard (2020-01-06)

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Y

Yahoo®, 298

Z

Zachman Framework, 441, 468

Zuse, Konrad, 399

Index

Digital Practitioner Body of Knowledge™ Standard 517

Copyright © 2020 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

	Table of Contents
	Digital Practitioner Body of Knowledge™ Standard
	Preface
	The Open Group
	This Document
	Background and Intended Value of this Work
	Sources of Material
	Relationship to Prior Publications
	Curation Approach
	Relationship of this Document to Other Bodies of Knowledge
	Interpretive Aspects
	Evidence of Notability

	Trademarks
	Acknowledgments
	Referenced Documents
	Normative References
	Informative References

	Chapter 1. Introduction
	1.1. Objective
	1.2. Overview
	1.3. Conformance
	1.4. Terminology
	1.5. Future Directions

	Chapter 2. Definitions
	Chapter 3. Digital Transformation
	3.1. Example Scenario
	3.2. Digital Transformation as Strategy
	3.3. What is Digital?
	3.4. Seven Levers of Change

	Chapter 4. Principles of the DPBoK Standard
	4.1. Guiding Concepts
	4.2. Comprehensiveness
	4.3. Currency
	4.4. Capability-Based
	4.5. Verifiability
	4.6. Fine-Grained and Clinical Terminology
	4.7. Compatibility with Other Frameworks
	4.8. Compatibility with Agile Principles
	4.9. Compatibility with Enterprise Architecture
	4.10. A Learning Artifact
	4.11. Developed as a Digital Product
	4.12. Competency-Based Content
	4.13. Scaling Model as Learning Progression

	Chapter 5. Structure of the Body of Knowledge
	5.1. Models for Learning Progression
	5.2. Four Contexts
	5.3. Context Summaries

	Chapter 6. The Body of Knowledge
	6.1. Context I: Individual/Founder
	6.1.1. Digital Fundamentals
	6.1.1.1. Digital Context
	6.1.1.2. Digital Value Methods
	6.1.1.3. The Digital Stack
	6.1.1.4. The Digital Lifecycle

	6.1.2. Digital Infrastructure
	6.1.2.1. Computing and Information Principles
	6.1.2.2. Virtualization
	6.1.2.3. Cloud Services
	6.1.2.4. Configuration Management and Infrastructure as Code
	6.1.2.5. Securing Infrastructure

	6.1.3. Application Delivery
	6.1.3.1. Application Basics
	6.1.3.2. Agile Software Development
	6.1.3.3. DevOps Technical Practices
	6.1.3.4. APIs, Microservices, and Cloud-Native
	6.1.3.5. Securing Applications and Digital Products

	6.1.4. Context I Conclusion
	6.1.4.1. Architectural View

	6.2. Context II: Team
	6.2.1. Product Management
	6.2.1.1. Product Management Basics
	6.2.1.2. Product Discovery
	6.2.1.3. Product Design
	6.2.1.4. Scrum and Other Product Team Practices
	6.2.1.5. Product Planning

	6.2.2. Work Management
	6.2.2.1. Work Management and Lean
	6.2.2.2. Lean Product Development
	6.2.2.3. Work Management Capabilities and Approaches
	6.2.2.4. Towards Process Management
	6.2.2.5. Systems Thinking and Feedback

	6.2.3. Operations Management
	6.2.3.1. Defining Operations Management
	6.2.3.2. Monitoring and Telemetry
	6.2.3.3. Operational Response
	6.2.3.4. Operations-Driven Product Demand

	6.2.4. Context II Conclusion
	6.2.4.1. Context II Architectural View

	6.3. Context III: Team of Teams
	6.3.1. Coordination and Process
	6.3.1.1. Coordination Principles and Techniques
	6.3.1.2. Coordination, Execution, and the Delivery Models
	6.3.1.3. Process Management
	6.3.1.4. Process Control and Continuous Improvement

	6.3.2. Investment and Portfolio
	6.3.2.1. Financial Management of Digital and IT
	6.3.2.2. Digital Sourcing and Contracts
	6.3.2.3. Portfolio Management
	6.3.2.4. The Digital Product or Service Catalog
	6.3.2.5. Project Management

	6.3.3. Organization and Culture
	6.3.3.1. Structuring the Organization: Product and Function
	6.3.3.2. IT Human Resources Management
	6.3.3.3. Why Culture Matters
	6.3.3.4. Industry Frameworks

	6.3.4. Context III Conclusion
	6.3.4.1. Context III Architectural View

	6.4. Context IV: Enduring Enterprise
	6.4.1. Governance, Risk, Security, and Compliance
	6.4.1.1. Governance
	6.4.1.2. Implementing Governance
	6.4.1.3. Risk and Compliance Management
	6.4.1.4. Assurance and Audit
	6.4.1.5. Security
	6.4.1.6. Digital Governance

	6.4.2. Information Management
	6.4.2.1. Information and Value
	6.4.2.2. Enterprise Information Management
	6.4.2.3. Analytics
	6.4.2.4. Agile Information Management
	6.4.2.5. Information Management Topics

	6.4.3. Architecture
	6.4.3.1. Why Architecture?
	6.4.3.2. Architecture Practices
	6.4.3.3. Architecture Domains
	6.4.3.4. Agile and Architecture
	6.4.3.5. Architecture, Digital Strategy, and Portfolio

	6.4.4. Context IV and DPBoK Conclusion
	6.4.4.1. Context IV Architectural View

	Appendices
	Appendix A: Abbreviations

	Index

